1
|
Li HF, Dong B, Peng YY, Luo HY, Ou XL, Ren ZL, Park Y, Wang JJ, Jiang HB. The neuropeptide sulfakinin is a peripheral regulator of insect behavioral switch between mating and foraging. eLife 2025; 13:RP100870. [PMID: 40314230 PMCID: PMC12048153 DOI: 10.7554/elife.100870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025] Open
Abstract
Behavioral strategies for foraging and reproduction in the oriental fruit fly (Bactrocera dorsalis) are alternative options for resource allocation and are controlled by neuropeptides. Here, we show that the behavioral switch between foraging and reproduction is associated with changes in antennal sensitivity. Starved flies became more sensitive to food odors while suppressing their response to opposite-sex pheromones. The gene encoding sulfakinin receptor 1 (SkR1) was significantly upregulated in the antennae of starved flies, so we tested the behavioral phenotypes of null mutants for the genes encoding the receptor (skr1-/-) and its ligand sulfakinin (sk-/-). In both knockout lines, the antennal responses shifted to mating mode even when flies were starved. This suggests that sulfakinin signaling via SkR1 promotes foraging while suppressing mating. Further analysis of the mutant flies revealed that sets of odorant receptor (OR) genes were differentially expressed. Functional characterization of the differentially expressed ORs suggested that sulfakinin directly suppresses the expression of ORs that respond to opposite-sex hormones while enhancing the expression of ORs that detect food volatiles. We conclude that sulfakinin signaling via SkR1, modulating OR expressions and leading to altered antenna sensitivities, is an important component in starvation-dependent behavioral change.
Collapse
Affiliation(s)
- Hong-Fei Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest UniversityChongqingChina
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest UniversityChongqingChina
| | - Bao Dong
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest UniversityChongqingChina
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest UniversityChongqingChina
| | - Yuan-Yuan Peng
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest UniversityChongqingChina
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest UniversityChongqingChina
| | - Hao-Yue Luo
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest UniversityChongqingChina
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest UniversityChongqingChina
| | - Xiao-Lan Ou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest UniversityChongqingChina
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest UniversityChongqingChina
| | - Zheng-Lin Ren
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest UniversityChongqingChina
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest UniversityChongqingChina
| | - Yoonseong Park
- Department of Entomology, Kansas State UniversityManhattan KSUnited States
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest UniversityChongqingChina
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest UniversityChongqingChina
| | - Hong-Bo Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest UniversityChongqingChina
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest UniversityChongqingChina
| |
Collapse
|
2
|
Xue Q, Hasan KS, Dweck O, Ebrahim SAM, Dweck HKM. Functional characterization and evolution of olfactory responses in coeloconic sensilla of the global fruit pest Drosophila suzukii. BMC Biol 2025; 23:50. [PMID: 39985002 PMCID: PMC11846463 DOI: 10.1186/s12915-025-02151-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 02/07/2025] [Indexed: 02/23/2025] Open
Abstract
BACKGROUND When a species changes its host preference, it often requires modifications in its sensory systems. Many of these changes remain largely uninvestigated in the global fruit pest Drosophila suzukii (also known as spotted wing Drosophila, SWD). This species, which shares a last common ancestor with the model organism D. melanogaster-a species that prefers overripe fruits- ~ 15 million years ago, has shifted its preference from overripe to ripe, soft-skinned fruits, causing significant damage to fruit industries worldwide. RESULTS Here, we functionally characterized the coeloconic sensilla in D. suzukii and compared their responses to those of its close relatives, D. biarmipes and D. melanogaster. We find that D. suzukii's responses are grouped into four functional types. These responses are consistent across sexes and reproductive status. The odorant receptor co-receptor Orco is required for certain responses. Comparative analysis across these species revealed evolutionary changes in physiological and behavioral responses to specific odorants, such as acetic acid, a key indicator of microbial fermentation, and phenylacetaldehyde, an aromatic compound found in a diverse range of fruits. Phenylacetaldehyde produced lower electrophysiological responses in D. suzukii compared to D. melanogaster and elicited strong attraction in D. suzukii but not in any of the other tested species. CONCLUSIONS The olfactory changes identified in this study likely play a significant role in the novel behavior of D. suzukii. This work also identifies phenylacetaldehyde as a potent attractant for D. suzukii, which can be used to develop targeted management strategies to mitigate the serious impact of this pest.
Collapse
Affiliation(s)
- Qi Xue
- Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT, 06511, USA
| | - Kazi Sifat Hasan
- Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT, 06511, USA
| | - Omar Dweck
- Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT, 06511, USA
- Wilbur Cross High School, 181 Mitchell Dr, New Haven, CT, 06511, USA
| | - Shimaa A M Ebrahim
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, 06511, USA
| | - Hany K M Dweck
- Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT, 06511, USA.
| |
Collapse
|
3
|
Force E, Suray C, Monsempes C, Fuentes A, Maria A, Debernard S. Modulation of sex pheromone detection by nutritional and hormonal signals in a male insect. J Exp Biol 2025; 228:JEB249807. [PMID: 39817435 DOI: 10.1242/jeb.249807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/14/2025] [Indexed: 01/18/2025]
Abstract
As in other animals, insects can modulate their odor-guided behaviors, especially sexual behavior, according to environmental and physiological factors such as the individual's nutritional state. This behavioral flexibility results from modifications of the olfactory pathways under the control of hormones. Most studies have focused on the central modulation of the olfactory system and less attention has been paid to the peripheral olfactory system. To understand how nutritional inputs influence the detection of sex pheromones in insects, we turned to the male moth Agrotis ipsilon, for which the behavioral responsiveness to sex pheromones is dependent on diet and reproductive hormones, juvenile hormone (JH) and 20-hydroxyecdysone (20E). We demonstrated that a sugar-rich diet with sodium increases the sensitivity of olfactory receptor neurons to (Z)-7-dodecen-1-yl acetate, the major sex pheromone compound, and the antennal expression of the pheromone binding protein (PBP2) and the pheromone receptor (OR3). Such a diet also induces overexpression of the methoprene-tolerant receptor to JH and underexpression of the ecdysone receptor to 20E in antennae. The diet-induced olfactory responses were maintained by treatment with cucurbitacin B, a 20E antagonist, but were suppressed by the topic application of precocene, a JH biosynthesis inhibitor. These findings reveal that a positive nutritional state enhances sex pheromone detection through JH actions on the peripheral actors of the pheromone system in male moths. More broadly, in insects, our study provides, for the first time, a neuronal and molecular basis of the dietary-dependent endocrine modulation of the peripheral olfactory system.
Collapse
Affiliation(s)
- Evan Force
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, iEES Paris, 75005 Paris, France
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, iEES Paris, 78026 Versailles, France
| | - Caroline Suray
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, iEES Paris, 78026 Versailles, France
| | - Christelle Monsempes
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, iEES Paris, 78026 Versailles, France
| | - Annabelle Fuentes
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, iEES Paris, 75005 Paris, France
| | - Annick Maria
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, iEES Paris, 75005 Paris, France
| | - Stéphane Debernard
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, iEES Paris, 75005 Paris, France
| |
Collapse
|
4
|
Vaughan AL, Dhami MK. Can Transcriptomics Elucidate the Role of Regulation in Invasion Success? Mol Ecol 2024:e17583. [PMID: 39545269 DOI: 10.1111/mec.17583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 10/15/2024] [Accepted: 10/28/2024] [Indexed: 11/17/2024]
Abstract
When a species invades a novel environment, it must bridge the environment-phenotype mismatch in its new range to persist. Contemporary invasion biology research has focused on the role that trait variation and adaptation, and their underlying genomic factors, play in a species' adaptive potential, and thus facilitating invasion. Empirical studies have provided valuable insights into phenotypes that persist and arise in novel environments, coupled with 'omics tools that further the understanding of the contributions of genomic architecture in species establishment. Particularly, the use of transcriptomics to explore the role of plasticity in the initial stages of an invasion is growing. Here, we assess the role of various mechanisms relating to regulation and functional adaptation (often measured via the transcriptome) that support trait-specific plasticity in invasive species, allowing phenotypic variability without directly altering genomic diversity. First, we present a comprehensive review of the studies utilising transcriptomics in invasion biology. Second, we collate the evidence for and against the role of a range of regulatory processes in contributing to invasive species plasticity. Finally, we pose open questions in invasion biology where the use of transcriptome data may be valuable, as well as discuss the methodological limitations.
Collapse
Affiliation(s)
- Amy L Vaughan
- Biocontrol and Molecular Ecology, Manaaki Whenua Landcare Research, Lincoln, New Zealand
| | - Manpreet K Dhami
- Biocontrol and Molecular Ecology, Manaaki Whenua Landcare Research, Lincoln, New Zealand
- School of Biological Sciences, Waipapa Taumata Rau, University of Auckland, Auckland, New Zealand
| |
Collapse
|
5
|
Yan J, Luo P, Wu Y, Peng G, Liu Y, Song C, Lu W, Liu H, Dong Z. Morphological and genetic differences in legs of a polygamous beetle between sexes, Glenea cantor (Coleopter: Cerambycidae: Lamiinae). PLoS One 2024; 19:e0297365. [PMID: 38329988 PMCID: PMC10852293 DOI: 10.1371/journal.pone.0297365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/03/2024] [Indexed: 02/10/2024] Open
Abstract
The legs of insects play an important role in their daily behaviour, especially reproduction. Entomologists have performed much research on the role of the leg in different behaviours of beetles, an important group in the insect family, but relatively little has been done to study the ultrastructure and transcriptome of their legs. Hence, we systematically studied the ultrastructure and gene expression of the leg of G. cantor, a polygynous beetle, and compared its male and female diversity. In this study, we found the fore-leg, mid-leg and hind-leg of the female were significantly longer than those of the male. From the perspective of intuitive structural differences, we also compared the ultrastructures of the adhesion structure (tarsal) of males and females. The tarsal functional structure of the adult leg mainly includes sensilla and an adhesion structure. The sensilla on the tarsal joint mainly include sensilla chaetica (SCh II, SCh III) and sensilla trichodea (ST II). The adhesion structure includes disc-shaped bristles (di), lanceolate bristles (la), serrated bristles (se), spatula-shaped bristles (spl) and mushroom-shaped bristles (mus). Although there was no significant difference in sensillum distribution or type between males and females, there were significant differences in the distribution and species of adhesion structures between the fore-leg, mid-leg, and hind-leg of the same sex and between males and females. Therefore, different adhesion structures play different roles in various behaviours of beetles. On the other hand, the transcriptome results of male and female legs were screened for a subset of olfaction- and mechanics-related genes. We discovered that the male leg showed upregulation of 1 odorant binding protein (OBP), 2 Olfactory receptors (ORs) and 2 Chemosensory proteins (CSPs). Meanwhile, the female leg showed upregulation of 3 OBPs, 1 OR, 1 Gustatory receptor (GR) and 3 Mechanosensitive proteins (MSPs). An in-depth examination of the ultrastructure and molecular composition of the legs can elucidate its function in the reproductive behavior of G. cantor. Moremore, this investigation will serve as a cornerstone for subsequent research into the underlying behavioral mechanisms.
Collapse
Affiliation(s)
- Jun Yan
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Ping Luo
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yao Wu
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Guandi Peng
- Jiangxi Provincial Department of Forestry, Nanchang, China
| | - Yini Liu
- Jiangxi University of Chinese Medicine, Nanchang, China
| | | | - Wen Lu
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, China
| | - Hongning Liu
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Zishu Dong
- Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
6
|
Bontonou G, Saint-Leandre B, Kafle T, Baticle T, Hassan A, Sánchez-Alcañiz JA, Arguello JR. Evolution of chemosensory tissues and cells across ecologically diverse Drosophilids. Nat Commun 2024; 15:1047. [PMID: 38316749 PMCID: PMC10844241 DOI: 10.1038/s41467-023-44558-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 12/19/2023] [Indexed: 02/07/2024] Open
Abstract
Chemosensory tissues exhibit significant between-species variability, yet the evolution of gene expression and cell types underlying this diversity remain poorly understood. To address these questions, we conducted transcriptomic analyses of five chemosensory tissues from six Drosophila species and integrated the findings with single-cell datasets. While stabilizing selection predominantly shapes chemosensory transcriptomes, thousands of genes in each tissue have evolved expression differences. Genes that have changed expression in one tissue have often changed in multiple other tissues but at different past epochs and are more likely to be cell type-specific than unchanged genes. Notably, chemosensory-related genes have undergone widespread expression changes, with numerous species-specific gains/losses including novel chemoreceptors expression patterns. Sex differences are also pervasive, including a D. melanogaster-specific excess of male-biased expression in sensory and muscle cells in its forelegs. Together, our analyses provide new insights for understanding evolutionary changes in chemosensory tissues at both global and individual gene levels.
Collapse
Affiliation(s)
- Gwénaëlle Bontonou
- Department of Ecology & Evolution, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | - Bastien Saint-Leandre
- Department of Ecology & Evolution, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | - Tane Kafle
- Department of Ecology & Evolution, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Tess Baticle
- Department of Ecology & Evolution, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Afrah Hassan
- Department of Ecology & Evolution, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | | | - J Roman Arguello
- Department of Ecology & Evolution, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK.
| |
Collapse
|
7
|
Pírez N, Klappenbach M, Locatelli FF. Experience-dependent tuning of the olfactory system. CURRENT OPINION IN INSECT SCIENCE 2023; 60:101117. [PMID: 37741614 DOI: 10.1016/j.cois.2023.101117] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/25/2023]
Abstract
Insects rely on their sense of smell to navigate complex environments and make decisions regarding food and reproduction. However, in natural settings, the odors that convey this information may come mixed with environmental odors that can obscure their perception. Therefore, recognizing the presence of informative odors involves generalization and discrimination processes, which can be facilitated when there is a high contrast between stimuli, or the internal representation of the odors of interest outcompetes that of concurrent ones. The first two layers of the olfactory system, which involve the detection of odorants by olfactory receptor neurons and their encoding by the first postsynaptic partners in the antennal lobe, are critical for achieving such optimal representation. In this review, we summarize evidence indicating that experience-dependent changes adjust these two levels of the olfactory system. These changes are discussed in the context of the advantages they provide for detection of informative odors.
Collapse
Affiliation(s)
- Nicolás Pírez
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias, CONICET, C1428EHA Buenos Aires, Argentina
| | - Martín Klappenbach
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias, CONICET, C1428EHA Buenos Aires, Argentina
| | - Fernando F Locatelli
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias, CONICET, C1428EHA Buenos Aires, Argentina.
| |
Collapse
|
8
|
Guo P, Hao E, Li H, Yang X, Lu P, Qiao H. Expression Pattern and Ligand Binding Characteristics Analysis of Chemosensory Protein SnitCSP2 from Sirex nitobei. INSECTS 2023; 14:583. [PMID: 37504589 PMCID: PMC10380366 DOI: 10.3390/insects14070583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/29/2023]
Abstract
Sirex nitobei is an important wood-boring wasp to conifers native to Asia, causing considerable economic and ecological damage. However, the current control means cannot achieve better efficiency, and it is expected to clarify the molecular mechanism of protein-ligand binding for effective pest control. This study analyzed the expression pattern of CSP2 in S. nitobei (SnitCSP2) and its features of binding to the screened ligands using molecular docking and dynamic simulations. The results showed that SnitCSP2 was significantly expressed in female antennae. Molecular docking and dynamic simulations revealed that SnitCSP2 bound better to the host plant volatile (+)-α-pinene and symbiotic fungal volatiles terpene and (-)-globulol than other target ligands. By the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method, the free binding energies of the three complexes were calculated as -44.813 ± 0.189 kJ/mol, -50.446 ± 0.396 kJ/mol, and -56.418 ± 0.368 kJ/mol, and the van der Waals energy was found to contribute significantly to the stability of the complexes. Some key amino acid residues were also identified: VAL13, GLY14, LYS61, MET65, and LYS68 were important for the stable binding of (+)-α-pinene by SnitCSP2, while for terpenes, ILE16, ALA25, TYR26, CYS29, GLU39, THR37, and GLY40 were vital for a stable binding system. We identified three potential ligands and analyzed the interaction patterns of the proteins with them to provide a favorable molecular basis for regulating insect behavioral interactions and developing new pest control strategies.
Collapse
Affiliation(s)
- Pingping Guo
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, School of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Enhua Hao
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, School of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Han Li
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, School of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Xi Yang
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, School of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Pengfei Lu
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, School of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Haili Qiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
9
|
Menacer K, Hervé MR, Marie Cortesero A, Aujames T, Anton S. Sex- and maturity-dependent antennal detection of host plant volatiles in the cabbage root fly, Delia radicum. JOURNAL OF INSECT PHYSIOLOGY 2023; 146:104500. [PMID: 36914091 DOI: 10.1016/j.jinsphys.2023.104500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Adult insect behaviour in response to plant-emitted volatile compounds varies between the sexes and as a function of maturity. These differences in behavioural responses can be due to modulation in the peripheral or central nervous system. In the cabbage root fly, Delia radicum, behavioural effects of certain host plant volatiles on mature female behaviour have been evaluated, and a large number of compounds emitted by brassicaceous host plants have been identified. We recorded here dose-dependent electroantennogram responses to all tested compounds and investigated if the antennal detection of individual volatile compounds emitted by intact and damaged host plants differs between male and female, as well as immature and mature flies. Our results showed dose-dependent responses in mature and immature males and females. Mean response amplitudes varied significantly between sexes for three compounds, and between maturity states for six compounds. For some additional compounds significant differences occurred only for high stimulus doses (interaction between dose and sex and/or dose and maturity status). Multivariate analysis revealed a significant global effect of maturity on electroantennogram response amplitudes and for one experimental session also a significant global effect of the sex. Interestingly, allyl isothiocyanate, a compound stimulating oviposition behaviour, elicited stronger responses in mature than in immature flies, whereas ethylacetophenone, an attractive flower volatile, elicited stronger responses in immature than in mature flies, which correlates with the behavioural role of these compounds. Several host-derived compounds elicited stronger responses in females than in males and, at least at high doses, stronger responses in mature than in immature flies, indicating differential antennal sensitivity to behaviourally active compounds. Six compounds did not cause any significant differences in responses between the different groups of flies. Our results thus confirm peripheral plasticity in plant volatile detection in the cabbage root fly and provide a basis for future behavioural investigations on the function of individual plant compounds.
Collapse
Affiliation(s)
- Kathleen Menacer
- IGEPP-UMR 1349, INRAE, Institut Agro, Univ Rennes, 35000 Rennes, France.
| | - Maxime R Hervé
- IGEPP-UMR 1349, INRAE, Institut Agro, Univ Rennes, 35000 Rennes, France
| | | | - Tom Aujames
- IGEPP-UMR 1349, INRAE, Institut Agro, Univ Rennes, 49045 Angers, France
| | - Sylvia Anton
- IGEPP-UMR 1349, INRAE, Institut Agro, Univ Rennes, 49045 Angers, France
| |
Collapse
|
10
|
Walker WB, Mori BA, Cattaneo AM, Gonzalez F, Witzgall P, Becher PG. Comparative transcriptomic assessment of the chemosensory receptor repertoire of Drosophila suzukii adult and larval olfactory organs. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 45:101049. [PMID: 36528931 DOI: 10.1016/j.cbd.2022.101049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/10/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
The spotted wing Drosophila, Drosophila suzukii, has emerged within the past decade as an invasive species on a global scale, and is one of the most economically important pests in fruit and berry production in Europe and North America. Insect ecology, to a strong degree, depends on the chemosensory modalities of smell and taste. Extensive research on the sensory receptors of the olfactory and gustatory systems in Drosophila melanogaster provide an excellent frame of reference to better understand the fundamentals of the chemosensory systems of D. suzukii. This knowledge may enhance the development of semiochemicals for sustainable management of D. suzukii, which is urgently needed. Here, using a transcriptomic approach we report the chemosensory receptor expression profiles in D. suzukii female and male antennae, and for the first time, in larval heads including the dorsal organ that houses larval olfactory sensory neurons. In D. suzukii adults, we generally observed a lack of sexually dimorphic expression levels in male and female antennae. While there was generally conservation of antennal expression of odorant and ionotropic receptor orthologues for D. melanogaster and D. suzukii, gustatory receptors showed more distinct species-specific profiles. In larval head tissues, for all three receptor gene families, there was also a greater degree of species-specific gene expression patterns. Analysis of chemosensory receptor repertoires in the pest species, D. suzukii relative to those of the genetic model D. melanogaster enables comparative studies of the chemosensory, physiology, and ecology of D. suzukii.
Collapse
Affiliation(s)
- William B Walker
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden; USDA-ARS Temperate Tree Fruit and Vegetable Research Unit, 5230 Konnowac Pass Road, Wapato, WA 98951, USA.
| | - Boyd A Mori
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden; Department of Agricultural, Food and Nutritional Science, 4-10 Agriculture/Forestry Centre, University of Alberta, Edmonton, Alberta T6G 2P5, Canada.
| | - Alberto M Cattaneo
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden.
| | - Francisco Gonzalez
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden; Department of Research and Development, ChemTica Internacional S.A., Apdo. 640-3100, Santo Domingo, Heredia, Costa Rica.
| | - Peter Witzgall
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden.
| | - Paul G Becher
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden.
| |
Collapse
|
11
|
Yoon JS, Ahn SJ, Choi MY. Selection and Comparative Gene Expression of Midgut-Specific Targets for Drosophila suzukii. INSECTS 2023; 14:76. [PMID: 36662004 PMCID: PMC9864236 DOI: 10.3390/insects14010076] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/03/2023] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
Spotted-wing drosophila (SWD), Drosophila suzukii, is a destructive and invasive pest that attacks most small fruits and cherries. The current management for SWD involves the use of conventional insecticides. In an effort to develop a biologically based control option, the application of RNA interference (RNAi) has been investigated. To develop an RNAi approach, suitable targets must be identified, and an efficient delivery method must be developed for introducing the double-stranded RNA (dsRNA) in the midgut. In D. suzukii, we previously found that dsRNA nucleases actively degrade dsRNA molecules in the midgut. In this study, we focused on identifying biological targets focused on the midgut membrane. The profile of midgut-specific genes was analyzed and compared with the genes expressed in the whole-body using transcriptome analysis. Differential gene expression analysis revealed that 1921 contigs were upregulated and 1834 contigs were downregulated in the midgut when compared to genes from other body tissues. We chose ten midgut-specifically upregulated genes and empirically confirmed their expressions. We are particularly interested in the midgut membrane proteins, including G protein-coupled receptors (GPCRs) such as diuretic hormone 31 (DH31) receptor, neuropeptide F (NPF) recepror, toll-9, adhesion receptors, methuselah (mth), and gustatory receptor, because insect GPCRs have been offered great potential for next-generation pest management.
Collapse
Affiliation(s)
- June-Sun Yoon
- USDA Agricultural Research Service, Horticultural Crops Research Unit, Corvallis, OR 97331, USA
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54596, Republic of Korea
| | - Seung-Joon Ahn
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Man-Yeon Choi
- USDA Agricultural Research Service, Horticultural Crops Research Unit, Corvallis, OR 97331, USA
| |
Collapse
|
12
|
Abstract
Among the many wonders of nature, the sense of smell of the fly Drosophila melanogaster might seem, at first glance, of esoteric interest. Nevertheless, for over a century, the 'nose' of this insect has been an extraordinary system to explore questions in animal behaviour, ecology and evolution, neuroscience, physiology and molecular genetics. The insights gained are relevant for our understanding of the sensory biology of vertebrates, including humans, and other insect species, encompassing those detrimental to human health. Here, I present an overview of our current knowledge of D. melanogaster olfaction, from molecules to behaviours, with an emphasis on the historical motivations of studies and illustration of how technical innovations have enabled advances. I also highlight some of the pressing and long-term questions.
Collapse
Affiliation(s)
- Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
13
|
Schwanitz TW, Polashock JJ, Stockton DG, Rodriguez-Saona C, Sotomayor D, Loeb G, Hawkings C. Molecular and behavioral studies reveal differences in olfaction between winter and summer morphs of Drosophila suzukii. PeerJ 2022; 10:e13825. [PMID: 36132222 PMCID: PMC9484457 DOI: 10.7717/peerj.13825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/10/2022] [Indexed: 01/18/2023] Open
Abstract
Spotted-wing drosophila, Drosophila suzukii (Matsumura), is a major economic pest of several fruit crops in Europe, North and South America, and other parts of the world because it oviposits in ripening thin-skinned fruits. This vinegar fly exhibits two distinct morphotypes: a summer and a winter morph. Although adaptations associated with the winter morph enhance this invasive pest's capacity to survive in cold climates, winter is still a natural population bottleneck. Since monitoring early spring populations is important for accurate population forecasts, understanding the winter morph's response to olfactory cues may improve current D. suzukii management programs. In this study, a comparative transcriptome analysis was conducted to assess gene expression differences between the female heads of the two D. suzukii morphs, which showed significant differences in 738 genes (p ≤ 0.0001). Out of twelve genes related to olfaction determined to be differentially expressed in the transcriptome, i.e., those related to location of food sources, chemosensory abilities, and mating behavior, nine genes were upregulated in the winter morph while three were downregulated. Three candidate olfactory-related genes that were most upregulated or downregulated in the winter morph were further validated using RT-qPCR. In addition, behavioral assays were performed at a range of temperatures to confirm a differing behavioral response of the two morphs to food odors. Our behavioral assays showed that, although winter morphs were more active at lower temperatures, the summer morphs were generally more attracted to food odors. This study provides new insights into the molecular and behavioral differences in response to olfactory cues between the two D. suzukii morphs that will assist in formulating more effective monitoring and physiological-based control tools.
Collapse
Affiliation(s)
- Timothy W. Schwanitz
- Entomology, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States of America
| | - James J. Polashock
- Genetic Improvement of Fruits and Vegetables Laboratory, USDA-ARS, Chatsworth, NJ, United States of America
| | - Dara G. Stockton
- Entomology, Cornell University, Geneva, NY, United States of America
| | - Cesar Rodriguez-Saona
- Entomology, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States of America
| | - Diego Sotomayor
- Agro-Environmental Science Department, University of Puerto Rico, Mayagüez, Puerto Rico, United States of America
| | - Greg Loeb
- Entomology, Cornell University, Geneva, NY, United States of America
| | - Chloe Hawkings
- Entomology, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States of America
| |
Collapse
|
14
|
Lizana P, Mutis A, Quiroz A, Venthur H. Insights Into Chemosensory Proteins From Non-Model Insects: Advances and Perspectives in the Context of Pest Management. Front Physiol 2022; 13:924750. [PMID: 36072856 PMCID: PMC9441497 DOI: 10.3389/fphys.2022.924750] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/13/2022] [Indexed: 12/04/2022] Open
Abstract
Nowadays, insect chemosensation represents a key aspect of integrated pest management in the Anthropocene epoch. Olfaction-related proteins have been the focus of studies due to their function in vital processes, such ashost finding and reproduction behavior. Hence, most research has been based on the study of model insects, namely Drosophila melanogaster, Bombyx mori or Tribolium castaneum. Over the passage of time and the advance of new molecular techniques, insects considered non-models have been studied, contributing greatly to the knowledge of insect olfactory systems and enhanced pest control methods. In this review, a reference point for non-model insects is proposed and the concept of model and non-model insects is discussed. Likewise, it summarizes and discusses the progress and contribution in the olfaction field of both model and non-model insects considered pests in agriculture.
Collapse
Affiliation(s)
- Paula Lizana
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Temuco, Chile
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - Ana Mutis
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - Andrés Quiroz
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - Herbert Venthur
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
15
|
Tom MT, Cortés Llorca L, Bucks S, Bisch-Knaden S, Hansson BS. Sex- and tissue-specific expression of chemosensory receptor genes in a hawkmoth. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.976521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
For the nocturnal hawkmoth Manduca sexta, olfactory and gustatory cues are essential for finding partners, food, and oviposition sites. Three chemosensory receptor families, odorant receptors (ORs), ionotropic receptors (IRs), and gustatory receptors (GRs) are involved in the detection of these stimuli. While many chemosensory receptor genes have been identified, knowledge of their expression profile in potentially chemoreceptive organs is incomplete. Here, we studied the expression patterns of chemosensory receptors in different tissues including the antennae, labial palps, proboscis, legs, wings and ovipositor. We compared the receptors’ expression in female and male moths both before and after mating by using the NanoString platform. This tool allowed us to measure expression levels of chemosensory receptor genes in a single reaction using probes designed against 71 OR, 29 IR and 49 GR transcripts. In all tissues investigated, we detected expression of genes from all three receptor families. The highest number of receptors was detected in the antennae (92), followed by the ovipositor (59), while the least number was detected in the hindlegs (21). The highest number of OR genes were expressed in the antennae (63), of which 24 were specific to this main olfactory organ. The highest number of IRs were also expressed in the antennae (16), followed by the ovipositor (15). Likewise, antennae and ovipositor expressed the highest number of GRs (13 and 14). Expression of the OR co-receptor MsexORCo, presumably a prerequisite for OR function, was found in the antennae, labial palps, forelegs and ovipositor. IR co-receptors MsexIR25a and MsexIR76b were expressed across all tested tissues, while expression of the IR co-receptor MsexIR8a was restricted to antennae and ovipositor. Comparing the levels of all 149 transcripts across the nine tested tissues allowed us to identify sex-biased gene expression in the antennae and the legs, two appendages that are also morphologically different between the sexes. However, none of the chemosensory receptors was differentially expressed based on the moths’ mating state. The observed gene expression patterns form a strong base for the functional characterization of chemosensory receptors and the understanding of olfaction and gustation at the molecular level in M. sexta.
Collapse
|
16
|
Keesey IW. Sensory neuroecology and multimodal evolution across the genus Drosophila. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.932344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The neural basis and genetic mechanisms for sensory evolution are increasingly being explored in depth across many closely related members of the Drosophila genus. This has, in part, been achieved due to the immense efforts toward adapting gene-editing technologies for additional, non-model species. Studies targeting both peripheral sensory variations, as well as interspecies divergence in coding or neural connectivity, have generated numerous, tangible examples of how and where the evolution of sensory-driven animal behavior has occurred. Here, we review and discuss studies that each aim to identify the neurobiological and genetic components of sensory system evolution to provide a comparative overview of the types of functional variations observed across both perceptual input and behavioral output. In addition, we examined the roles neuroecology and neuroevolution play in speciation events, such as courtship and intraspecies communication, as well as those aspects related to behavioral divergence in host navigation or egg-laying preferences. Through the investigation of comparative, large-scale trends and correlations across diverse, yet closely related species within this highly ecologically variable genus of flies, we can begin to describe the underlying pressures, mechanisms, and constraints that have guided sensory and nervous system evolution within the natural environments of these organisms.
Collapse
|
17
|
Deng D, Xing S, Liu X, Ji Q, Zhai Z, Peng W. Transcriptome analysis of sex-biased gene expression in the spotted-wing Drosophila, Drosophila suzukii (Matsumura). G3 GENES|GENOMES|GENETICS 2022; 12:6588685. [PMID: 35587603 PMCID: PMC9339319 DOI: 10.1093/g3journal/jkac127] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/11/2022] [Indexed: 11/16/2022]
Abstract
Sexual dimorphism occurs widely throughout insects and has profound influences on evolutionary path. Sex-biased genes are considered to account for most of phenotypic differences between sexes. In order to explore the sex-biased genes potentially associated with sexual dimorphism and sexual development in Drosophila suzukii, a major devastating and invasive crop pest, we conducted whole-organism transcriptome profiling and sex-biased gene expression analysis on adults of both sexes. We identified transcripts of genes involved in several sex-specific physiological and functional processes, including transcripts involved in sex determination, reproduction, olfaction, and innate immune signals. A total of 11,360 differentially expressed genes were identified in the comparison, and 1,957 differentially expressed genes were female-biased and 4,231 differentially expressed genes were male-biased. The pathway predominantly enriched for differentially expressed genes was related to spliceosome, which might reflect the differences in the alternative splicing mechanism between males and females. Twenty-two sex determination and 16 sex-related reproduction genes were identified, and expression pattern analysis revealed that the majority of genes were differentially expressed between sexes. Additionally, the differences in sex-specific olfactory and immune processes were analyzed and the sex-biased expression of these genes may play important roles in pheromone and odor detection, and immune response. As a valuable dataset, our sex-specific transcriptomic data can significantly contribute to the fundamental elucidation of the molecular mechanisms of sexual dimorphism in fruit flies, and may provide candidate genes potentially useful for the development of genetic sexing strains, an important tool for sterile insect technique applications against this economically important species.
Collapse
Affiliation(s)
- Dan Deng
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University , Changsha 410081, China
| | - Shisi Xing
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University , Changsha 410081, China
| | - Xuxiang Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Lab of Biopesticide and Chemical Biology, Ministry of Education, Institute of Biological Control, Fujian Agriculture and Forestry University , Fuzhou 350002, China
| | - Qinge Ji
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Lab of Biopesticide and Chemical Biology, Ministry of Education, Institute of Biological Control, Fujian Agriculture and Forestry University , Fuzhou 350002, China
| | - Zongzhao Zhai
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University , Changsha 410081, China
| | - Wei Peng
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University , Changsha 410081, China
| |
Collapse
|
18
|
Bisch-Knaden S, Rafter MA, Knaden M, Hansson BS. Unique neural coding of crucial versus irrelevant plant odors in a hawkmoth. eLife 2022; 11:77429. [PMID: 35622402 PMCID: PMC9142141 DOI: 10.7554/elife.77429] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/09/2022] [Indexed: 12/29/2022] Open
Abstract
The sense of smell is pivotal for nocturnal moths to locate feeding and oviposition sites. However, these crucial resources are often rare and their bouquets are intermingled with volatiles emanating from surrounding ‘background’ plants. Here, we asked if the olfactory system of female hawkmoths, Manduca sexta, could differentiate between crucial and background cues. To answer this question, we collected nocturnal headspaces of numerous plants in a natural habitat of M. sexta. We analyzed the chemical composition of these headspaces and used them as stimuli in physiological experiments at the antenna and in the brain. The intense odors of floral nectar sources evoked strong responses in virgin and mated female moths, most likely enabling the localization of profitable flowers at a distance. Bouquets of larval host plants and most background plants, in contrast, were subtle, thus potentially complicating host identification. However, despite being subtle, antennal responses and brain activation patterns evoked by the smell of larval host plants were clearly different from those evoked by other plants. Interestingly, this difference was even more pronounced in the antennal lobe of mated females, revealing a status-dependent tuning of their olfactory system towards oviposition sites. Our study suggests that female moths possess unique neural coding strategies to find not only conspicuous floral cues but also inconspicuous bouquets of larval host plants within a complex olfactory landscape.
Collapse
Affiliation(s)
- Sonja Bisch-Knaden
- Max-Planck-Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Jena, Germany
| | | | - Markus Knaden
- Max-Planck-Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Jena, Germany
| | - Bill S Hansson
- Max-Planck-Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Jena, Germany
| |
Collapse
|
19
|
Amaro IA, Ahmed-Braimah YH, League GP, Pitcher SA, Avila FW, Cruz PC, Harrington LC, Wolfner MF. Seminal fluid proteins induce transcriptome changes in the Aedes aegypti female lower reproductive tract. BMC Genomics 2021; 22:896. [PMID: 34906087 PMCID: PMC8672594 DOI: 10.1186/s12864-021-08201-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/23/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Mating induces behavioral and physiological changes in the arbovirus vector Aedes aegypti, including stimulation of egg development and oviposition, increased survival, and reluctance to re-mate with subsequent males. Transferred seminal fluid proteins and peptides derived from the male accessory glands induce these changes, though the mechanism by which they do this is not known. RESULTS To determine transcriptome changes induced by seminal proteins, we injected extract from male accessory glands and seminal vesicles (MAG extract) into females and examined female lower reproductive tract (LRT) transcriptomes 24 h later, relative to non-injected controls. MAG extract induced 87 transcript-level changes, 31 of which were also seen in a previous study of the LRT 24 h after a natural mating, including 15 genes with transcript-level changes similarly observed in the spermathecae of mated females. The differentially-regulated genes are involved in diverse molecular processes, including immunity, proteolysis, neuronal function, transcription control, or contain predicted small-molecule binding and transport domains. CONCLUSIONS Our results reveal that seminal fluid proteins, specifically, can induce gene expression responses after mating and identify gene targets to further investigate for roles in post-mating responses and potential use in vector control.
Collapse
Affiliation(s)
- I Alexandra Amaro
- Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| | | | - Garrett P League
- Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| | - Sylvie A Pitcher
- Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| | - Frank W Avila
- Max Planck Tandem Group in Mosquito Reproductive Biology, Universidad de Antioquia, Medellín, 050010, Colombia
| | - Priscilla C Cruz
- Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| | | | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
20
|
Revadi SV, Giannuzzi VA, Rossi V, Hunger GM, Conchou L, Rondoni G, Conti E, Anderson P, Walker WB, Jacquin-Joly E, Koutroumpa F, Becher PG. Stage-specific expression of an odorant receptor underlies olfactory behavioral plasticity in Spodoptera littoralis larvae. BMC Biol 2021; 19:231. [PMID: 34706739 PMCID: PMC8555055 DOI: 10.1186/s12915-021-01159-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/27/2021] [Indexed: 11/21/2022] Open
Abstract
Background The detection of environmental cues and signals via the sensory system directs behavioral choices in diverse organisms. Insect larvae rely on input from the chemosensory system, mainly olfaction, for locating food sources. In several lepidopteran species, foraging behavior and food preferences change across larval instars; however, the molecular mechanisms underlying such behavioral plasticity during larval development are not fully understood. Here, we hypothesize that expression patterns of odorant receptors (ORs) change during development, as a possible mechanism influencing instar-specific olfactory-guided behavior and food preferences. Results We investigated the expression patterns of ORs in larvae of the cotton leafworm Spodoptera littoralis between the first and fourth instar and revealed that some of the ORs show instar-specific expression. We functionally characterized one OR expressed in the first instar, SlitOR40, as responding to the plant volatile, β-caryophyllene and its isomer α-humulene. In agreement with the proposed hypothesis, we showed that first but not fourth instar larvae responded behaviorally to β-caryophyllene and α-humulene. Moreover, knocking out this odorant receptor via CRISPR-Cas9, we confirmed that instar-specific responses towards its cognate ligands rely on the expression of SlitOR40. Conclusion Our results provide evidence that larvae of S. littoralis change their peripheral olfactory system during development. Furthermore, our data demonstrate an unprecedented instar-specific behavioral plasticity mediated by an OR, and knocking out this OR disrupts larval behavioral plasticity. The ecological relevance of such behavioral plasticity for S. littoralis remains to be elucidated, but our results demonstrate an olfactory mechanism underlying this plasticity in foraging behavior during larval development. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01159-1.
Collapse
Affiliation(s)
- Santosh V Revadi
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Box 190, 23422, Lomma, Sweden. .,INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Diderot, Institute of Ecology and Environmental Sciences of Paris, Department of Sensory Ecology, Route de Saint-Cyr, 78026, Versailles Cedex, France.
| | - Vito Antonio Giannuzzi
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Box 190, 23422, Lomma, Sweden.,Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121, Perugia, Italy
| | - Valeria Rossi
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Box 190, 23422, Lomma, Sweden.,Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121, Perugia, Italy
| | - Gert Martin Hunger
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Box 190, 23422, Lomma, Sweden
| | - Lucie Conchou
- AGRIODOR, 6 rue Pierre Joseph Colin, 35000, Rennes, France
| | - Gabriele Rondoni
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121, Perugia, Italy
| | - Eric Conti
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121, Perugia, Italy
| | - Peter Anderson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Box 190, 23422, Lomma, Sweden
| | - William B Walker
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Box 190, 23422, Lomma, Sweden.,United States Department of Agriculture - Agricultural Research Service, Temperate Tree Fruit and Vegetable Research Unit, 5230 Konnowac Pass Road, Wapato, WA, 98951, USA
| | - Emmanuelle Jacquin-Joly
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Diderot, Institute of Ecology and Environmental Sciences of Paris, Department of Sensory Ecology, Route de Saint-Cyr, 78026, Versailles Cedex, France
| | - Fotini Koutroumpa
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Diderot, Institute of Ecology and Environmental Sciences of Paris, Department of Sensory Ecology, Route de Saint-Cyr, 78026, Versailles Cedex, France
| | - Paul G Becher
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Box 190, 23422, Lomma, Sweden
| |
Collapse
|
21
|
Mika K, Benton R. Olfactory Receptor Gene Regulation in Insects: Multiple Mechanisms for Singular Expression. Front Neurosci 2021; 15:738088. [PMID: 34602974 PMCID: PMC8481607 DOI: 10.3389/fnins.2021.738088] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/24/2021] [Indexed: 12/25/2022] Open
Abstract
The singular expression of insect olfactory receptors in specific populations of olfactory sensory neurons is fundamental to the encoding of odors in patterns of neuronal activity in the brain. How a receptor gene is selected, from among a large repertoire in the genome, to be expressed in a particular neuron is an outstanding question. Focusing on Drosophila melanogaster, where most investigations have been performed, but incorporating recent insights from other insect species, we review the multilevel regulatory mechanisms of olfactory receptor expression. We discuss how cis-regulatory elements, trans-acting factors, chromatin modifications, and feedback pathways collaborate to activate and maintain expression of the chosen receptor (and to suppress others), highlighting similarities and differences with the mechanisms underlying singular receptor expression in mammals. We also consider the plasticity of receptor regulation in response to environmental cues and internal state during the lifetime of an individual, as well as the evolution of novel expression patterns over longer timescales. Finally, we describe the mechanisms and potential significance of examples of receptor co-expression.
Collapse
Affiliation(s)
| | - Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
22
|
Huang ZY, Wang XY, Lu W, Zheng XL. Sensory gene identification in the transcriptome of the ectoparasitoid Quadrastichus mendeli. Sci Rep 2021; 11:9726. [PMID: 33958688 PMCID: PMC8102506 DOI: 10.1038/s41598-021-89253-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/30/2021] [Indexed: 02/03/2023] Open
Abstract
Sensory genes play a key role in the host location of parasitoids. To date, the sensory genes that regulate parasitoids to locate gall-inducing insects have not been uncovered. An obligate ectoparasitoid, Quadrastichus mendeli Kim & La Salle (Hymenoptera: Eulophidae: Tetrastichinae), is one of the most important parasitoids of Leptocybe invasa, which is a global gall-making pest in eucalyptus plantations. Interestingly, Q. mendeli can precisely locate the larva of L. invasa, which induces tumor-like growth on the eucalyptus leaves and stems. Therefore, Q. mendeli-L. invasa provides an ideal system to study the way that parasitoids use sensory genes in gall-making pests. In this study, we present the transcriptome of Q. mendeli using high-throughput sequencing. In total, 31,820 transcripts were obtained and assembled into 26,925 unigenes in Q. mendeli. Then, the major sensory genes were identified, and phylogenetic analyses were performed with these genes from Q. mendeli and other model insect species. Three chemosensory proteins (CSPs), 10 gustatory receptors (GRs), 21 ionotropic receptors (IRs), 58 odorant binding proteins (OBPs), 30 odorant receptors (ORs) and 2 sensory neuron membrane proteins (SNMPs) were identified in Q. mendeli by bioinformatics analysis. Our report is the first to obtain abundant biological information on the transcriptome of Q. mendeli that provided valuable information regarding the molecular basis of Q. mendeli perception, and it may help to understand the host location of parasitoids of gall-making pests.
Collapse
Affiliation(s)
- Zong-You Huang
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, 530004 China
| | - Xiao-Yun Wang
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, 530004 China
| | - Wen Lu
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, 530004 China
| | - Xia-Lin Zheng
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, 530004 China
| |
Collapse
|
23
|
Zhan H, Li D, Dewer Y, Niu C, Li F, Luo C. Identification and functional characterization of odorant-binding proteins 69a and 76a of Drosophila suzukii. Heliyon 2021; 7:e06427. [PMID: 33748486 PMCID: PMC7970147 DOI: 10.1016/j.heliyon.2021.e06427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/18/2021] [Accepted: 03/02/2021] [Indexed: 11/24/2022] Open
Abstract
The fruit fly Drosophila suzukii is a fruit crop pest that causes a severe economic threat to soft summer fruit worldwide. The male sex pheromone, cis-vaccenyl acetate (cVA) has multiple functions in intra-species communication in Drosophila melanogaster, which is required in male to suppress male-male courtship. D. suzukii males do not produce cVA; however, the odorant receptor for cVA (Or67d) is still functional. The lack of cVA in D. suzukii casts the question of whether this pheromone might have been replaced by another compound similar to cVA that disrupts mating in D. suzukii. In order to address this question, we cloned two D. suzukii adult antenna-specific odorant-binding proteins (OBPs) DsOBP69a and DsOBP76a and aligned with their D. melanogaster orthologues. Moreover, we examined the binding properties of the newly identified recombinant proteins against 26 potential ligands including cVA, using the fluorescence-based ligand binding assay. The alignment showed that DsOBP69a and DsOBP76a, have six conserved cysteines and belong to the classic OBP family. Furthermore, our results revealed that cVA did not bind to DsOBP69a or DsOBP76a proteins. Interestingly, the floral odorant β-ionone and the bitter substance berberine chloride and coumarin displayed high binding ability. It is also worth noting that DsOBP69a and DsOBP76a have different affinities to (Z)-7-Tricosene that may reflect different functional roles. These findings suggest that DsOBP69a and DsOBP76a are potentially involved in olfaction and gustation of D. suzukii.
Collapse
Affiliation(s)
- Haixia Zhan
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Du Li
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Youssef Dewer
- Bioassay Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Dokki, Giza, Egypt
| | - Changying Niu
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Fengqi Li
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Chen Luo
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
24
|
Devescovi F, Hurtado J, Taylor PW. Mating-induced changes in responses of female Queensland fruit fly to male pheromones and fruit: A mechanism for mating-induced sexual inhibition. JOURNAL OF INSECT PHYSIOLOGY 2021; 129:104195. [PMID: 33539917 DOI: 10.1016/j.jinsphys.2021.104195] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
In order to reproduce, female tephritid fruit flies need both mates for fertilization and fruit for oviposition. Virgin females are prone to mating and approach males, attracted by their pheromones. Mated females, however, may experience an abrupt reduction of mating propensity and prioritise the search for suitable fruit rather than additional mates. Accordingly, mating in fruit flies may induce a switch in olfactory preferences of females from pheromones to fruit stimuli, and this switch may also be an important mediator of mating-induced sexual inhibition. To test for mating-induced switches in olfactory preference of female Queensland fruit fly, Bactrocera tryoni, we used wind tunnel assays to assess attraction of mated and virgin females to (1) male sex pheromone delivered through a perforated glass sphere or (2) an entire fruit. Electroantennogram (EAG) responses were also used to test for mating-induced changes in olfactory sensitivity to pheromones and fruit odours. Pheromones elicited quicker upwind responses in virgin females than in mated females; during the first six minutes of trials more virgin females than mated females were observed in the upwind end of the wind tunnel where pheromone odours were released. Fruit cues, in contrast, elicited stronger association with the upwind end of the wind tunnel in mated females than in virgin females from the fifth minute onwards. Also, mated females were observed on the fruit for longer periods than virgin females. EAG responses to pheromones and fruit odours were similar in virgin and mated females, indicating that changes in preferences are not a consequence of changes in peripheral sensitivity of antennae to odours but instead appear to be mediated by post-receptor processing. Our results show that mating reduces attraction to male-produced pheromones and increases attraction to fruit stimuli in B. tryoni females. We propose that this behavioural switch from mating stimuli to oviposition stimuli is an important mediator of mating-induced sexual inhibition in this species.
Collapse
Affiliation(s)
- Francisco Devescovi
- Laboratorio de Insectos de Importancia Agronómica, IGEAF (INTA), GV-IABIMO (CONICET), Dr. Nicolás Repetto y De los Reseros s/n, Hurlingham, Buenos Aires, Argentina.
| | - Juan Hurtado
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), CABA, Argentina; Instituto de Ecología, Genética y Evolución de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CABA, Argentina
| | - Phillip W Taylor
- Applied BioSciences, Macquarie University, North Ryde, NSW 2109, Australia
| |
Collapse
|
25
|
Xiao Y, Sun L, Wang Q, An XK, Huang XZ, Khashaveh A, Li ZY, Zhang YJ. Host plants transfer induced regulation of the chemosensory genes repertoire in the alfalfa plant bug Adelphocoris lineolatus (Goeze). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 38:100798. [PMID: 33581507 DOI: 10.1016/j.cbd.2021.100798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 01/21/2021] [Accepted: 01/23/2021] [Indexed: 10/22/2022]
Abstract
The alfalfa plant bug Adelphocoris lineolatus, an economically important pest, has representative behavioral characteristics with host plants transfer. Olfactory system is essential for insects to perceive ever-changing chemical signals in the external environment, and chemosensory genes play crucial roles in signals reception and transduction. In this work, we compared the differences in chemosensory genes expression before and after host plants transfer by constructing 12 antennal transcriptomes of male and female bugs, respectively. The results showed that the expression levels of most chemosensory genes in A. lineolatus changed to adapt to the transformation of the hosts plant. More remarkable, female bugs had more up-regulated chemosensory genes than males. Differentially expressed genes (DEGs) analysis revealed three odorant binding proteins (OBPs), three chemosensory proteins (CSPs), eight odorant receptors (ORs) and one ionotropic receptor (IR) showed significant differences when the host plant transferred. There were complex characteristics of up- and down- regulated genes in male and female adults, among which OBP19 showed higher expression in females exposing to the new host plant alfalfa, suggesting this OBP may be associated with the localization of the oviposition site. The OR54 and OR82 were up-regulated in both genders, indicating their possible roles in recognizing some alfalfa-specific volatiles. These findings will provide valuable insights in biological functions of chemosensory genes in A. lineolatus and facilitate the development of new targets for novel strategies to control the alfalfa plant bug and other herbivores.
Collapse
Affiliation(s)
- Yong Xiao
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences and Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Liang Sun
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Key Laboratory of Tea Quality and Safety Control, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Qi Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xing-Kui An
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xin-Zheng Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Adel Khashaveh
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhen-Yu Li
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences and Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China
| | - Yong-Jun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
26
|
Anton S, Rössler W. Plasticity and modulation of olfactory circuits in insects. Cell Tissue Res 2020; 383:149-164. [PMID: 33275182 PMCID: PMC7873004 DOI: 10.1007/s00441-020-03329-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/27/2020] [Indexed: 12/15/2022]
Abstract
Olfactory circuits change structurally and physiologically during development and adult life. This allows insects to respond to olfactory cues in an appropriate and adaptive way according to their physiological and behavioral state, and to adapt to their specific abiotic and biotic natural environment. We highlight here findings on olfactory plasticity and modulation in various model and non-model insects with an emphasis on moths and social Hymenoptera. Different categories of plasticity occur in the olfactory systems of insects. One type relates to the reproductive or feeding state, as well as to adult age. Another type of plasticity is context-dependent and includes influences of the immediate sensory and abiotic environment, but also environmental conditions during postembryonic development, periods of adult behavioral maturation, and short- and long-term sensory experience. Finally, plasticity in olfactory circuits is linked to associative learning and memory formation. The vast majority of the available literature summarized here deals with plasticity in primary and secondary olfactory brain centers, but also peripheral modulation is treated. The described molecular, physiological, and structural neuronal changes occur under the influence of neuromodulators such as biogenic amines, neuropeptides, and hormones, but the mechanisms through which they act are only beginning to be analyzed.
Collapse
Affiliation(s)
- Sylvia Anton
- IGEPP, INRAE, Institut Agro, Univ Rennes, INRAE, 49045, Angers, France.
| | - Wolfgang Rössler
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.
| |
Collapse
|
27
|
Xin S, Zhang W. Construction and analysis of the protein-protein interaction network for the olfactory system of the silkworm Bombyx mori. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 105:e21737. [PMID: 32926465 DOI: 10.1002/arch.21737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
Olfaction plays an essential role in feeding and information exchange in insects. Previous studies on the olfaction of silkworms have provided a wealth of information about genes and proteins, yet, most studies have only focused on a single gene or protein related to the insect's olfaction. The aim of the current study is to determine key proteins in the olfactory system of the silkworm, and further understand protein-protein interactions (PPIs) in the olfactory system of Lepidoptera. To achieve this goal, we integrated Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and network analyses. Furthermore, we selected 585 olfactory-related proteins and constructed a (PPI) network for the olfactory system of the silkworm. Network analysis led to the identification of several key proteins, including GSTz1, LOC733095, BGIBMGA002169-TA, BGIBMGA010939-TA, GSTs2, GSTd2, Or-2, and BGIBMGA013255-TA. A comprehensive evaluation of the proteins showed that glutathione S-transferases (GSTs) had the highest ranking. GSTs also had the highest enrichment levels in GO and KEGG. In conclusion, our analysis showed that key nodes in the biological network had a significant impact on the network, and the key proteins identified via network analysis could serve as new research targets to determine their functions in olfaction.
Collapse
Affiliation(s)
- Shanghong Xin
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wenjun Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
28
|
Li HL, Wang XY, Zheng XL, Lu W. Research Progress on Oviposition-Related Genes in Insects. JOURNAL OF INSECT SCIENCE (ONLINE) 2020; 20:6047614. [PMID: 33367730 PMCID: PMC7759734 DOI: 10.1093/jisesa/ieaa137] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Indexed: 05/05/2023]
Abstract
Oviposition-related genes have remained a consistent focus of insect molecular biology. Previous research has gradually clarified our mechanistic understanding of oviposition-related genes, including those related to oviposition-gland-related genes, oogenesis-related genes, oviposition-site-selection-related genes, and genes related to ovulation and hatching. Moreover, some of this research has revealed how the expression of single oviposition-related genes affects the expression of related genes, and more importantly, how individual node genes function to link the expression of upstream and downstream genes. However, the research to date is not sufficient to completely explain the overall interactions among the genes of the insect oviposition system. Through a literature review of a large number of studies, this review provides references for future research on oviposition-related genes in insects and the use of RNAi or CRISPR/Cas9 technology to verify the functions of oviposition-related genes and to prevent and control harmful insects.
Collapse
Affiliation(s)
- Hai-Lin Li
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Xiao-Yun Wang
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Xia-Lin Zheng
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Wen Lu
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
- Corresponding author, e-mail:
| |
Collapse
|
29
|
Ahn SJ, Oh HW, Corcoran J, Kim JA, Park KC, Park CG, Choi MY. Sex-biased gene expression in antennae of Drosophila suzukii. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 104:e21660. [PMID: 31994766 DOI: 10.1002/arch.21660] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 06/10/2023]
Abstract
Drosophila suzukii differs from other members of the genus Drosophila in its host preference and oviposition behavior. The flies are attracted to ripening fruits, and females have a serrated ovipositor enabling eggs to be laid inside the fruit. In addition to its huge economic impact, its unique chemoecological, morphological, and physiological characteristics have garnered considerable research interests. In this study, we analyzed D. suzukii antennal transcriptomes to identify sex-biased genes by comparison of differential gene expressions between male antennae (MA) and female antennae (FA). Among 13,583 total genes of the fly genome, 11,787 genes were expressed in either MA or FA. There are only 132 genes (9 in MA, 7 in FA, and 116 in both, FPKM >1) were expressed in antennae exclusively, and 2,570 genes (9 in MA, 0 in FA, and 2,561 in both) were enriched in antennae containing 185 and 113 sex-biased genes in MA and FA, respectively. Interestingly, many immune-related genes were highly expressed in MA, whereas several chemosensory genes were at high rank in FA. We identified 27 sex-biased chemosensory genes including odorant and gustatory receptors, odorant-binding proteins, chemosensory proteins, ionotropic receptors, and cytochrome P450s, and validated the gene expressions using quantitative real-time PCR. The highly expressed sex-biased genes in antennae are likely involved in the fly specific mating, host-finding behaviors, or sex-specific functions. The molecular results demonstrated here will facilitate to find the unique chemoreception of D. suzukii, as well as on the development of new management strategies for this pest.
Collapse
Affiliation(s)
- Seung-Joon Ahn
- Horticultural Crops Research Laboratory, USDA-ARS, Corvallis, Oregon
- Department of Biochemistry, Mississippi State University, Mississippi
| | - Hyun-Woo Oh
- Core Facility Management Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Jacob Corcoran
- Horticultural Crops Research Laboratory, USDA-ARS, Corvallis, Oregon
| | - Ji-Ae Kim
- Core Facility Management Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Kye-Chung Park
- Bioprotection/Biosecurity, The New Zealand Institute for Plant and Food Research, Christchurch, New Zealand
| | - Chung Gyoo Park
- Department of Plant Medicine/Institute of Agriculture and Life Science (BK21+ Program), Gyeongsang National University, Jinju, Korea
| | - Man-Yeon Choi
- Horticultural Crops Research Laboratory, USDA-ARS, Corvallis, Oregon
| |
Collapse
|
30
|
Wu H, Liu Y, Shi X, Zhang X, Ye C, Zhu KY, Zhu F, Zhang J, Ma E. Transcriptome analysis of antennal cytochrome P450s and their transcriptional responses to plant and locust volatiles in Locusta migratoria. Int J Biol Macromol 2020; 149:741-753. [PMID: 32018005 DOI: 10.1016/j.ijbiomac.2020.01.309] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 01/31/2020] [Indexed: 12/15/2022]
Abstract
Cytochrome P450 monooxygenases (P450s) constitute a large superfamily of heme-thiolate proteins that are involved in the biosynthesis or degradation of endogenous compounds and detoxification of exogenous chemicals. It has been reported that P450s could serve as odorant-degrading enzymes (ODEs) to inactivate odorants to avoid saturating the antennae. However, there is little information about P450s in the antennae of Locusta migratoria. In the current work, we conducted an antenna transcriptome analysis and identified 92 P450s, including 68 full-length and 24 partial sequences. Phylogenetic analysis showed that 68 full-length P450s were grouped into four clans: CYP2, CYP3, CYP4, and mitochondria clans. Tissue, stage, and sex-dependent expressions of these 68 P450s were investigated. The results showed that 4 P450s were antenna-specific, whereas others were antenna-rich but also expressed in other tissues, implying their various potential roles in the antennae. In addition, the responses of seven selected P450s to five gramineous plant volatiles and four locust volatiles were determined. CYP6MU1 could be induced by almost all compounds tested, suggesting its important roles in odorant processing. Different P450s exhibited diverse responses to odorants, indicating that specific regulation of P450 expression by odorants might modulate the sensitivity of the olfactory responses to various chemicals.
Collapse
Affiliation(s)
- Haihua Wu
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China.
| | - Yongmei Liu
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China; College of Life Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Xuekai Shi
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China; College of Life Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Xueyao Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Changlü Ye
- College of Life Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Kun Yan Zhu
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS 66506, USA
| | - Fang Zhu
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| | - Jianzhen Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China.
| | - Enbo Ma
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China.
| |
Collapse
|
31
|
Xu P, Wang Y, Akami M, Niu CY. Identification of olfactory genes and functional analysis of BminCSP and BminOBP21 in Bactrocera minax. PLoS One 2019; 14:e0222193. [PMID: 31509572 PMCID: PMC6739056 DOI: 10.1371/journal.pone.0222193] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/24/2019] [Indexed: 12/20/2022] Open
Abstract
Insects possess highly developed olfactory systems which play pivotal roles in its ecological adaptations, host plant location, and oviposition behavior. Bactrocera minax is an oligophagous tephritid insect whose host selection, and oviposition behavior largely depend on the perception of chemical cues. However, there have been very few reports on molecular components related to the olfactory system of B. minax. Therefore, the transcriptome of B. minax were sequenced in this study, with 1 candidate chemosensory protein (CSP), 21 candidate odorant binding proteins (OBPs), 53 candidate odorant receptors (ORs), 29 candidate ionotropic receptors (IRs) and 4 candidate sensory neuron membrane proteins (SNMPs) being identified. After that, we sequenced the candidate olfactory genes and performed phylogenetic analysis. qRT-PCR was used to express and characterize 9 genes in olfactory and non-olfactory tissues. Compared with GFP-injected fly (control), dsOBP21-treated B. minax and dsCSP-treated B. minax had lower electrophysiological response to D-limonene (attractant), suggesting the potential involvement of BminOBP21 and BminCSP genes in olfactory perceptions of the fly. Our study establishes the molecular basis of olfaction, tributary for further functional analyses of chemosensory processes in B. minax.
Collapse
Affiliation(s)
- Penghui Xu
- Department of Plant Protection, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Yaohui Wang
- Department of Plant Protection, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Mazarin Akami
- Department of Plant Protection, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Chang-Ying Niu
- Department of Plant Protection, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
- * E-mail:
| |
Collapse
|
32
|
Hansen CN, Özkaya Ö, Roe H, Kyriacou CP, Giongo L, Rosato E. Locomotor Behaviour and Clock Neurons Organisation in the Agricultural Pest Drosophila suzukii. Front Physiol 2019; 10:941. [PMID: 31396106 PMCID: PMC6667661 DOI: 10.3389/fphys.2019.00941] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/09/2019] [Indexed: 01/29/2023] Open
Abstract
Drosophila suzukii (Matsumara) also called Spotted Wing Drosophila (SWD), is an invasive pest species originally from Asia that has now spread widely across Europe and North America. The majority of drosophilids including the best known Drosophila melanogaster only breed on decaying fruits. On the contrary, the presence of a strong serrated ovipositor and behavioural and metabolic adaptations allow D. suzukii to lay eggs inside healthy, ripening fruits that are still on the plant. Here we present an analysis of the rhythmic locomotor activity behaviour of D. suzukii under several laboratory settings. Moreover, we identify the canonical clock neurons in this species by reporting the expression pattern of the major clock proteins in the brain. Interestingly, a fundamentally similar organisation of the clock neurons network between D. melanogaster and D. suzukii does not correspond to similar characteristics in rhythmic locomotor activity behaviour.
Collapse
Affiliation(s)
- Celia Napier Hansen
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Özge Özkaya
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Helen Roe
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Charalambos P Kyriacou
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Lara Giongo
- Centro Ricerca e Innovazione, Fondazione Edmund Mach, Trento, Italy
| | - Ezio Rosato
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| |
Collapse
|