1
|
Oka N, Mori S, Ikegaya M, Park EY, Miyazaki T. Crystal structure and sugar-binding ability of the C-terminal domain of N-acetylglucosaminyltransferase IV establish a new carbohydrate-binding module family. Glycobiology 2022; 32:1153-1163. [PMID: 36106687 DOI: 10.1093/glycob/cwac058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/25/2022] [Accepted: 08/25/2022] [Indexed: 01/07/2023] Open
Abstract
N-glycans are modified by glycosyltransferases in the endoplasmic reticulum and Golgi apparatus. N-acetylglucosaminyltransferase IV (GnT-IV) is a Golgi-localized glycosyltransferase that synthesizes complex-type N-glycans in vertebrates. This enzyme attaches N-acetylglucosamine (GlcNAc) to the α-1,3-linked mannose branch of the N-glycan core structure via a β-1,4 linkage. Deficiency of this enzyme is known to cause abnormal cellular functions, making it a vital enzyme for living organisms. However, there has been no report on its 3-dimensional structure to date. Here, we demonstrated that the C-terminal regions (named CBML) of human GnT-IVa and Bombyx mori ortholog have the ability to bind β-N-acetylglucosamine. In addition, we determined the crystal structures of human CBML, B. mori CBML, and its complex with β-GlcNAc at 1.97, 1.47, and 1.15 Å resolutions, respectively, and showed that they adopt a β-sandwich fold, similar to carbohydrate-binding module family 32 (CBM32) proteins. The regions homologous to CBML (≥24% identity) were found in GnT-IV isozymes, GnT-IVb, and GnT-IVc (known as GnT-VI), and the structure of B. mori CBML in complex with β-GlcNAc indicated that the GlcNAc-binding residues were highly conserved among these isozymes. These residues are also conserved with the GlcNAc-binding CBM32 domain of β-N-acetylhexosaminidase NagH from Clostridium perfringens despite the low sequence identity (<20%). Taken together with the phylogenetic analysis, these findings indicate that these CBMLs may be novel CBM family proteins with GlcNAc-binding ability.
Collapse
Affiliation(s)
- Nozomi Oka
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Sota Mori
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Marina Ikegaya
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Enoch Y Park
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.,Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.,Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Takatsugu Miyazaki
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.,Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.,Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| |
Collapse
|
2
|
Bombyx mori β1,4-N-acetylgalactosaminyltransferase possesses relaxed donor substrate specificity in N-glycan synthesis. Sci Rep 2021; 11:5505. [PMID: 33750826 PMCID: PMC7943597 DOI: 10.1038/s41598-021-84771-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 02/08/2021] [Indexed: 12/15/2022] Open
Abstract
N-Glycosylation is one of the most important post-translational protein modifications in eukaryotic cells. Although more than 200 N-glycogenes contributing to N-glycan biosynthesis have been identified and characterized, the information on insect N-glycosylation is still limited. Here, focusing on insect N-glycosylation, we characterized Bombyx mori N-acetylgalactosaminyltransferase (BmGalNAcT) participating in complex N-glycan biosynthesis in mammals. BmGalNAcT localized at the Golgi and was ubiquitously expressed in every organ and in the developmental stage of the middle silk gland of fifth instar larvae. Analysis of recombinant BmGalNAcT expressed in Sf9 cells showed that BmGalNAcT transferred GalNAc to non-reducing terminals of GlcNAcβ1,2-R with β1,4-linkage. In addition, BmGalNAcT mediated transfer of galactose and N-acetylglucosamine residues but not transfer of either glucose or glucuronic acid from the UDP-sugar donor substrate to the N-glycan. Despite this tri-functional sugar transfer activity, however, most of the endogenous glycoproteins of insect cells were present without GalNAc, Gal, or GlcNAc residues at the non-reducing terminal of β1,2-GlcNAc residue(s). Moreover, overexpression of BmGalNAcT in insect cells had no effect on N-acetylgalactosaminylation, galactosylation, or N-acetylglucosaminylation of the major N-glycan during biosynthesis. These results suggested that B. mori has a novel multifunctional glycosyltransferase, but the N-glycosylation is highly and strictly regulated by the endogenous N-glycosylation machineries.
Collapse
|
3
|
Miyazaki T, Oba N, Park EY. Structural insight into the substrate specificity of Bombyx mori β-fructofuranosidase belonging to the glycoside hydrolase family 32. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 127:103494. [PMID: 33132139 DOI: 10.1016/j.ibmb.2020.103494] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
Sucrose-hydrolyzing enzymes are largely divided into β-fructofuranosidase and sucrose α-glucosidase. The domestic silkworm Bombyx mori possesses both enzymes, BmSUC1 and BmSUH, belonging to the glycoside hydrolase family 32 (GH32) and GH13, respectively. BmSUC1 was presumed to be acquired by horizontal gene transfer from bacteria based on phylogenetic analysis and related to tolerance to sugar-mimic alkaloids contained in mulberry latex. Here we investigated the substrate specificity of recombinant BmSUC1 that can hydrolyze not only sucrose but also fructooligosaccharides and fructans, and revealed that the enzyme was competitively inhibited by 1,4-dideoxy-1,4-imino-D-arabinitol, one of the alkaloids. Moreover, the crystal structures of BmSUC1 in apo form and complex with sucrose were determined, and the active site pocket was shallow and suitable for shorter substrates but was related to more relaxed substrate specificity than the strict sucrose α-glucosidase BmSUH. Considering together with the distribution of BmSUC1-orthologous genes in many lepidopterans, our results suggest that BmSUC1 contributes to the digestion of fructooligosaccharides and fructans derived from feed plants.
Collapse
Affiliation(s)
- Takatsugu Miyazaki
- Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan; Department of Applied Life Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| | - Nozomi Oba
- Department of Applied Life Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Enoch Y Park
- Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan; Department of Applied Life Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| |
Collapse
|
4
|
Nakamura S, Miyazaki T, Park EY. α-L-Fucosidase from Bombyx mori has broad substrate specificity and hydrolyzes core fucosylated N-glycans. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 124:103427. [PMID: 32561391 DOI: 10.1016/j.ibmb.2020.103427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/25/2020] [Accepted: 05/31/2020] [Indexed: 06/11/2023]
Abstract
N-glycans play a role in physiological functions, including glycoprotein conformation, signal transduction, and antigenicity. Insects display both α-1,6- and α-1,3-linked fucose residues bound to the innermost N-acetylglucosamine of N-glycans whereas core α-1,3-fucosylated N-glycans are not found in mammals. Functions of insect core-fucosylated glycans are not clear, and no α-L-fucosidase related to the N-glycan degradation has been identified. In the genome of the domestic silkworm, Bombyx mori, a gene for a protein, BmFucA, belonging to the glycoside hydrolase family 29 is a candidate for an α-L-fucosidase gene. In this study, BmFucA was cloned and recombinantly expressed as a glutathione-S-transferase tagged protein (GST-BmFucA). Recombinant GST-BmFucA exhibited broad substrate specificity and hydrolyzed p-nitrophenyl α-L-fucopyranoside, 2'-fucosyllactose, 3-fucosyllactose, 3-fucosyl-N,N'-diacetylchitobiose, and 6-fucosyl-N,N'-diacetylchitobiose. Further, GST-BmFucA released fucose from both pyridylaminated complex-type and paucimannose-type glycans that were core-α-1,6-fucosylated. GST-BmFucA also shows hydrolysis activity for core-fucosylated glycans attached to phospholipase A2 from bee venom. BmFucA may be involved in the catabolism of core-fucosylated N-glycans in B. mori.
Collapse
Affiliation(s)
- Shuntaro Nakamura
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Takatsugu Miyazaki
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan; Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| | - Enoch Y Park
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan; Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| |
Collapse
|
5
|
Structure-function analysis of silkworm sucrose hydrolase uncovers the mechanism of substrate specificity in GH13 subfamily 17 exo-α-glucosidases. J Biol Chem 2020; 295:8784-8797. [PMID: 32381508 PMCID: PMC7324511 DOI: 10.1074/jbc.ra120.013595] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/05/2020] [Indexed: 01/07/2023] Open
Abstract
The domestic silkworm Bombyx mori expresses two sucrose-hydrolyzing enzymes, BmSUH and BmSUC1, belonging to glycoside hydrolase family 13 subfamily 17 (GH13_17) and GH32, respectively. BmSUH has little activity on maltooligosaccharides, whereas other insect GH13_17 α-glucosidases are active on sucrose and maltooligosaccharides. Little is currently known about the structural mechanisms and substrate specificity of GH13_17 enzymes. In this study, we examined the crystal structures of BmSUH without ligands; in complexes with substrates, products, and inhibitors; and complexed with its covalent intermediate at 1.60-1.85 Å resolutions. These structures revealed that the conformations of amino acid residues around subsite -1 are notably different at each step of the hydrolytic reaction. Such changes have not been previously reported among GH13 enzymes, including exo- and endo-acting hydrolases, such as α-glucosidases and α-amylases. Amino acid residues at subsite +1 are not conserved in BmSUH and other GH13_17 α-glucosidases, but subsite -1 residues are absolutely conserved. Substitutions in three subsite +1 residues, Gln191, Tyr251, and Glu440, decreased sucrose hydrolysis and increased maltase activity of BmSUH, indicating that these residues are key for determining its substrate specificity. These results provide detailed insights into structure-function relationships in GH13 enzymes and into the molecular evolution of insect GH13_17 α-glucosidases.
Collapse
|
6
|
Mikolajczyk K, Kaczmarek R, Czerwinski M. How glycosylation affects glycosylation: the role of N-glycans in glycosyltransferase activity. Glycobiology 2020; 30:941-969. [PMID: 32363402 DOI: 10.1093/glycob/cwaa041] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 12/15/2022] Open
Abstract
N-glycosylation is one of the most important posttranslational modifications of proteins. It plays important roles in the biogenesis and functions of proteins by influencing their folding, intracellular localization, stability and solubility. N-glycans are synthesized by glycosyltransferases, a complex group of ubiquitous enzymes that occur in most kingdoms of life. A growing body of evidence shows that N-glycans may influence processing and functions of glycosyltransferases, including their secretion, stability and substrate/acceptor affinity. Changes in these properties may have a profound impact on glycosyltransferase activity. Indeed, some glycosyltransferases have to be glycosylated themselves for full activity. N-glycans and glycosyltransferases play roles in the pathogenesis of many diseases (including cancers), so studies on glycosyltransferases may contribute to the development of new therapy methods and novel glycoengineered enzymes with improved properties. In this review, we focus on the role of N-glycosylation in the activity of glycosyltransferases and attempt to summarize all available data about this phenomenon.
Collapse
Affiliation(s)
- Krzysztof Mikolajczyk
- Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Weigla 12, 53-114 Wroclaw, Poland
| | - Radoslaw Kaczmarek
- Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Weigla 12, 53-114 Wroclaw, Poland
| | - Marcin Czerwinski
- Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Weigla 12, 53-114 Wroclaw, Poland
| |
Collapse
|