1
|
Ito-Harashima S, Sano E, Takada E, Nakashima M, Kawanishi M, Yagi T. Development of a New Reporter Gene Assay for Detecting Juvenile Hormone Agonists Using Yeast Expressing Methoprene-Tolerant of the Freshwater Cladoceran Daphnia magna. J Appl Toxicol 2025. [PMID: 40223157 DOI: 10.1002/jat.4784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 03/23/2025] [Accepted: 03/25/2025] [Indexed: 04/15/2025]
Abstract
Juvenile hormones (JHs) play crucial roles in regulating growth, metamorphosis, and reproduction in arthropods. Synthetic JH agonists (JHAs), categorized as insect growth regulators, have been widely employed as insecticides. Natural JHs and synthetic JHAs both exert their physiological effects by binding to the JH receptor methoprene-tolerant (Met), forming a functional heterodimer complex with steroid receptor coactivators (SRCs). These juvenoids induce male offspring production in various daphnids, including Daphnia magna, highlighting the significance of the Met-mediated signaling in environmental sex determination. As a representative invertebrate model for assessing aquatic endocrine-disrupting chemicals, D. magna is incorporated in the test guidelines of the Organization for Economic Corporation and Development. We herein introduced a newly developed yeast-based reporter gene assay (RGA) for easy and rapid screening of JH-like ligands for D. magna Met (Dapma-Met). Dapma-Met was expressed alongside the SRC of D. magna (Dapma-SRC) in yeast cells carrying the lacZ reporter plasmid with a JH-responsive element derived from the Bombyx mori Krüppel homolog 1 gene. The yeast RGA system for Dapma-Met revealed a dose-dependent response to various juvenoids. The rank order of the ligand potencies of natural JHs and synthetic JHAs examined in yeast RGA strongly correlated with those previously observed in RGAs for Daphnia Met proteins established in Chinese hamster ovary cells and positively correlated with the male neonate-inducing activity in vivo. Our novel yeast RGA offers a rapid, easy-to-handle, and cost-effective solution that will be valuable for discriminating Dapma-Met ligands among chemicals with male offspring-inducing activity.
Collapse
Affiliation(s)
- Sayoko Ito-Harashima
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Osaka, Japan
| | - Erika Sano
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Eiji Takada
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Mayuko Nakashima
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, Sakai, Osaka, Japan
| | - Masanobu Kawanishi
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka, Japan
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, Sakai, Osaka, Japan
| | - Takashi Yagi
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka, Japan
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, Sakai, Osaka, Japan
| |
Collapse
|
2
|
Miyakawa H. Environmentally Dependent Alteration of Reproductive Strategies and Juvenile Hormone Signaling in Daphnia (Crustacea: Cladocera). Zoolog Sci 2025; 42. [PMID: 39932751 DOI: 10.2108/zs240054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/11/2024] [Indexed: 05/08/2025]
Abstract
Daphnia switches between asexual and sexual reproductive strategies, depending on environmental conditions. For sexual reproduction, unfavorable environmental signals induce production of males and formation of meiotic eggs. Induction of both these phenotypes is strongly dependent upon the arthropod endocrine factor juvenile hormone (JH). This review presents the current state of research on regulatory mechanisms of reproductive strategy alteration in Daphnia, focusing on studies related to JH signaling conducted during the past several decades. Additionally, it discusses what is needed in future research to fully understand these mechanisms and evolution of complicated life cycle and environmental adaptation systems in Daphnia.
Collapse
Affiliation(s)
- Hitoshi Miyakawa
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Tochigi 321-8505, Japan,
| |
Collapse
|
3
|
Boštjančić LL, Dragičević P, Bonassin L, Francesconi C, Tarandek A, Schardt L, Rutz C, Hudina S, Schwenk K, Lecompte O, Theissinger K. Expression of C/EBP and Kr-h1 transcription factors under immune stimulation in the noble crayfish. Gene 2024; 929:148813. [PMID: 39094714 DOI: 10.1016/j.gene.2024.148813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/08/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
Transcription factors (TFs) have an important role in the regulation of the gene expression network. The role of TFs in the immune response of freshwater crayfish is poorly understood, but leveraging the regulatory mechanisms of immune response could augment the resistance against the invasive oomycete pathogen, Aphanomyces astaci. Previous studies indicated that the TFs CCAAT/enhancer-binding protein (C/EBP) and putative Krüppel homolog-1 protein (Kr-h1) might play a role in immune and stress response of the noble crayfish (Astacus astacus). Here, we aimed to further characterise these two gene products to gain a better understanding of their evolutionary origin, domain organisation and expression patterns across different crayfish tissues. Furthermore, we conducted an immune stimulation experiment to observe the potential changes in the gene expression of C/EBP and Kr-h1 under immune challenge in different crayfish tissues. Our results showed that both C/EBP and Kr-h1 are closely related to other C/EBPs and Kr-h1s in Malacostraca. Gene expression analysis revealed that both TFs are present in all analysed tissues, with higher expression of C/EBP in the gills and Kr-h1 in the abdominal muscle. Immune stimulation with laminarin (mimicking β-1-3-glucan in the oomycete cell wall) showed an activation of the crayfish immune system, with an overall increase in the total haemocyte count (THC) compared to untreated control and crayfish buffered saline (CBS) treatment. On the gene expression level, an up-regulation of the C/EBP gene was detected in the laminarin treated group in hepatopancreas and heart, while no changes were observed for the Kr-h1 gene. Our results indicate an early change in C/EBP expression in multiple tissues during immune stimulation and suggest its involvement in the immune response of the noble crayfish.
Collapse
Affiliation(s)
- Ljudevit Luka Boštjančić
- Institute of Insect Biotechnology, Justus-Liebig University, Heinrich-Buff-Ring 26, 35392 Gießen, Germany; LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany; Department of Computer Science, ICube, UMR 7357, University of Strasbourg, CNRS, Centre de Recherche en Biomédecine de Strasbourg, Rue Eugène Boeckel 1, 67000 Strasbourg, France; iES - Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Fortstraße 7, 76829 Landau, Germany.
| | - Paula Dragičević
- Depatment of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Lena Bonassin
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany; Department of Computer Science, ICube, UMR 7357, University of Strasbourg, CNRS, Centre de Recherche en Biomédecine de Strasbourg, Rue Eugène Boeckel 1, 67000 Strasbourg, France; iES - Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Fortstraße 7, 76829 Landau, Germany
| | - Caterina Francesconi
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany; iES - Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Fortstraße 7, 76829 Landau, Germany
| | - Anita Tarandek
- Depatment of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Leonie Schardt
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Christelle Rutz
- Department of Computer Science, ICube, UMR 7357, University of Strasbourg, CNRS, Centre de Recherche en Biomédecine de Strasbourg, Rue Eugène Boeckel 1, 67000 Strasbourg, France
| | - Sandra Hudina
- Depatment of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Klaus Schwenk
- iES - Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Fortstraße 7, 76829 Landau, Germany
| | - Odile Lecompte
- Department of Computer Science, ICube, UMR 7357, University of Strasbourg, CNRS, Centre de Recherche en Biomédecine de Strasbourg, Rue Eugène Boeckel 1, 67000 Strasbourg, France
| | - Kathrin Theissinger
- Institute of Insect Biotechnology, Justus-Liebig University, Heinrich-Buff-Ring 26, 35392 Gießen, Germany; LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
| |
Collapse
|
4
|
Zhao M, Wang W, Jin X, Liu Z, Luo M, Fu Y, Zhan T, Ma K, Zhang F, Ma L. Methoprene-Tolerant (Met) Acts as Methyl Farnesoate Receptor to Regulate Larva Metamorphosis in Mud Crab, Scylla paramamosain. Int J Mol Sci 2024; 25:12746. [PMID: 39684457 DOI: 10.3390/ijms252312746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
The conserved role of juvenile hormone (JH) signals in preventing larvae from precocious metamorphosis has been confirmed in insects. Crustaceans have different metamorphosis types from insects; we previously proved that methyl farnesoate (MF) can prohibit larvae metamorphosis in mud crabs, but the molecular signal of this process still needs to be elucidated. In this study, methoprene-tolerant (Met) of Scylla paramamosain was obtained and characterized, which we named Sp-Met. Sp-Met contains a 3360 bp ORF that encodes 1119 amino acids; the predicted protein sequences of Sp-Met include one bHLH, two PAS domains, one PAC domain, and several long unusual Gln repeats at the C-terminal. AlphaFold2 was used to predict the 3D structure of Sp-Met and the JH binding domain of Met. Furthermore, the binding properties between Sp-Met and MF were analyzed using CD-DOCK2, revealing a putative high affinity between the receptor and ligand. In silico site-directed mutagenesis suggested that insect Mets may have evolved to exhibit a higher affinity for both MF or JH III compared to the Mets of crustaceans. In addition, we found that the expression of Sp-Met was significantly higher in female reproductive tissues than in males but lower in most of the other examined tissues. During larval development, the expression variation in Sp-Met and Sp-Kr-h1 was consistent with the immersion effect of MF. The most interesting finding is that knockdown of Sp-Met blocked the inhibitory effect of MF on metamorphosis in the fifth zoea stage and induced pre-metamorphosis phenotypes in the fourth zoea stage. The knockdown of Sp-Met significantly reduced the expression of Sp-Kr-h1 and two ecdysone signaling genes, Sp-EcR and Sp-E93. However, only the reduction in Sp-Kr-h1 could be rescued by MF treatment. In summary, this study provides the first evidence that MF inhibits crustacean larval metamorphosis through Met and that the MF-Met→Kr-h1 signal pathway is conserved in mud crabs. Additionally, the crosstalk between MF and ecdysteroid signaling may have evolved differently in mud crabs compared to insects.
Collapse
Affiliation(s)
- Ming Zhao
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 300 Jungong Road, Shanghai 200090, China
| | - Wei Wang
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 300 Jungong Road, Shanghai 200090, China
| | - Xin Jin
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 300 Jungong Road, Shanghai 200090, China
- College of Fisheries and Life Science, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China
| | - Zhiqiang Liu
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 300 Jungong Road, Shanghai 200090, China
| | - Minghao Luo
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 300 Jungong Road, Shanghai 200090, China
- College of Fisheries and Life Science, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China
| | - Yin Fu
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 300 Jungong Road, Shanghai 200090, China
- College of Fisheries and Life Science, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China
| | - Tianyong Zhan
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 300 Jungong Road, Shanghai 200090, China
- College of Fisheries and Life Science, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China
| | - Keyi Ma
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 300 Jungong Road, Shanghai 200090, China
| | - Fengying Zhang
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 300 Jungong Road, Shanghai 200090, China
| | - Lingbo Ma
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 300 Jungong Road, Shanghai 200090, China
| |
Collapse
|
5
|
Abe S, Takahata Y, Miyakawa H. Daphnia uses its circadian clock for short-day recognition in environmental sex determination. Curr Biol 2024; 34:2002-2010.e3. [PMID: 38579713 DOI: 10.1016/j.cub.2024.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/12/2024] [Accepted: 03/14/2024] [Indexed: 04/07/2024]
Abstract
Some organisms have developed a mechanism called environmental sex determination (ESD), which allows environmental cues, rather than sex chromosomes or genes, to determine offspring sex.1,2,3,4 ESD is advantageous to optimize sex ratios according to environmental conditions, enhancing reproductive success.5,6 However, the process by which organisms perceive and translate diverse environmental signals into offspring sex remains unclear. Here, we analyzed the environmental perception mechanism in the crustacean, Daphnia pulex, a seasonal (photoperiodic) ESD arthropod, capable of producing females under long days and males under short days.7,8,9,10 Through breeding experiments, we found that their circadian clock likely contributes to perception of day length. To explore this further, we created a genetically modified daphnid by knocking out the clock gene, period, using genome editing. Knockout disrupted the daphnid's ability to sustain diel vertical migration (DVM) under constant darkness, driven by the circadian clock, and leading them to produce females regardless of day length. Additionally, when exposed to an analog of juvenile hormone (JH), an endocrine factor synthesized in mothers during male production, or subjected to unfavorable conditions of high density and low food availability, these knockout daphnids produced males regardless of day length, like wild-type daphnids. Based on these findings, we propose that recognizing short days via the circadian clock is the initial step in sex determination. This recognition subsequently triggers male production by signaling the endocrine system, specifically via the JH signal. Establishment of a connection between these two processes may be the crucial element in evolution of ESD in Daphnia.
Collapse
Affiliation(s)
- Shione Abe
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Tochigi 321-8505, Japan
| | - Yugo Takahata
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Tochigi 321-8505, Japan
| | - Hitoshi Miyakawa
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Tochigi 321-8505, Japan.
| |
Collapse
|
6
|
Boštjančić LL, Francesconi C, Bonassin L, Hudina S, Gračan R, Maguire I, Rutz C, Beck A, Dobrović A, Lecompte O, Theissinger K. Temporal dynamics of the immune response in Astacus astacus (Linnaeus, 1758) challenged with Aphanomyces astaci Schikora, 1906. FISH & SHELLFISH IMMUNOLOGY 2023; 143:109185. [PMID: 39492497 DOI: 10.1016/j.fsi.2023.109185] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/05/2024]
Abstract
One of the main drivers of biodiversity loss in freshwater ecosystems are alien invasive species. In Europe, pathogen Aphanomyces astaci Schikora, 1906, is considered as one of the most problematic invasive species, as its introduction caused the severe decimation of the European freshwater crayfish stocks. The most affected are the populations of noble crayfish, keystone species native to European freshwaters. Unfortunately, even after decades of research, we do not understand the temporal dynamics of the noble crayfish immune response during Ap. astaci infection. Here, we studied the changes in the immune response of the noble crayfish during a time course challenge with a highly virulent strain of Ap. astaci. We recorded gross symptoms of the disease, changes in the total haemocyte count (THC), gene expression profiles of putative immune response regulators and pathogen load. Additionally, we conducted a preliminary histological analysis of the pathogen dissemination in host tissues. Based on the occurrence of symptoms we propose three stages in the crayfish plague disease progression: asymptomatic stage, symptomatic stage, and finally death of infected individual. Furthermore, based on the qPCR analysis we could differentiate three Ap. astaci growth phases: initial lag phase, followed by exponential growth phase and finally sporulation phase. We observed that all measured immune response parameters were significantly correlated to the observed increase in the pathogen load (qPCR). Altogether, our results point to the absence of a successful immune response in the noble crayfish to a challenge with a highly virulent strain of Ap. astaci. The noble crayfish immune system was not able to suppress the growth of the intruding pathogen. In general, our observations have to be considered in the context of the specific combination of crayfish plague pathogen virulence and disease resistance of the challenged crayfish population, which defines the temporal dynamics of their interaction.
Collapse
Affiliation(s)
- Ljudevit Luka Boštjančić
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, 60325, Frankfurt am Main, Germany; Department of Computer Science, ICube, UMR 7357, University of Strasbourg, CNRS, Centre de Recherche en Biomédecine de Strasbourg, Rue Eugène Boeckel 1, 67000, Strasbourg, France; Rhineland-Palatinate Technical University Kaiserslautern Landau, Institute for Environmental Sciences, Department of Molecular Ecology, Fortstraße 7, 76829, Landau, Germany.
| | - Caterina Francesconi
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, 60325, Frankfurt am Main, Germany; Rhineland-Palatinate Technical University Kaiserslautern Landau, Institute for Environmental Sciences, Department of Molecular Ecology, Fortstraße 7, 76829, Landau, Germany
| | - Lena Bonassin
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, 60325, Frankfurt am Main, Germany; Department of Computer Science, ICube, UMR 7357, University of Strasbourg, CNRS, Centre de Recherche en Biomédecine de Strasbourg, Rue Eugène Boeckel 1, 67000, Strasbourg, France; Rhineland-Palatinate Technical University Kaiserslautern Landau, Institute for Environmental Sciences, Department of Molecular Ecology, Fortstraße 7, 76829, Landau, Germany
| | - Sandra Hudina
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000, Zagreb, Croatia
| | - Romana Gračan
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000, Zagreb, Croatia
| | - Ivana Maguire
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000, Zagreb, Croatia
| | - Christelle Rutz
- Department of Computer Science, ICube, UMR 7357, University of Strasbourg, CNRS, Centre de Recherche en Biomédecine de Strasbourg, Rue Eugène Boeckel 1, 67000, Strasbourg, France
| | - Ana Beck
- Veterinary Pathologist, Zagreb, Croatia
| | - Ana Dobrović
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000, Zagreb, Croatia
| | - Odile Lecompte
- Department of Computer Science, ICube, UMR 7357, University of Strasbourg, CNRS, Centre de Recherche en Biomédecine de Strasbourg, Rue Eugène Boeckel 1, 67000, Strasbourg, France
| | - Kathrin Theissinger
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, 60325, Frankfurt am Main, Germany
| |
Collapse
|
7
|
Yang B, Miao S, Lu Y, Wang S, Wang Z, Zhao Y. Involvement of Methoprene-tolerant and Krüppel homolog 1 in juvenile hormone-mediated vitellogenesis of female Liposcelis entomophila (End.) (Psocoptera: Liposcelididae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 112:e21973. [PMID: 36193599 PMCID: PMC10078567 DOI: 10.1002/arch.21973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/31/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Methoprene-tolerant (Met) as an intracellular receptor of juvenile hormone (JH) and the Krüppel-homolog 1 (Kr-h1) as a JH-inducible transcription factor had been proved to contribute to insect reproduction. Their functions vary in different insect orders, however, they are not clear in Psocoptera. In this study, LeMet and LeKr-h1 were identified and their roles in vitellogenesis and ovarian development were investigated in Liposcelis entomophila (Enderlein). Treatment with exogenous JH III significantly induced the expression of LeKr-h1, LeVg, and LeVgR. Furthermore, silencing LeMet and LeKr-h1 remarkably reduced the transcription of LeVg and LeVgR, disrupted the production of Vg in fat body and the uptake of Vg by oocytes, and ultimately led to a decline in fecundity. The results indicated that the JH signaling pathway was essential to the reproductive process of this species. Interestingly, knockdown of LeMet or LeKr-h1 also resulted in fluctuations in the expression of FoxO, indicating the complex regulatory interactions between different hormone factors. Besides, knockdown of both LeMet and LeKr-h1 significantly increased L. entomophila mortality. Our study provides initial insight into the roles of JH signaling in the female reproduction of psocids and provided evidence that RNAi-mediated knockdown of Met or Kr-h1 is a potential pest control strategy.
Collapse
Affiliation(s)
- Bin‐Bin Yang
- School of Grain Science and TechnologyJiangsu University of Science and TechnologyZhenjiangChina
- School of Food Science and TechnologyHenan University of TechnologyZhengzhouChina
| | - Shi‐Yuan Miao
- School of Grain Science and TechnologyJiangsu University of Science and TechnologyZhenjiangChina
- College of Science, Health, Engineering and EducationMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Yu‐Jie Lu
- School of Grain Science and TechnologyJiangsu University of Science and TechnologyZhenjiangChina
- School of Food Science and TechnologyHenan University of TechnologyZhengzhouChina
- College of Science, Health, Engineering and EducationMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Sui‐Sui Wang
- School of Food Science and TechnologyHenan University of TechnologyZhengzhouChina
| | - Zheng‐Yan Wang
- School of Food Science and TechnologyHenan University of TechnologyZhengzhouChina
| | - Ya‐Ru Zhao
- School of Grain Science and TechnologyJiangsu University of Science and TechnologyZhenjiangChina
| |
Collapse
|
8
|
Ichikawa S, Ishikawa K, Miyakawa H, Kodama Y. Live-cell imaging of the chloroplast outer envelope membrane using fluorescent dyes. PLANT DIRECT 2022; 6:e462. [PMID: 36398034 PMCID: PMC9666008 DOI: 10.1002/pld3.462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/15/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Chloroplasts are organelles composed of sub-organellar compartments-stroma, thylakoids, and starch granules-and are surrounded by outer and inner envelope membranes (OEM and IEM, respectively). The chloroplast OEM and IEM play key roles not only as a barrier separating the chloroplast components from the cytosol but also in the interchange of numerous metabolites and proteins between the chloroplast interior and the cytosol. Fluorescent protein markers for the chloroplast OEM have been widely used to visualize the outermost border of chloroplasts. However, the use of marker proteins requires an established cellular genetic transformation method, which limits the plant species in which marker proteins can be used. Moreover, the high accumulation of OEM marker proteins often elicits abnormal morphological phenotypes of the OEM. Because the OEM can currently only be visualized using exogenous marker proteins, the behaviors of the chloroplast and/or its OEM remain unknown in wild-type cells of various plant species. Here, we visualized the OEM using live-cell staining with the fluorescent dyes rhodamine B and Nile red in several plant species, including crops. We propose rhodamine B and Nile red as new tools for visualizing the chloroplast OEM in living plant cells that do not require genetic transformation. Significance Statement We established a live-cell imaging method to visualize the chloroplast outer envelope membrane by staining living cells with fluorescent dyes. This method does not require genetic transformation and allows the observation of the chloroplast outer envelope membrane in various plant species.
Collapse
Affiliation(s)
- Shintaro Ichikawa
- Center for Bioscience Research and EducationUtsunomiya UniversityTochigiJapan
- Graduate School of Regional Development and CreativityUtsunomiya UniversityTochigiJapan
| | - Kazuya Ishikawa
- Center for Bioscience Research and EducationUtsunomiya UniversityTochigiJapan
| | - Hitoshi Miyakawa
- Center for Bioscience Research and EducationUtsunomiya UniversityTochigiJapan
- Graduate School of Regional Development and CreativityUtsunomiya UniversityTochigiJapan
| | - Yutaka Kodama
- Center for Bioscience Research and EducationUtsunomiya UniversityTochigiJapan
- Graduate School of Regional Development and CreativityUtsunomiya UniversityTochigiJapan
| |
Collapse
|
9
|
Han H, Feng Z, Han S, Chen J, Wang D, He Y. Molecular Identification and Functional Characterization of Methoprene-Tolerant (Met) and Krüppel-Homolog 1 (Kr-h1) in Harmonia axyridis (Coleoptera: Coccinellidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:334-343. [PMID: 35020924 DOI: 10.1093/jee/toab252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Indexed: 06/14/2023]
Abstract
Juvenile hormone (JH) plays a key role in regulating insect reproductive processes. Methoprene-tolerant (Met), as a putative JH receptor, transduces JH signals by activating the transcription factor krüppel homolog 1 (Kr-h1). To understand the effects of Met and Kr-h1 genes on female reproduction of natural enemy insects, the Met and Kr-h1 were identified and analyzed from Harmonia axyridis Pallas (HmMet and HmKr-h1). The HmMet protein belonged to the bHLH-PAS family with bHLH domain, PAS domains, and PAC domain. HmMet mRNA was detected in all developmental stages, and the highest expression was found in the ovaries of female adults. The HmKr-h1 protein had eight C2H2-type zinc finger domains. HmKr-h1 mRNA was highly expressed from day 7 to day 9 of female adults. The tissue expression showed that HmKr-h1 was highly expressed in its wing, leg, and fat body. Knockdown of HmMet and HmKr-h1 substantially reduced the transcription of HmVg1 and HmVg2, inhibited yolk protein deposition, and reduced fecundity using RNA interference. In addition, the preoviposition period was significantly prolonged after dsMet-injection, but there was no significant difference after dsKr-h1-silencing. However, the effect on hatchability results was the opposite. Therefore, we infer that both HmMet and HmKr-h1 are involved in female reproduction of H. axyridis, and their specific functions are different in certain physiological processes. In several continents, H. axyridis are not only beneficial insects, but also invasive pests. This report will provide basis for applying or controlling the H. axyridis.
Collapse
Affiliation(s)
- Hui Han
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - ZhaoYang Feng
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - ShiPeng Han
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Jie Chen
- College of Plant Protection, Hebei Agricultural University, Baoding, China
- Laboratory of Plant Protection, Handan Academy of Agricultural Sciences, Handan, China
| | - Da Wang
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - YunZhuan He
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| |
Collapse
|
10
|
Toyota K, Watanabe H, Hirano M, Abe R, Miyakawa H, Song Y, Sato T, Miyagawa S, Tollefsen KE, Yamamoto H, Tatarazako N, Iguchi T. Juvenile hormone synthesis and signaling disruption triggering male offspring induction and population decline in cladocerans (water flea): Review and adverse outcome pathway development. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 243:106058. [PMID: 34965494 DOI: 10.1016/j.aquatox.2021.106058] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 05/21/2023]
Abstract
Juvenile hormone (JH) are a family of multifunctional hormones regulating larval development, molting, metamorphosis, reproduction, and phenotypic plasticity in arthropods. Based on its importance in arthropod life histories, many insect growth regulators (IGRs) mimicking JH have been designed to control harmful insects in agriculture and aquaculture. These JH analogs (JHAs) may also pose hazards to nontarget species by causing unexpected endocrine-disrupting (ED) effects such as molting and metamorphosis defects, larval lethality, and disruption of the sexual identity. This critical review summarizes the current knowledge of the JH-mediated effects in the freshwater cladoceran crustaceans such as Daphnia species on JHA-triggered endocrine disruptive outputs to establish a systematic understanding of JHA effects. Based on the current knowledge, adverse outcome pathways (AOPs) addressing the JHA-mediated ED effects in cladoceran leading to male offspring production and subsequent population decline were developed. The weight of evidence (WoE) of AOPs was assessed according to established guidelines. The review and AOP development aim to present the current scientific understanding of the JH pathway and provide a robust reference for the development of tiered testing strategies and new risk assessment approaches for JHAs in future ecotoxicological research and regulatory processes.
Collapse
Affiliation(s)
- Kenji Toyota
- Marine Biological Station, Sado Center for Ecological Sustainability, Niigata University, 87 Tassha, Sado, Niigata 952-2135, Japan; Department of Biological Sciences, Faculty of Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa 259-1293, Japan; Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan.
| | - Haruna Watanabe
- Health and Environmental Risk Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan.
| | - Masashi Hirano
- Department of Bioscience, School of Agriculture, Tokai University, Kumamoto City, Kumamoto 862-8652, Japan
| | - Ryoko Abe
- Health and Environmental Risk Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Hitoshi Miyakawa
- Center for Bioscience Research and Education, Utsunomiya University, 350 Mine-machi, Utsunomiya, Tochigi 321-8505, Japan
| | - You Song
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen, Oslo, Norway
| | - Tomomi Sato
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa 236-0027, Japan
| | - Shinichi Miyagawa
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen, Oslo, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science and Technology, Department of Environmental Sciences (IMV), Ås, Norway
| | - Hiroshi Yamamoto
- Health and Environmental Risk Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Norihisa Tatarazako
- Department of Science and Technology for Biological Resources and Environment, Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan
| | - Taisen Iguchi
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa 236-0027, Japan.
| |
Collapse
|
11
|
Mykles DL. Signaling Pathways That Regulate the Crustacean Molting Gland. Front Endocrinol (Lausanne) 2021; 12:674711. [PMID: 34234741 PMCID: PMC8256442 DOI: 10.3389/fendo.2021.674711] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/28/2021] [Indexed: 12/25/2022] Open
Abstract
A pair of Y-organs (YOs) are the molting glands of decapod crustaceans. They synthesize and secrete steroid molting hormones (ecdysteroids) and their activity is controlled by external and internal signals. The YO transitions through four physiological states over the molt cycle, which are mediated by molt-inhibiting hormone (MIH; basal state), mechanistic Target of Rapamycin Complex 1 (mTORC1; activated state), Transforming Growth Factor-β (TGFβ)/Activin (committed state), and ecdysteroid (repressed state) signaling pathways. MIH, produced in the eyestalk X-organ/sinus gland complex, inhibits the synthesis of ecdysteroids. A model for MIH signaling is organized into a cAMP/Ca2+-dependent triggering phase and a nitric oxide/cGMP-dependent summation phase, which maintains the YO in the basal state during intermolt. A reduction in MIH release triggers YO activation, which requires mTORC1-dependent protein synthesis, followed by mTORC1-dependent gene expression. TGFβ/Activin signaling is required for YO commitment in mid-premolt. The YO transcriptome has 878 unique contigs assigned to 23 KEGG signaling pathways, 478 of which are differentially expressed over the molt cycle. Ninety-nine contigs encode G protein-coupled receptors (GPCRs), 65 of which bind a variety of neuropeptides and biogenic amines. Among these are putative receptors for MIH/crustacean hyperglycemic hormone neuropeptides, corazonin, relaxin, serotonin, octopamine, dopamine, allatostatins, Bursicon, ecdysis-triggering hormone (ETH), CCHamide, FMRFamide, and proctolin. Contigs encoding receptor tyrosine kinase insulin-like receptor, epidermal growth factor (EGF) receptor, and fibroblast growth factor (FGF) receptor and ligands EGF and FGF suggest that the YO is positively regulated by insulin-like peptides and growth factors. Future research should focus on the interactions of signaling pathways that integrate physiological status with environmental cues for molt control.
Collapse
Affiliation(s)
- Donald L. Mykles
- Department of Biology, Colorado State University, Fort Collins, CO, United States
- University of California-Davis Bodega Marine Laboratory, Bodega Bay, CA, United States
| |
Collapse
|
12
|
Ito-Harashima S, Yagi T. Reporter gene assays for screening and identification of novel molting hormone- and juvenile hormone-like chemicals. JOURNAL OF PESTICIDE SCIENCE 2021; 46:29-42. [PMID: 33746544 PMCID: PMC7953021 DOI: 10.1584/jpestics.d20-079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
A reporter gene assay (RGA) is used to investigate the activity of synthetic chemicals mimicking the molting hormones (MHs) and juvenile hormones (JHs) of insects, so-called insect growth regulators (IGRs). The MH receptor, a heterodimer of the ecdysone receptor (EcR) and ultraspiracle (USP), and the JH receptor Methoprene-tolerant (Met) are ligand-dependent transcription factors. Ligand-bound EcR-USP and Met bind to specific cis-acting DNA elements, referred to as the ecdysone-responsive element (EcRE) and the JH-responsive element (JHRE), respectively, in order to transactivate target genes. Insect hormone-induced transactivation systems have been reconstituted by the introduction of reporter genes under the control of EcRE and JHRE, or two-hybrid reporter genes, into insect, mammalian, and yeast cells expressing receptor proteins. RGA is easy to use and convenient for examining the MH- and JH-like activities of synthetic chemicals and is suitable for the high-throughput screening of novel structural classes of chemicals targeting EcR-USP and Met.
Collapse
Affiliation(s)
- Sayoko Ito-Harashima
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1–1 Gakuen-cho, Naka-ku, Sakai city, Osaka 599–8531, Japan
| | - Takashi Yagi
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1–1 Gakuen-cho, Naka-ku, Sakai city, Osaka 599–8531, Japan
| |
Collapse
|
13
|
Li X, Chen T, Jiang H, Huang J, Huang M, Xu R, Xie Q, Zhu H, Su S. Effects of methyl farnesoate on Krüppel homolog 1 (Kr-h1) during vitellogenesis in the Chinese mitten crab (Eriocheir sinensis). Anim Reprod Sci 2020; 224:106653. [PMID: 33249353 DOI: 10.1016/j.anireprosci.2020.106653] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 11/28/2022]
Abstract
Methyl farnesoate (MF), a de-epoxidized form of juvenile hormone (JH) Ⅲ in insects, may regulate developmental processes such as reproduction and ovarian maturation in crustaceans. Krüppel homolog 1 (Kr-h1) is a target response gene for the methoprene-tolerant (Met) protein that is a component of the JH signaling pathway in insects. In the present study, Es-Kr-h1 was cloned from E. sinensis and characterized to ascertain whether JH/MF signaling in insects is conserved in crustaceans. The findings with molecular structure analysis indicated Es-Kr-h1 contains seven zinc finger motifs (Zn2-Zn8) commonly conserved in other crustaceans, but the Zn1 motif was not detected to be present. The PCR results indicated that relative abundance of Es-Kr-h1 mRNA transcript in the hepatopancreas was greatest in the Stage Ⅱ, followed by the Stage Ⅳ ovarian developmental categories. The relative abundance of Es-Kr-h1 mRNA transcript in vitro was greater after MF addition to the hepatopancreas, however, not the ovarian tissues. The results from in vivo and eyestalk ablation experiments indicated the relative abundance of Es-Kr-h1 mRNA transcript was greater after MF treatment and bilateral eyestalk removal in the hepatopancreas, however, not ovarian tissues. Notably, there were effects of MF on relative abundance of Es-Kr-h1 mRNA transcript pattern. The Es-Kr-h1 protein, therefore, may be involved in MF-mediated vitellogenesis resulting from the response to Es-Met in E. sinensis, and the JH/MF signaling pathway is potentially conserved in crustaceans.
Collapse
Affiliation(s)
- Xilei Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| | - Tiantian Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Hucheng Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province, China
| | - Jiawei Huang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Mengting Huang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Ruihan Xu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Qiming Xie
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Haojie Zhu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Shiping Su
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
14
|
Hirano M, Toyota K, Ishibashi H, Tominaga N, Sato T, Tatarazako N, Iguchi T. Molecular Insights into Structural and Ligand Binding Features of Methoprene-Tolerant in Daphnids. Chem Res Toxicol 2020; 33:2785-2792. [PMID: 33089992 DOI: 10.1021/acs.chemrestox.0c00179] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Juvenile hormone (JH) is an important endocrine factor regulating many biological activities in arthropods. In daphnids, methoprene-tolerant (Met) belongs to a basic helix-loop-helix/Per-Arnt-Sim (bHLH/PAS) family protein which has recently been confirmed as a JH receptor and can bind and be activated by JHs and JH agonists. Although the activation of the JH signaling pathway causes many physiological effects, the molecular basis for the structural feature and ligand binding properties of Daphnia Met are not fully understood. To study the ligand preference in terms of structural features of Daphnia Met, we built in silico homology models of the PAS-B domain of Daphnia Mets from cladoceran crustaceans, Daphnia pulex and D. magna. Structural comparison of two Daphnia Met PAS-B domain models revealed that the volume in the main cavity of D. magna Met was larger than that of D. pulex Met. Compared with insect Met, Daphnia Met had a less hydrophobic cavity due to polar residues in the core-binding site. Molecular docking simulations of JH and its analogs with Daphnia Met indicated that the interaction energies were correlated with each of the experimental values of in vivo JH activities based on male induction and in vitro Met-mediated transactivation potencies. Furthermore, in silico site-directed mutagenesis supported experimental findings that Thr292 in D. pulex Met and Thr296 in D. magna Met substitution to valine contribute to JH selectivity and differential species response. This study demonstrates that in silico simulations of Daphnia Met and its ligands may be a tool for predicting the ligand profile and cross species sensitivity.
Collapse
Affiliation(s)
- Masashi Hirano
- Department of Biological and Chemical Systems Engineering, National Institute of Technology, Kumamoto College, 2627 Hirayama-shinmachi, Yatsushiro, Kumamoto 866-8501, Japan
| | - Kenji Toyota
- Department of Biological Science, Faculty of Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa 259-1293, Japan
| | - Hiroshi Ishibashi
- Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan
| | - Nobuaki Tominaga
- Department of Creative Engineering, National Institute of Technology, Ariake College, 150 Higashi-Hagio, Omuta, Fukuoka 836-8585, Japan
| | - Tomomi Sato
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa 236-0027, Japan
| | - Norihisa Tatarazako
- Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan
| | - Taisen Iguchi
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa 236-0027, Japan
| |
Collapse
|
15
|
Tang Y, He H, Qu X, Cai Y, Ding W, Qiu L, Li Y. RNA interference-mediated knockdown of the transcription factor Krüppel homologue 1 suppresses vitellogenesis in Chilo suppressalis. INSECT MOLECULAR BIOLOGY 2020; 29:183-192. [PMID: 31566829 DOI: 10.1111/imb.12617] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 07/02/2019] [Accepted: 09/14/2019] [Indexed: 06/10/2023]
Abstract
Vitellogenesis in holometabolous insects involves the production and secretion of vitellogenin (Vg) and other yolk protein precursors in developing oocyte by the fat body, all of which is predominantly orchestrated by juvenile hormone (JH). Krüppel homologue 1 (Kr-h1) is a zinc finger transcription factor that has been demonstrated to be a JH-early inducible gene and to contribute to reproduction. However, the exact molecular function of Kr-h1 in insect reproduction is poorly understood. In the current study, we used the notorious pest Chilo suppressalis as a model system to investigate the role of Kr-h1 in female reproduction. Cloning and sequencing C. suppressalis Kr-h1 revealed that it shares high identity with its homologues from other lepidopteran insects. Moreover, RNA interference-mediated knockdown of CsKr-h1 substantially reduced the transcription of Vg in the fat body, dramatically decreased yolk protein deposition and also impaired oocyte maturation and ovarian development, indicating that Kr-h1 is indispensable for normal vitellogenesis in C. suppressalis. Based on these results, we conclude that Kr-h1 is crucial to reproduction in insects and that targeting this gene could potentially be a new way to suppress rice pests.
Collapse
Affiliation(s)
- Y Tang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - H He
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - X Qu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Y Cai
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - W Ding
- National Research Center of Engineering & Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Hunan Provincial Engineering & Technology Research Center for Biopesticide and Formulation Processing, Changsha, China
| | - L Qiu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Y Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering & Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| |
Collapse
|
16
|
Hu K, Tian P, Yang L, Tang Y, Qiu L, He H, Ding W, Li Y. Molecular characterization of the Krüppel-homolog 1 and its role in ovarian development in Sogatella furcifera (Hemiptera: Delphacidae). Mol Biol Rep 2019; 47:1099-1106. [DOI: 10.1007/s11033-019-05206-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 11/22/2019] [Indexed: 11/30/2022]
|
17
|
Hyde CJ, Elizur A, Ventura T. The crustacean ecdysone cassette: A gatekeeper for molt and metamorphosis. J Steroid Biochem Mol Biol 2019; 185:172-183. [PMID: 30157455 DOI: 10.1016/j.jsbmb.2018.08.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/21/2018] [Accepted: 08/25/2018] [Indexed: 10/28/2022]
Abstract
Arthropods have long been utilized as models to explore molecular function, and the findings derived from them can be applied throughout metazoa, including as a basis for medical research. This has led to the adoption of many representative insect models beyond Drosophila, as each lends its own unique perspective to questions in endocrinology and genetics. However, non-insect arthropods are yet to be realised for the potential insight they may provide in such studies. The Crustacea are among the most ancient arthropods from which insects descended, comprising a huge variety of life histories and ecological roles. Of the events in a typical crustacean development, metamorphosis is perhaps the most ubiquitous, challenging and highly studied. Despite this, our knowledge of the endocrinology which underpins metamorphosis is rudimentary at best; although several key molecules have been identified and studied in depth, the link between them is quite nebulous and leans heavily on well-explored insect models, which diverged from the Pancrustacea over 450 million years ago. As omics technologies become increasingly accessible, they bring the prospect of explorative molecular research which will allow us to uncover components and pathways unique to crustaceans. This review reconciles known components of crustacean metamorphosis and reflects on our findings in insects to outline a future search space, with focus given to the ecdysone cascade. To expand our knowledge of this ubiquitous endocrine system not only aids in our understanding of crustacean metamorphosis, but also provides a deeper insight into the adaptive capacity of arthropods throughout evolution.
Collapse
Affiliation(s)
- Cameron J Hyde
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, 4 Locked Bag, Maroochydore, Queensland, 4558, Australia
| | - Abigail Elizur
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, 4 Locked Bag, Maroochydore, Queensland, 4558, Australia
| | - Tomer Ventura
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, 4 Locked Bag, Maroochydore, Queensland, 4558, Australia.
| |
Collapse
|
18
|
Li KL, Yuan SY, Nanda S, Wang WX, Lai FX, Fu Q, Wan PJ. The Roles of E93 and Kr-h1 in Metamorphosis of Nilaparvata lugens. Front Physiol 2018; 9:1677. [PMID: 30524315 PMCID: PMC6262030 DOI: 10.3389/fphys.2018.01677] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 11/08/2018] [Indexed: 11/21/2022] Open
Abstract
Metamorphosis is a crucial process in insect development. Ecdysone-induced protein 93 (E93) is a determinant that promotes adult metamorphosis in both hemimetabolous and holometabolous insects. Krüppel-homolog 1 (Kr-h1), an early juvenile hormone (JH)-inducible gene, participates in JH signaling pathway controlling insect metamorphosis. In the current study, an E93 cDNA (NlE93) and two Kr-h1 cDNA variants (NlKr-h1-a and NlKr-h1-b) were cloned from Nilaparvata lugens (Stål), one of the most destructive hemimetabolous insect pests on rice. Multiple sequence alignment showed that both NlE93 and NlKr-h1 share high identity with their orthologs from other insects. The expression patterns revealed that decreasing NlKr-h1 mRNA levels were correlated with increasing NlE93 mRNA levels and vice versa. Moreover, RNA interference (RNAi) assays showed that the knockdown of one of the two genes resulted in significantly upregulated expression of the other. Correspondingly, phenotypical observation of the RNAi insects revealed that depletion of NlE93 prevented nymph–adult transition (causing a supernumerary nymphal instar), while depletion of NlKr-h1 triggered precocious formation of incomplete adult features. The results suggest that Nlkr-h1 and NlE93 are mutual repressors, fitting into the MEKRE93 pathway. The balance between these two genes plays a critical role in the metamorphosis of N. lugens determining the proper timing for activating metamorphosis during the nymphal stage.
Collapse
Affiliation(s)
- Kai Long Li
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China.,Hunan Institute of Food Quality Supervision Inspection and Research, Changsha, China
| | - San Yue Yuan
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Satyabrata Nanda
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Wei Xia Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Feng Xiang Lai
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Qiang Fu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Pin Jun Wan
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
19
|
Tanaka T, Iguchi T, Miyakawa H. Establishment of a high-sensitivity reporter system in mammalian cells for detecting juvenoids using juvenile hormone receptors of Daphnia pulex. J Appl Toxicol 2018; 39:241-246. [PMID: 30203848 DOI: 10.1002/jat.3713] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/11/2018] [Accepted: 07/19/2018] [Indexed: 12/31/2022]
Abstract
Environmental waters are polluted by various chemicals originating from human activities. Recently, the environmental risk of juvenile hormones (JHs) to aquatic microcrustaceans has been recognized by risk assessors and researchers. JH is a major arthropod hormone that regulates molting and reproduction and has analogs that have been used as insect growth regulators. JHs are known to disturb the sex determination system of Daphnia, which is a keystone animal in limnetic ecosystems and is not the target of extermination. To assess the risk of contaminant chemicals and to protect biodiversity, reliable methods for detecting such chemicals are essential. In this study, we attempted to establish a practical in vitro reporter assay system for detecting chemicals with JH activity. Using a newly constructed reporter vector (modified from the JH response element of Tribolium castaneum Krüppel homolog 1, which is a major JH responsive gene in insects), strong JH-dependent transcriptional activity (>40-fold activation) was found in Chinese hamster ovary cells that express JH receptors of Daphnia pulex. Dose-response analysis conducted on several JH and non-JH chemicals revealed that the established reporter assay system has strict specificity to JH chemicals, and the half maximum effective concentration (EC50 ) was between 10-7 and 10-9 m. These results suggest that the new system is a rapid and economical method for assessing the environmental risk of JH-active chemicals.
Collapse
Affiliation(s)
- Takahiro Tanaka
- Faculty of Agriculture, Utsunomiya University, 350 Mine-machi, Utsunomiya, Tochigi, 321-8505, Japan
| | - Taisen Iguchi
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, 236-0027, Japan
| | - Hitoshi Miyakawa
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Japan
| |
Collapse
|
20
|
Xie X, Liu M, Jiang Q, Zheng H, Zheng L, Zhu D. Role of Kruppel homolog 1 (Kr-h1) in methyl farnesoate-mediated vitellogenesis in the swimming crab Portunus trituberculatus. Gene 2018; 679:260-265. [PMID: 30189269 DOI: 10.1016/j.gene.2018.08.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/14/2018] [Accepted: 08/08/2018] [Indexed: 10/28/2022]
Abstract
Similar to the role of juvenile hormone (JH) in insects, methyl farnesoate (MF), the unepoxidized form of JH III, regulates many developmental processes in crustaceans, such as molting and reproduction. We have previously showed that the JH receptor, Methoprene-tolerant (Met), which is also a candidate receptor for MF, might be involved in the MF-mediated vitellogenesis in the swimming crab Portunus trituberculatus. In this study, the role of Kruppel homolog 1 (Kr-h1), a transcription factor downstream Met in JH signaling, was further investigated. The deduced protein of Pt-Kr-h1 contained seven repeats of zinc finger motifs, similar to Kr-h1s from other crustacean species, but differing from the eight zinc finger motifs found in insect Kr-h1s. MF treatment in vitro induced the expression of Pt-Kr-h1 in hepatopancreas but not ovary, which is similar to the MF-responsive pattern of Pt-Met as previously reported. Moreover, the expression of Pt-Kr-h1 decreased significantly after treating with Pt-Met dsRNA, strongly indicating that the Pt-Kr-h1 might be involved in the Met-mediated MF signaling pathway. RNAi of Pt-Met and Pt-Kr-h1 both led to a decrease in vitellogenin (Vg) expression, and the reduction cannot be rescued by adding MF, suggesting the regulation of vitellogenesis by MF may act through Met and Kr-h1. These results would help to enhance the current understanding of the regulatory mechanism of MF signaling, and provide a vital resource for further research into the evolution of hormonal pathways in arthropods.
Collapse
Affiliation(s)
- Xi Xie
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, China
| | - Mingxin Liu
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, China
| | - Qinghua Jiang
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, China
| | - Hongkun Zheng
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, China
| | - Liang Zheng
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, China
| | - Dongfa Zhu
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, China.
| |
Collapse
|
21
|
Campos B, Fletcher D, Piña B, Tauler R, Barata C. Differential gene transcription across the life cycle in Daphnia magna using a new all genome custom-made microarray. BMC Genomics 2018; 19:370. [PMID: 29776339 PMCID: PMC5960145 DOI: 10.1186/s12864-018-4725-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/25/2018] [Indexed: 11/23/2022] Open
Abstract
Background Unravelling the link between genes and environment across the life cycle is a challenging goal that requires model organisms with well-characterized life-cycles, ecological interactions in nature, tractability in the laboratory, and available genomic tools. Very few well-studied invertebrate model species meet these requirements, being the waterflea Daphnia magna one of them. Here we report a full genome transcription profiling of D. magna during its life-cycle. The study was performed using a new microarray platform designed from the complete set of gene models representing the whole transcribed genome of D. magna. Results Up to 93% of the existing 41,317 D. magna gene models showed differential transcription patterns across the developmental stages of D. magna, 59% of which were functionally annotated. Embryos showed the highest number of unique transcribed genes, mainly related to DNA, RNA, and ribosome biogenesis, likely related to cellular proliferation and morphogenesis of the several body organs. Adult females showed an enrichment of transcripts for genes involved in reproductive processes. These female-specific transcripts were essentially absent in males, whose transcriptome was enriched in specific genes of male sexual differentiation genes, like doublesex. Conclusion Our results define major characteristics of transcriptional programs involved in the life-cycle, differentiate males and females, and show that large scale gene-transcription data collected in whole animals can be used to identify genes involved in specific biological and biochemical processes. Electronic supplementary material The online version of this article (10.1186/s12864-018-4725-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bruno Campos
- IDAEA-CSIC: Institute of Environmental Diagnosis and Water Research, CSIC, Barcelona, Spain.
| | | | - Benjamín Piña
- IDAEA-CSIC: Institute of Environmental Diagnosis and Water Research, CSIC, Barcelona, Spain
| | - Romà Tauler
- IDAEA-CSIC: Institute of Environmental Diagnosis and Water Research, CSIC, Barcelona, Spain
| | - Carlos Barata
- IDAEA-CSIC: Institute of Environmental Diagnosis and Water Research, CSIC, Barcelona, Spain
| |
Collapse
|