1
|
Dhungana P, Wei X, Kang DS, Sim C. A Head-Specific Transcriptomic Study Reveals Key Regulatory Pathways for Winter Diapause in the Mosquito Culex pipiens. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2025; 118:e70032. [PMID: 39898769 DOI: 10.1002/arch.70032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/09/2024] [Accepted: 01/14/2025] [Indexed: 02/04/2025]
Abstract
The primary vector of the West Nile virus, Culex pipiens, undergoes reproductive dormancy during the adverse winter season. While our current understanding has mainly focused on cellular signals and phenotypic shifts occurring at a global scale during diapause, information on tissue-specific transcriptomic changes remains limited. This knowledge gap is a major challenge in interpreting the regulatory mechanisms at the tissue level. To address this, the present work utilized RNA-seq technology to investigate the transcriptional changes in the head that house the brain and crucial endocrinal organs such as corpora allata. We obtained RNA samples from the heads of diapausing and nondiapausing female mosquitoes at two specific time intervals, ZT0 and ZT16, and then subjected them to sequencing. Our results revealed differences in differentially expressed genes between diapause and non-diapause at ZT0 and ZT16, highlighting the phenotypic and diel variations in gene expression. We also selected twelve genes associated with the diapause phenotype and examined the transcript abundance at six different time points over 24 h. qRT-PCR analysis showed similar up- and downregulation of transcripts between the diapause and nondiapause phenotypes thus validating the results of RNA-seq. In summary, our study identified new genes with phenotypic and diel differentiation in their expression, potentially linking photoperiod to seasonal reproductive dormancy in insects. The newly presented information will significantly advance our understanding of head-specific genes crucial for insect diapause.
Collapse
Affiliation(s)
| | - Xueyan Wei
- Department of Biology, Baylor University, Waco, Texas, USA
| | - David S Kang
- USDA Agricultural Research Service, Biological Control of Insects Research Laboratory, Columbia, Missouri, USA
| | - Cheolho Sim
- Department of Biology, Baylor University, Waco, Texas, USA
| |
Collapse
|
2
|
Li X, Miao C, Wang L, Liu M, Chang H, Tian B, Wang D. Estrogen promotes Epithelial ovarian cancer cells proliferation via down-regulating expression and activating phosphorylation of PTEN. Arch Biochem Biophys 2023:109662. [PMID: 37276925 DOI: 10.1016/j.abb.2023.109662] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/05/2023] [Accepted: 06/02/2023] [Indexed: 06/07/2023]
Abstract
Epithelial ovarian cancer (EOC) is the most common of cancer death among malignant tumors in women, its occurrence and development are strongly linked to estrogen. Having identified the phosphatase and tensin homologue (PTEN) is a potent tumor suppressor regulating cell proliferation, migration, and survival. Meanwhile, there is a correlation between PTEN protein expression and estrogen receptor expression in EOC. However, no study has amplified on the molecular regulatory mechanism and function between estrogen and PTEN in the development of EOC. In this research, we found that PTEN shows a low expression level in EOC tissues and estrogen decreased PTEN expression via the estrogen receptor 1 (ESR1) in EOC cells. Knockdown of PTEN enhanced the proliferation and migration level of EOC cells driven by estrogen. Moreover, PTEN was also phosphorylated by G protein-coupled receptor 30 (GPR30)-Protein kinase C (PKC) signaling pathway upon estrogen stimulation. Inhibiting the phosphorylation of PTEN weakened the proliferation and migration of estrogen induced-EOC cells estrogen and decreased the phosphorylation of Protein kinase B (AKT) and Mammalian target of rapamycin (mTOR). These results indicated that estrogen decreased PTEN expression level via the ESR1 genomic pathway and phosphorylated PTEN via the GPR30-PKC non-genomic pathway to activate the PI3K/AKT/mTOR signaling pathway, thereby determining the fate of EOC cells.
Collapse
Affiliation(s)
- Xiuwen Li
- School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong, 261053, PR China
| | - Chunlei Miao
- Plastic Surgery Institute, Weifang Medical University, Weifang, Shandong, 261053, PR China
| | - Lin Wang
- Department of Gastroenterology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, PR China
| | - Mengyan Liu
- Taoyuan People's Hospital, Changde, Hunan, 425700, PR China
| | - Huanchao Chang
- Plastic Surgery Institute, Weifang Medical University, Weifang, Shandong, 261053, PR China
| | - Bo Tian
- Plastic Surgery Institute, Weifang Medical University, Weifang, Shandong, 261053, PR China
| | - Di Wang
- School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong, 261053, PR China; Plastic Surgery Institute, Weifang Medical University, Weifang, Shandong, 261053, PR China.
| |
Collapse
|
3
|
Song Z, Tang L, Liu Z, Wu D. Low GSK3β activity is required for insect diapause through responding to ROS/AKT signaling and down-regulation of Smad1/EcR/HR3 cascade. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 154:103909. [PMID: 36693452 DOI: 10.1016/j.ibmb.2023.103909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/20/2023] [Accepted: 01/20/2023] [Indexed: 06/17/2023]
Abstract
Glycogen synthase kinase 3β (GSK3β) plays important roles in gene transcription, metabolism, apoptosis, development, and signal transduction. However, its role in the regulation of pupal diapause remains unclear. In this paper, we find that low GSK3β activity in brains of diapause-destined pupae of Helicoverpa armigera is caused by elevated AKT activity. In response to ROS, AKT phosphorylates GSK3β to decrease its activity. In developing pupal brains, GSK3β can activate the transcription factor Smad1, which binds to the promoter region of the ecdysone receptor (EcR) gene and increases its expression. In the presence of 20-hydroxyecdysone (20E), EcR can bind to USP and increase the expression of 20E-response genes, including HR3, for pupal-adult development. In contrast, high levels of ROS in brains of diapause-destined pupae up-regulate p-AKT, which in turn decreases GSK3β activity. Low GSK3β activity causes low expression of EcR/HR3 via down-regulation of Smad1 activity, leading to diapause initiation. These results suggest that low GSK3β activity plays a key role in pupal diapause via ROS/AKT/GSK3β/Smad/EcR/HR3 signaling.
Collapse
Affiliation(s)
- Zhe Song
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Lin Tang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Zihan Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Di Wu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
4
|
Chen L, Zhang Z, Chen K, Yu Y, Hu B, Song H, Liu X. Transcriptional Dynamics Induced by Diapause Hormone in the Silkworm, Bombyx mori. BIOLOGY 2022; 11:1313. [PMID: 36138792 PMCID: PMC9495520 DOI: 10.3390/biology11091313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/03/2022] [Accepted: 06/08/2022] [Indexed: 06/16/2023]
Abstract
Diapause is a form of dormancy that organisms use to adapt to extreme environments by exhibiting developmental arrest. In the silkworm, Bombyx mori, diapause is thought to be elicited by diapause hormone (DH) signaling, which consists of interactions between DH and the DH receptor (DHR). However, the steps downstream of the DH signaling pathway are largely unknown. In the present study, we directly injected synthesized DH into the female pupae of a multivoltine, non-diapausing strain at 36 h after pupation. We found that the mRNA level of DHR declined at 4 h and recovered at 12 h after the injection of DH. Thus, we sequenced the transcriptome of the ovaries at 4 h and 12 h after the injection of DH. We identified 60 and 221 differentially expressed genes at 4 h and 12 h after the injection, respectively. All DEGs were identified, relating to 20E-related genes, JH-related genes, cellular detoxification, ribosomal proteins, lipid metabolism, and epigenetic modifications. Eleven genes were selected from the above categories to verify the transcriptome data. The qRT-PCR and RNA-Seq expression patterns of the genes were consistent, which indicated the authenticity and reliability of the transcriptome data. This study dramatically expands upon our knowledge of gene expression variation at the early phase of DH release.
Collapse
Affiliation(s)
- Lijuan Chen
- College of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Zhongjie Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Kai Chen
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Ye Yu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Hu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Hongsheng Song
- College of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Xiaojing Liu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| |
Collapse
|
5
|
Cai R, Tao G, Zhao P, Xia Q, He H, Wang Y. POU-M2 promotes juvenile hormone biosynthesis by directly activating the transcription of juvenile hormone synthetic enzyme genes in Bombyx mori. Open Biol 2022; 12:220031. [PMID: 35382568 PMCID: PMC8984382 DOI: 10.1098/rsob.220031] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Juvenile hormone (JH) plays a key role in preventing larval precocious metamorphosis, maintaining larval state, controlling adult sexual development and promoting insect egg maturation. Genetic studies have shown that POU factor ventral veins lacking regulates JH synthesis to control the timing of insect metamorphosis. However, how POU factor regulates JH synthesis is largely unknown. Here, we found POU-M2 was highly expressed in corpora allata (CA) and specifically localized in the nucleus of CA. The overexpression of POU-M2 promoted the expression of JH synthase genes and kr-h1 and enhanced the activity of JH synthase genes promoter. Further, POU-M2 promoted the transcription of JH acid O-methyltransferase (JHAMT) by directly binding to the key cis-regulatory elements -207, -249 and -453 within the proximal regions of JHAMT promoter. Both the POU domain and homeodomain were vital for the activation of POU-M2 on JHAMT transcription. Our study reveals the mechanism by which POU-M2 regulates JHAMT transcription.
Collapse
Affiliation(s)
- Rui Cai
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, People's Republic of China
| | - Gang Tao
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, People's Republic of China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, People's Republic of China,Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, People's Republic of China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, People's Republic of China,Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, People's Republic of China
| | - Huawei He
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, People's Republic of China,Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, People's Republic of China,Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing, People's Republic of China
| | - Yejing Wang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, People's Republic of China,Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, People's Republic of China
| |
Collapse
|
6
|
Gu SH, Chen CH, Lin PL. Expression of protein tyrosine phosphatases and Bombyx embryonic development. JOURNAL OF INSECT PHYSIOLOGY 2021; 130:104198. [PMID: 33549567 DOI: 10.1016/j.jinsphys.2021.104198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/25/2020] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
Protein phosphorylation is an integral component of signal transduction pathways within eukaryotic cells, and it is regulated by coordinated interactions between protein kinases and protein phosphatases. Our previous study demonstrated differential expressions of serine/threonine protein phosphatases (PP2A and calcineurin) between diapause and developing eggs in Bombyx mori. In the present study, we further investigated expression of protein tyrosine phosphatases (PTPs) in relation to the Bombyx embryonic development. An immunoblot analysis showed that eggs contained the proteins of the 51-kDa PTP 1B (PTP1B), the 55-kDa phosphatase and tensin homologue (PTEN), and the 70-kDa Src homology 2 (SH2) domain-containing phosphatase 2 (SHP2), which undergo differential changes between diapause and developing eggs. Protein level of PTP1B and PTEN in eggs whose diapause initiation was prevented by HCl gradually increased toward embryonic development. The protein level of SHP2 also showed a dramatic increase on days 7 and 8 after HCl treatment. However, protein levels of PTP1B, PTEN, and SHP2 in diapause eggs remained at low levels during the first 9 days after oviposition. These differential changing patterns in protein levels were further confirmed using both non-diapause eggs and eggs in which diapause had been terminated by chilling of diapausing eggs at 5 °C for 70 days and then were transferred to 25 °C. Direct determination of PTP enzymatic activities showed higher activities in developing eggs (HCl-treated eggs, non-diapause eggs, and chilled eggs) compared to those in diapause eggs. Examination of temporal changes in mRNA expression levels of PTP1B, PTEN, and SHP2 did not show significant differences between diapause eggs and HCl-treated eggs except high expression in SHP2 variant B during the later embryonic development in HCl-treated eggs. These results demonstrate that higher protein levels of PTP1B, PTEN, and SHP2 and increased tyrosine phosphatase enzymatic activities in developing eggs are likely related to embryonic development of B. mori.
Collapse
Affiliation(s)
- Shi-Hong Gu
- Department of Biology, National Museum of Natural Science, 1 Kuan-Chien Road, Taichung 404, Taiwan, ROC.
| | - Chien-Hung Chen
- Chung Hwa University of Medical Technology, 89 Wen-Hwa 1st Road, Jen-Te Township, Tainan County 717, Taiwan, ROC
| | - Pei-Ling Lin
- Department of Biology, National Museum of Natural Science, 1 Kuan-Chien Road, Taichung 404, Taiwan, ROC
| |
Collapse
|
7
|
Zhang X, Du W, Zhang J, Zou Z, Ruan C. High-throughput profiling of diapause regulated genes from Trichogramma dendrolimi (Hymenoptera: Trichogrammatidae). BMC Genomics 2020; 21:864. [PMID: 33276726 PMCID: PMC7718664 DOI: 10.1186/s12864-020-07285-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 11/26/2020] [Indexed: 11/10/2022] Open
Abstract
Background The parasitoid wasp, Trichogramma dendrolimi, can enter diapause at the prepupal stage. Thus, diapause is an efficient preservation method during the mass production of T. dendrolimi. Previous studies on diapause have mainly focused on ecological characteristics, so the molecular basis of diapause in T. dendrolimi is unknown. We compared transcriptomes of diapause and non-diapause T. dendrolimi to identify key genes and pathways involved in diapause development. Results Transcriptome sequencing was performed on diapause prepupae, pupae after diapause, non-diapause prepupae, and pupae. Analysis yielded a total of 87,022 transcripts with an average length of 1604 bp. By removing redundant sequences and those without significant BLAST hits, a non-redundant dataset was generated, containing 7593 sequences with an average length of 3351 bp. Among them, 5702 genes were differentially expressed. The result of Gene Ontology (GO) enrichment analysis revealed that regulation of transcription, DNA-templated, oxidation-reduction process, and signal transduction were significantly affected. Ten genes were selected for validation using quantitative real-time PCR (qPCR). The changes showed the same trend as between the qPCR and RNA-Seq results. Several genes were identified as involved in diapause, including ribosomal proteins, zinc finger proteins, homeobox proteins, forkhead box proteins, UDP-glucuronosyltransferase, Glutathione-S-transferase, p53, and DNA damage-regulated gene 1 (pdrg1). Genes related to lipid metabolism were also included. Conclusions We generated a large amount of transcriptome data from T. dendrolimi, providing a resource for future gene function research. The diapause-related genes identified help reveal the molecular mechanisms of diapause, in T. dendrolimi, and other insect species. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07285-4.
Collapse
Affiliation(s)
- Xue Zhang
- Engineering Research Center of Natural Enemies, Institute of Biological Control, Jilin Agricultural University, Changchun, 130118, China
| | - Wenmei Du
- Engineering Research Center of Natural Enemies, Institute of Biological Control, Jilin Agricultural University, Changchun, 130118, China
| | - Junjie Zhang
- Engineering Research Center of Natural Enemies, Institute of Biological Control, Jilin Agricultural University, Changchun, 130118, China
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insect and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Changchun Ruan
- Engineering Research Center of Natural Enemies, Institute of Biological Control, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
8
|
Liu S, Cao H, Guo D, Jiang Y, Yin H, Zhu J, Duan Q, Seleh-Zo EDM, Li G, An X, Cao B. Pou2F3 silencing enhanced the proliferation of mammary epithelial cells in dairy goat via PI3K/AKT/mTOR signaling pathway. Anim Biotechnol 2020; 33:321-329. [PMID: 32730101 DOI: 10.1080/10495398.2020.1798974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Pou2F3 (POU class 2 homeobox 3) is found to be ubiquitously expressed in multiple epidermal layer cells to mediating proliferation. Although some POU factors exert a crucial regulation in mammary epithelial cells (MECs), the biological function of Pou2F3 is unclear. In this study, we aimed to investigate the endogenous potential effects of Pou2F3 on the proliferation and the roles of PI3K/AKT/mTOR signaling pathway in MECs. We used small interfering RNA to silence Pou2F3 expression. The interfering efficiency of Pou2F3 was confirmed by using RT-qPCR and Western blot. The cell viability and proliferation were indicated by Cell Counting Kit-8 and EdU assays. Flow cytometry was performed to evaluate the cell apoptosis in MECs. These results demonstrated that Pou2F3 potently suppressed the proliferation and induced the apoptosis of MECs. Consistently, the primary protein expressions of PI3K/AKT/mTOR signaling pathway were examined by Western blot. Pou2F3 silencing significantly increased the phosphorylation of PI3K, AKT and mTOR expressions. Moreover, Pou2F3 silencing reduced the ratio of BCL-2/BAX protein expression. Our findings show that Pou2F3 silencing can induce the proliferation of MECs and decrease the cell apoptosis, which suggest that Pou2F3 may serve as a potential upstream regulator of PI3K/AKT/mTOR signaling pathway in MECs.
Collapse
Affiliation(s)
- Shujuan Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Heran Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Dan Guo
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Yue Jiang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Hao Yin
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Junru Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Quyu Duan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | | | - Guang Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Xiaopeng An
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Binyun Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| |
Collapse
|
9
|
Reynolds JA. Noncoding RNA Regulation of Dormant States in Evolutionarily Diverse Animals. THE BIOLOGICAL BULLETIN 2019; 237:192-209. [PMID: 31714856 DOI: 10.1086/705484] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Dormancy is evolutionarily widespread and can take many forms, including diapause, dauer formation, estivation, and hibernation. Each type of dormancy is characterized by distinct features; but accumulating evidence suggests that each is regulated by some common processes, often referred to as a common "toolkit" of regulatory mechanisms, that likely include noncoding RNAs that regulate gene expression. Noncoding RNAs, especially microRNAs, are well-known regulators of biological processes associated with numerous dormancy-related processes, including cell cycle progression, cell growth and proliferation, developmental timing, metabolism, and environmental stress tolerance. This review provides a summary of our current understanding of noncoding RNAs and their involvement in regulating dormancy.
Collapse
|
10
|
Hao K, Ullah H, Jarwar AR, Nong X, Tu X, Zhang Z. Molecular identification and diapause-related functional characterization of a novel dual-specificity kinase gene, MPKL, in Locusta migratoria. FEBS Lett 2019; 593:3064-3074. [PMID: 31323140 DOI: 10.1002/1873-3468.13544] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 07/12/2019] [Accepted: 07/13/2019] [Indexed: 11/10/2022]
Abstract
Diapause is an important overwintering strategy enabling Locusta migratoria to survive under stressed conditions. We identified a novel dual-specificity kinase gene that is differentially expressed between long and short day-treated L. migratoria. To determine its function on photoperiodic diapause induction, we cloned the specific gene. Interestingly, phylogenetic analysis shows that this dual-specificity kinase is of the mycetozoa protein kinase-like (MPKL) type and may have been transferred horizontally from Mycetozoa to L. migratoria. RNA interference results confirm that MPKL promotes photoperiodic diapause induction of L. migratoria. Furthermore, MPKL significantly inhibits Akt and FOXO (i.e. forkhead box protein O) phosphorylation levels in ovaries, and also enhances reactive oxygen species, superoxide dismutase and catalase activities, whereas peroxidase activity is decreased under both photoperiodic regimes. The findings of the present study offer insight into the molecular mechanism responsible for dual-specificity kinase-induced diapause in insects.
Collapse
Affiliation(s)
- Kun Hao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hidayat Ullah
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,Department of Agriculture, The University of Swabi, Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Aftab Raza Jarwar
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiangqun Nong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiongbing Tu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zehua Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
11
|
Hao K, Jarwar AR, Ullah H, Tu X, Nong X, Zhang Z. Transcriptome Sequencing Reveals Potential Mechanisms of the Maternal Effect on Egg Diapause Induction of Locusta migratoria. Int J Mol Sci 2019; 20:ijms20081974. [PMID: 31018489 PMCID: PMC6514766 DOI: 10.3390/ijms20081974] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/18/2019] [Accepted: 04/22/2019] [Indexed: 12/14/2022] Open
Abstract
Photoperiod is one of the most important maternal factors with an impact on the offspring diapause induction of Locusta migratoria. Previous studies have shown that forkhead box protein O (FOXO) plays an important role in regulating insect diapause, but how photoperiod stimulates maternal migratory locusts to regulate the next generation of egg diapause through the FOXO signaling pathway still needs to be addressed. In this study, the transcriptomes of ovaries and fat bodies of adult locusts under a long and short photoperiod were obtained. Among the total of 137 differentially expressed genes (DEGs) in both ovaries and fat bodies, 71 DEGs involved in FOXO signaling pathways might be closely related to diapause induction. 24 key DEGs were selected and their expression profiles were confirmed to be consistent with the transcriptome results using qRT-PCR. RNA interference was then performed to verify the function of retinoic acid induced protein gene (rai1) and foxo. Egg diapause rates were significantly increased by RNAi maternal locusts rai1 gene under short photoperiods. However, the egg diapause rates were significantly decreased by knock down of the foxo gene in the maternal locusts under a short photoperiod. In addition, reactive oxygen species (ROS) and superoxide dismutase (SOD) activities were promoted by RNAi rai1. We identified the candidate genes related to the FOXO pathway, and verified the diapause regulation function of rai1 and foxo under a short photoperiod only. In the future, the researchers can work in the area to explore other factors and genes that can promote diapause induction under a long photoperiod.
Collapse
Affiliation(s)
- Kun Hao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Aftab Raza Jarwar
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Hidayat Ullah
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xiongbing Tu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xiangqun Nong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Zehua Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|