1
|
Zdybicka-Barabas A, Stączek S, Kunat-Budzyńska M, Cytryńska M. Innate Immunity in Insects: The Lights and Shadows of Phenoloxidase System Activation. Int J Mol Sci 2025; 26:1320. [PMID: 39941087 PMCID: PMC11818254 DOI: 10.3390/ijms26031320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/28/2025] [Accepted: 01/30/2025] [Indexed: 02/16/2025] Open
Abstract
Melanogenesis and melanin deposition are processes essential for the effective immune response of insects to various invaders. Phenoloxidase (PO), produced in specialized cells as an inactive precursor prophenoloxidase (proPO), is the key enzyme for melanin formation. The precursor is activated via limited proteolysis by a dedicated serine proteinase, which is the final element in the cascade of serine proteinases (SPs) that make up the PO system. Melanogenesis provides different cytotoxic molecules active in fighting infections, as well as melanin, which is important for sequestration of invaders. However, since the cytotoxic reactive compounds generated during melanization also pose a threat to host cells, strict control of the PO system is necessary for host self-protection. Different pathogens and parasites influence the PO system and melanization through various strategies, which allow them to survive and develop in the host insect body. In this review, we characterize "the lights and shadows" of PO system activation, indicating, on one hand, its advantages as an efficient and effective mechanism of the insect immune response and, on the other hand, the dangers for the insect host associated with the improper functioning of this system and selected strategies for regulating its activity by entomopathogenic organisms.
Collapse
Affiliation(s)
| | | | | | - Małgorzata Cytryńska
- Department of Immunobiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland; (A.Z.-B.); (S.S.); (M.K.-B.)
| |
Collapse
|
2
|
Zhang X, Jiang W, Guo K, Guo Z, Duan J, Jing X, Xia Q, Zhao P. A mutation in the Bombyx mori BmSPI51 gene results in alterations protein abundance in cocoon and unveils compensatory mechanism of silk gland proteinase inhibitors. Int J Biol Macromol 2024; 282:137001. [PMID: 39481729 DOI: 10.1016/j.ijbiomac.2024.137001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/02/2024]
Abstract
Proteinase inhibitors constitute a significant component of Lepidoptera cocoon. BmSPI51 is the most abundant protease inhibitors in silkworm cocoons. In this study, we aimed to elucidate the biological function of BmSPI51 in both the silkworm silk gland and cocoon formation. To achieve this, we utilized CRISPR/Cas9 gene editing to target the BmSPI51 gene, resulting in premature termination of translation at the 33rd amino acid residue. The mutation of BmSPI51 did not affect the growth and development. Nevertheless, it led to a substantial decrease in the economic traits of silkworm cocoons. Proteomic analysis indicated the abundance of fibroin heavy chain (Fib-H), fibroin light chain (Fib-L), and fibrohexamerin (P25) decreased significantly in the homozygous mutants. Further analysis of cocoon proteins found that the mutants significantly increased the secretion of other protease inhibitors in order to deal with the increased environmental stress resulting from the absence of BmSPI51. Surprisingly, homozygous mutant cocoons exhibited an enhanced inhibitory ability against Saccharomyces cerevisiae compared to the WT cocoons. In conclusion, our study provides a valuable insight into the biological function of protease inhibitors and revealed their roles in cocoon formation and potential applications in biotechnology.
Collapse
Affiliation(s)
- Xiaolu Zhang
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China.
| | - Wenchao Jiang
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Kaiyu Guo
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Zhouguanrui Guo
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China
| | - Jingmin Duan
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Xinyuan Jing
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Qingyou Xia
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Ping Zhao
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China.
| |
Collapse
|
3
|
Jiang W, Guo K, Dong H, Zhang X, Guo Z, Duan J, Jing X, Xia Q, Zhao P. Mutation in the Bombyx mori BmGMC2 gene impacts silk production and silk protein synthesis. Int J Biol Macromol 2024; 274:133400. [PMID: 38925172 DOI: 10.1016/j.ijbiomac.2024.133400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
Silk is a natural protein fiber that is predominantly comprised of fibroin and sericin. In addition, it contains seroins, protease inhibitors, enzymes, and other proteins. We found an ecdysone oxidase BmGMC2, notably, which is specifically and highly expressed only in the silk glands of silkworms (Bombyx mori L.). It is also one of the main components of non-cocoon silk, however, its precise function remains unclear. In this study, we examined the spatiotemporal expression pattern of this protein and obtained a homozygous mutant strain (K-GMC2) using the CRISPR-Cas9 system. Compared to the wild-type strain (WT), the silk production and main silk proteins significantly decreased in the larval stage, and the adhesive strength of native silk proteins decreased in the final instar. Proteomic data indicated the abundance of ribosomal proteins decreased significantly in K-GMC2, differentially expressed proteins (DEPs) were enriched in pathways related to neurodegenerative diseases and genetic information processing, indicating that knockout may lead to a certain degree of cell stress, affecting the synthesis of silk proteins. This study investigated the expression pattern and gene function of ecdysone oxidase BmGMC2 in silk and silk glands, laying the groundwork for understanding the role of enzymes in the production of silk fibers.
Collapse
Affiliation(s)
- Wenchao Jiang
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Kaiyu Guo
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Haonan Dong
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Xiaolu Zhang
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Zhouguanrui Guo
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China
| | - Jingmin Duan
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Xinyuan Jing
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Qingyou Xia
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Ping Zhao
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China.
| |
Collapse
|
4
|
Tian Z, Zhao C, Huang T, Yu L, Sun Y, Tao Y, Cao Y, Du R, Lin W, Zeng J. Silkworm Cocoon: Dual Functions as a Traditional Chinese Medicine and the Raw Material of Promising Biocompatible Carriers. Pharmaceuticals (Basel) 2024; 17:817. [PMID: 39065668 PMCID: PMC11279987 DOI: 10.3390/ph17070817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
The silkworm cocoon (SC), both as a traditional Chinese medicine and as the raw material for biocompatible carriers, has been extensively used in the medical and biomedical fields. This review elaborates on the multiple functions of SC, with an in-depth analysis of its chemical composition, biological activities, as well as its applications in modern medicine. The primary chemical components of SC include silk fibroin (SF), silk sericin (SS), and other flavonoid-like bioactive compounds demonstrating various biological effects. These include hypoglycemic, cardioprotective, hypolipidemic, anti-inflammatory, antioxidant, and antimicrobial actions, which highlight its potential therapeutic benefits. Furthermore, the review explores the applications of silk-derived materials in drug delivery systems, tissue engineering, regenerative medicine, and in vitro diagnostics. It also highlights the progression of SC from laboratory research to clinical trials, emphasizing the safety and efficacy of SC-based materials across multiple medical domains. Moreover, we discuss the market products developed from silk proteins, illustrating the transition from traditional uses to contemporary medical applications. This review provides support in understanding the current research status of SC and the further development and application of its derived products.
Collapse
Affiliation(s)
- Zhijie Tian
- School of Chemistry & Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China;
- NHC Key Laboratory of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Shanghai 200032, China; (C.Z.); (T.H.); (L.Y.); (Y.T.); (Y.C.)
| | - Chuncao Zhao
- NHC Key Laboratory of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Shanghai 200032, China; (C.Z.); (T.H.); (L.Y.); (Y.T.); (Y.C.)
| | - Ting Huang
- NHC Key Laboratory of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Shanghai 200032, China; (C.Z.); (T.H.); (L.Y.); (Y.T.); (Y.C.)
| | - Lining Yu
- NHC Key Laboratory of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Shanghai 200032, China; (C.Z.); (T.H.); (L.Y.); (Y.T.); (Y.C.)
| | - Yijie Sun
- Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China;
| | - Yian Tao
- NHC Key Laboratory of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Shanghai 200032, China; (C.Z.); (T.H.); (L.Y.); (Y.T.); (Y.C.)
| | - Yunfeng Cao
- NHC Key Laboratory of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Shanghai 200032, China; (C.Z.); (T.H.); (L.Y.); (Y.T.); (Y.C.)
| | - Ruofei Du
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China;
| | - Wenhui Lin
- School of Chemistry & Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China;
| | - Jia Zeng
- NHC Key Laboratory of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Shanghai 200032, China; (C.Z.); (T.H.); (L.Y.); (Y.T.); (Y.C.)
| |
Collapse
|
5
|
Gutierrez-Gongora D, Woods M, Prosser RS, Geddes-McAlister J. Natural compounds from freshwater mussels disrupt fungal virulence determinants and influence fluconazole susceptibility in the presence of macrophages in Cryptococcus neoformans. Microbiol Spectr 2024; 12:e0284123. [PMID: 38329361 PMCID: PMC10913472 DOI: 10.1128/spectrum.02841-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 01/12/2024] [Indexed: 02/09/2024] Open
Abstract
Cryptococcus neoformans is a human fungal pathogen responsible for fatal infections, especially in patients with a depressed immune system. Overexposure to antifungal drugs due to prolonged treatment regimens and structure-similar applications in agriculture have weakened the efficacy of current antifungals in the clinic. The rapid evolution of antifungal resistance urges the discovery of new compounds that inhibit fungal virulence determinants, rather than directly killing the pathogen, as alternative strategies to overcome disease and reduce selective pressure toward resistance. Here, we evaluated the efficacy of freshwater mussel extracts (crude and clarified) against the production of well-defined virulence determinants (i.e., thermotolerance, melanin, capsule, and biofilm) and fluconazole resistance in C. neoformans. We demonstrated the extracts' influence on fungal thermotolerance, capsule production, and biofilm formation, as well as susceptibility to fluconazole in the presence of macrophages. Additionally, we measured the inhibitory activity of extracts against commercial peptidases (family representatives of cryptococcal orthologs) related to fungal virulence determinants and fluconazole resistance, and integrated these phenotypic findings with quantitative proteomics profiling. Our approach defined distinct signatures of each treatment and validated a new mechanism of anti-virulence action toward the polysaccharide capsule from a selected extract following fractionation. By understanding the mechanisms driving the antifungal activity of mussels, we may develop innovative treatment options to overcome fungal infections and promote susceptibility to fluconazole in resistant strains. IMPORTANCE As the prevalence and severity of global fungal infections rise, along with an increasing incidence of antifungal resistance, new strategies to combat fungal pathogens and overcome resistance are urgently needed. Critically, our current methods to overcome fungal infections are limited and drive the evolution of resistance forward; however, an anti-virulence approach to disarm virulence factors of the pathogen and promote host cell clearance is promising. Here, we explore the efficacy of natural compounds derived from freshwater mussels against classical fungal virulence determinants, including thermotolerance, capsule production, stress response, and biofilm formation. We integrate our phenotypic discoveries with state-of-the-art mass spectrometry-based proteomics to identify mechanistic drivers of these antifungal properties and propose innovative avenues to reduce infection and support the treatment of resistant strains.
Collapse
Affiliation(s)
| | - Michael Woods
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Ryan S. Prosser
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | | |
Collapse
|
6
|
Lin S, Li XW, Liu JL, Ou-Yang YY, Zhang B, Zhao SJ, Chai XQ, Ma YL, Liu J. The immune response mechanism of Nilaparvata lugens against a combined infection of rice ragged stunt virus and Metarhizium anisopliae. PEST MANAGEMENT SCIENCE 2024; 80:1193-1205. [PMID: 37888855 DOI: 10.1002/ps.7849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 10/10/2023] [Accepted: 10/27/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND Previous studies of brown planthopper (BPH), Nilaparvata lugens, showed that carrying the plant pathogenic virus, rice ragged stunt virus (RRSV), enhanced the lethality of the entomopathogenic fungus, Metarhizium anisopliae (YTTR). The underlying mechanism for this was not established but a serine protease cascade was hypothesized to be involved. RESULTS Two immune response genes, NlKPI and NlVenomase, were identified and shown to be involved. The synthesized double-strand RNA (dsRNA) techniques used in this study to explore gene function revealed that treatment with dsRNA to silence either gene led to a higher BPH mortality from M. anisopliae infection than the dsRNA control treatment. NlKPI and NlVenomase play vital roles in BPH immunity to defend against alien pathogens. Both genes participate in the immune response process of BPH against co-infection with RRSV and M. anisopliae YTTR by regulating the expression of antimicrobial peptides and phenoloxidase activity. CONCLUSION Our study provided new targets for BPH biocontrol and laid a solid foundation for further research on the interaction of virus-insect-EPF (entomopathogenic fungus). © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sheng Lin
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Green Control of Insect Pests (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Xue-Wen Li
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Green Control of Insect Pests (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Jian-Li Liu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Green Control of Insect Pests (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Yu-Ying Ou-Yang
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Green Control of Insect Pests (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Bang Zhang
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Green Control of Insect Pests (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Shu-Jiao Zhao
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Green Control of Insect Pests (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Xue-Qing Chai
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Green Control of Insect Pests (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Yong-le Ma
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Green Control of Insect Pests (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Jian Liu
- Artificial Intelligence and Cyber Futures Institute, Charles Sturt University, Orange, Australia
| |
Collapse
|
7
|
Zhang X, Dong Z, Guo K, Jiang W, Wu X, Duan J, Jing X, Xia Q, Zhao P. Identification and functional study of fhx-L1, a major silk component in Bombyx mori. Int J Biol Macromol 2023; 232:123371. [PMID: 36709809 DOI: 10.1016/j.ijbiomac.2023.123371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/27/2023]
Abstract
The silkworm cocoon was composed of fibroins, sericins, protease inhibitors, and proteins of unknown function. In this study, we focused on fhx-L1 (fibrohexamerin-like1), which was the homolog of fibroin fhx (fibrohexamerin). We identified 154 fhx family genes in 44 Lepidoptera insects, and seven fhx-Ls were found in Bombyx mori. Fhx-L1 was the most abundant of these proteins in silk and was specifically expressed in the silk gland. Immunofluorescence analysis showed that fhx-L1 was secreted into the whole sericin layers, similar to sericin1 (ser1). Western blotting revealed that the fhx-L1 protein contains N-linked oligosaccharide chains. CRISPR/Cas9-mediated gene editing was used to generate a homozygous mutant of fhx-L1 (fhx-L1KO). The cocoon of fhx-L1KO was larger and fluffier than that of the wild-type (WT), which was attributed to the lower adhesion between silk fibers. We also found that the content of β-sheet in the mutant silk was lower than in the WT silk, which resulted in further deterioration of the mechanical properties of the fhx-L1KO silk. Our study revealed the properties and function of fhx-L1 as a major structural component in silk. Then, our study provided a potential insight for in-depth study of silk protein function.
Collapse
Affiliation(s)
- Xiaolu Zhang
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Zhaoming Dong
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Kaiyu Guo
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Wenchao Jiang
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Xianxian Wu
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China
| | - Jingmin Duan
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Xinyuan Jing
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Qingyou Xia
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Ping Zhao
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China.
| |
Collapse
|
8
|
Gutierrez-Gongora D, Raouf-Alkadhimi F, Prosser RS, Geddes-McAlister J. Differentiated extracts from freshwater and terrestrial mollusks inhibit virulence factor production in Cryptococcus neoformans. Sci Rep 2023; 13:4928. [PMID: 36967422 PMCID: PMC10040410 DOI: 10.1038/s41598-023-32140-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
The human fungal pathogen, Cryptococcus neoformans, is responsible for deadly infections among immunocompromised individuals with the evolution of antifungal resistance driving the solution to discover new compounds that inhibit fungal virulence factors rather than kill the pathogen. Recently, exploration into natural sources (e.g., plants, invertebrates, microbes) of antifungal agents has garnered attention by integrating a One Health approach for new compound discovery. Here, we explore extracts from three mollusk species (freshwater and terrestrial) and evaluate effects against the growth and virulence factor production (i.e., thermotolerance, melanin, capsule, and biofilm) in C. neoformans. We demonstrate that clarified extracts of Planorbella pilsbryi have a fungicidal effect on cryptococcal cells comparable to fluconazole. Similarly, all extracts of Cipangopaludina chinensis affect cryptococcal thermotolerance and impair biofilm and capsule production, with clarified extracts of Cepaea nemoralis also conveying the latter effect. Next, inhibitory activity of extracts against peptidases related to specific virulence factors, combined with stress assays and quantitative proteomics, defined distinct proteome signatures and proposed proteins driving the observed anti-virulence properties. Overall, this work highlights the potential of compounds derived from natural sources to inhibit virulence factor production in a clinically important fungal pathogen.
Collapse
Affiliation(s)
| | | | - Ryan S Prosser
- Department of Environmental Toxicology, University of Guelph, Guelph, ON, Canada
| | | |
Collapse
|
9
|
Guo K, Dong Z, Zhang X, Chen Y, Li Y, Jiang W, Qin L, Zhang Y, Guo Z, Xia Q, Zhao P. Analysis of histomorphometric and proteome dynamics inside the silk gland lumen of Bombyx mori revealed the dynamic change of silk protein during the molt stage. Int J Biol Macromol 2023; 236:123926. [PMID: 36889618 DOI: 10.1016/j.ijbiomac.2023.123926] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/18/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023]
Abstract
Silkworms spin different silks at different growth stages for specific purposes. The silk spun before the end of each instar is stronger than that at the beginning of each instar and cocoon silk. However, the compositional changes in silk proteins during this process are unknown. Consequently, we performed histomorphological and proteomic analyses of the silk gland to characterize changes from the instar end to the next instar beginning. The silk glands were collected on day 3 of third- and fourth-instar larvae (III-3 and IV-3) and the beginning of fourth-instar larvae (IV-0). Proteomic analysis identified 2961 proteins from all silk glands. Silk proteins P25 and Ser5 were significantly more abundant in III-3 and IV-3 than in IV-0, and many cuticular proteins and protease inhibitors increased significantly in IV-0 compared with III-3 and IV-3. This shift may cause mechanical property differences between the instar end and beginning silk. Using section staining, qPCR, and western blotting, we found for the first time that silk proteins were degraded first and then resynthesized during the molting stage. Furthermore, we revealed that fibroinase mediated the changes of silk proteins during molting. Our results provide insights into the molecular mechanisms of silk proteins dynamic regulation during molting.
Collapse
Affiliation(s)
- Kaiyu Guo
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Zhaoming Dong
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Xiaolu Zhang
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Yuqing Chen
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China
| | - Yi Li
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Wenchao Jiang
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Lixia Qin
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Yan Zhang
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Zhouguanrui Guo
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China
| | - Qingyou Xia
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Ping Zhao
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China.
| |
Collapse
|
10
|
Li Y, Wang Y, Zhu R, Yang X, Wei M, Zhang Z, Chen C, Zhao P. Tandem Multimerization Can Enhance the Structural Homogeneity and Antifungal Activity of the Silkworm Protease Inhibitor BmSPI39. Cells 2023; 12:cells12050693. [PMID: 36899829 PMCID: PMC10000547 DOI: 10.3390/cells12050693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/05/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Previous studies have shown that BmSPI39, a serine protease inhibitor of silkworm, can inhibit virulence-related proteases and the conidial germination of insect pathogenic fungi, thereby enhancing the antifungal capacity of Bombyx mori. The recombinant BmSPI39 expressed in Escherichia coli has poor structural homogeneity and is prone to spontaneous multimerization, which greatly limits its development and application. To date, the effect of multimerization on the inhibitory activity and antifungal ability of BmSPI39 remains unknown. It is urgent to explore whether a BmSPI39 tandem multimer with better structural homogeneity, higher activity and a stronger antifungal ability can be obtained by protein engineering. In this study, the expression vectors of BmSPI39 homotype tandem multimers were constructed using the isocaudomer method, and the recombinant proteins of tandem multimers were obtained by prokaryotic expression. The effects of BmSPI39 multimerization on its inhibitory activity and antifungal ability were investigated by protease inhibition and fungal growth inhibition experiments. In-gel activity staining and protease inhibition assays showed that tandem multimerization could not only greatly improve the structural homogeneity of the BmSPI39 protein, but also significantly increase its inhibitory activity against subtilisin and proteinase K. The results of conidial germination assays showed that tandem multimerization could effectively enhance the inhibitory ability of BmSPI39 on the conidial germination of Beauveria bassiana. A fungal growth inhibition assay showed that BmSPI39 tandem multimers had certain inhibitory effects on both Saccharomyces cerevisiae and Candida albicans. The inhibitory ability of BmSPI39 against these the above two fungi could be enhanced by tandem multimerization. In conclusion, this study successfully achieved the soluble expression of tandem multimers of the silkworm protease inhibitor BmSPI39 in E. coli and confirmed that tandem multimerization can improve the structural homogeneity and antifungal ability of BmSPI39. This study will not only help to deepen our understanding of the action mechanism of BmSPI39, but also provide an important theoretical basis and new strategy for cultivating antifungal transgenic silkworms. It will also promote its exogenous production and development and application in the medical field.
Collapse
Affiliation(s)
- Youshan Li
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, Shaanxi Province, China
- Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Hanzhong 723001, Shaanxi Province, China
- Correspondence:
| | - Yuan Wang
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, Shaanxi Province, China
| | - Rui Zhu
- Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Hanzhong 723001, Shaanxi Province, China
| | - Xi Yang
- Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Shaanxi University of Technology, Hanzhong 723001, Shaanxi Province, China
| | - Meng Wei
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, Shaanxi Province, China
| | - Zhaofeng Zhang
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, Shaanxi Province, China
| | - Changqing Chen
- Shaanxi Province Key Laboratory of Bio-Resources, Hanzhong 723001, Shaanxi Province, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| |
Collapse
|
11
|
Li X, Zhang B, Zou J, Li Q, Liu J, Cai S, Akutse KS, You M, Lin S. Immune Responses and Transcriptomic Analysis of Nilaparvata lugens against Metarhizium anisopliae YTTR Mediated by Rice Ragged Stunt Virus. PLANTS (BASEL, SWITZERLAND) 2023; 12:345. [PMID: 36679058 PMCID: PMC9865581 DOI: 10.3390/plants12020345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Plant viruses and entomopathogenic fungi (EPF) can both elicit immune responses in insects. This study was designed to clarify whether plant viruses could affect the efficacy of EPF and explore the immune responses of brown planthopper (BPH), Nilaparvata lugens, in response to different pathogen infections. In this study, a strain of Metarhizium anisopliae YTTR with high pathogenicity against BPH was selected and explored whether rice ragged stunt virus (RRSV) could affect its lethality against BPH. RNA-seq was used to detect the inner responses of BPH in response to RRSV and M. anisopliae YTTR infection. Results showed that M. anisopliae YTTR has strong lethality against BPH (RRSV-carrying and RRSV-free). RRSV invasion did not affect the susceptibility of BPH against M. anisopliae YTTR at all concentrations. At 1 × 108 spores/mL, M. anisopliae YTTR caused a cumulative mortality of 80% to BPH at 7 days post-treatment. The largest numbers of differentially expressed genes (DEGs) was obtained in BPH treated with the two pathogens than in other single pathogen treatment. In addition, KEGG enrichment analysis showed that the DEGs were mostly enriched in immune and physiological mechanisms-related pathways. Both RRSV and M. anisopliae YTTR could induce the expression changes of immune-related genes. However, most of the immune genes had varying expression patterns in different treatment. Our findings demonstrated that RRSV invasion did not have any significant effect on the pathogenicity of M. anisopliae YTTR, while the co-infection of M. anisopliae YTTR and RRSV induced more immune and physiological mechanisms -related genes' responses. In addition, the presence of RRSV could render the interplay between BPH and M. anisopliae YTTR more intricate. These findings laid a basis for further elucidating the immune response mechanisms of RRSV-mediated BPH to M. anisopliae infection.
Collapse
Affiliation(s)
- Xuewen Li
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Green Control of Insect Pests (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China
| | - Bang Zhang
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Green Control of Insect Pests (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China
| | - Jiaxing Zou
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Green Control of Insect Pests (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China
| | - Qianqian Li
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Green Control of Insect Pests (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China
| | - Jianli Liu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Green Control of Insect Pests (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China
| | - Shouping Cai
- Fujian Key Laboratory of Forest Cultivation and Forest Products Processing and Utilization, Fujian Academy of Forestry, Fuzhou 350002, China
| | - Komivi Senyo Akutse
- International Centre of Insect Physiology and Ecology, Nairobi P.O. Box 30772-00100, Kenya
| | - Minsheng You
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Green Control of Insect Pests (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China
| | - Sheng Lin
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Green Control of Insect Pests (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China
| |
Collapse
|
12
|
Qin L, Li J, Guo K, Lu M, Zhang Y, Zhang X, Zeng Y, Wang X, Xia Q, Zhao P, Zhang AB, Dong Z. Insights into the structure and composition of mineralized hard cocoons constructed by the oriental moth, Monema (Cnidocampa) flavescens Walker. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 151:103878. [PMID: 36410578 DOI: 10.1016/j.ibmb.2022.103878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Animals widely use minerals and organic components to construct biomaterials with excellent properties, such as teeth, bones, molluscan shells and eggshells. The larvae of the oriental moth, Monema (Cnidocampa) flavescens Walker, secrete silk proteins that combine closely with calcareous minerals to construct a hard cocoon, which is completely different from the mineral-free Bombyx mori cocoon. The cocoons of oriental moths are likely to be the hardest among the cocoons constructed by insect species. The cocoons of oriental moths were found to be mainly composed of calcium oxalates and Asx/Ser/Gly-rich cocoon proteins, but the types of calcium oxalates and cocoon proteins remain to be elucidated. In this study, we provide an in-depth explanation of the inorganic and organic components in the oriental moth cocoon. Microscopy and imaging technologies revealed that the cocoon is composed of mineral crystals, silk fibers and other organic matter. X-ray diffraction and infrared spectral analyses showed that the mineral crystals in the oriental moth cocoon were mainly CaC2H2O4·H2O. ICP-OES analysis suggested that the mineral crystals in the cocoons were mainly CaC2H2O4·H2O. LC-MS/MS-based proteomics allowed us to identify 467 proteins from the oriental moth cocoon, including 252 uncharacterized proteins, 87 enzymes, 36 small molecule binding proteins, and 5 silk proteins. Among the uncharacterized proteins, 25 of which were Asn-rich proteins because they contained a high proportion of Asn residues (19.1%-41.4%). Among the top 20 cocoon proteins with the highest abundance, 9 of which were Asn-rich proteins. The qPCR was used to investigate the expression patterns of the major cocoon protein-coding genes. Three fibroins and three Asn-rich proteins were expressed only in the silk gland but not in other tissues. The expression of Asn-rich proteins in the silk gland gradually increased from the anterior silk gland to the posterior silk gland. These findings provide important references for understanding the formation mechanism and mechanical properties of mineralized hard cocoons constructed by oriental moths.
Collapse
Affiliation(s)
- Lixia Qin
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China
| | - Jing Li
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Kaiyu Guo
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China
| | - Mengyao Lu
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China
| | - Yan Zhang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China
| | - Xiaolu Zhang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China
| | - Yanqiong Zeng
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China
| | - Xin Wang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China
| | - Ai-Bing Zhang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China.
| | - Zhaoming Dong
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
13
|
Dong Z, Xia Q, Zhao P. Antimicrobial components in the cocoon silk of silkworm, Bombyx mori. Int J Biol Macromol 2022; 224:68-78. [DOI: 10.1016/j.ijbiomac.2022.10.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/23/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022]
|
14
|
Heng J, Liu H, Xu J, Huang X, Sun X, Yang R, Xia Q, Zhao P. KPI5 Is Involved in the Regulation of the Expression of Antibacterial Peptide Genes and Hemolymph Melanization in the Silkworm, Bombyx mori. Front Immunol 2022; 13:907427. [PMID: 35669774 PMCID: PMC9164257 DOI: 10.3389/fimmu.2022.907427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Kunitz-type protease inhibitors (KPIs) are ubiquitously found in many organisms, and participate in various physiological processes. However, their function in insects remains to be elucidated. In the present study, we characterized and functionally analyzed silkworm KPI5. Sequence analysis showed that KPI5 contains 85 amino acids with six conserved cysteine residues, and the P1 site is a phenylalanine residue. Inhibitory activity and stability analyses indicated that recombinant KPI5 protein significantly inhibited the activity of chymotrypsin and was highly tolerant to temperature and pH. The spatio-temporal expression profile analysis showed that KPI5 was synthesized in the fat body and secreted into the hemolymph. In vivo induction analysis showed that the expression of KPI5 in the fat body was significantly upregulated by pathogen-associated molecular patterns (PAMPs). Binding assays suggested that KPI5 can bind to pathogens and PAMPs. In vitro pathogen growth inhibition assay and encapsulation analysis indicated that KPI5 can neither kill pathogenic bacteria directly nor promote the encapsulation of agarose beads by silkworm hemocytes. Recombinant protein injection test and CRISPR/Cas9-mediated knockdown showed that KPI5 promotes the expression of antimicrobial peptides (AMPs) in the fat body. Moreover, the survival rate of individuals in the KPI5 knockdown group was significantly lower than that of the control group after pathogen infection. Phenoloxidase (PO) activity assays showed that KPI5 significantly inhibited the hemolymph PO activity and melanization induced by PAMPs. These findings suggested that KPI5 plays a dual regulatory role in innate immunity by promoting the expression of antimicrobial peptides in the fat body and inhibiting hemolymph melanization. Our study furthers the understanding of the function of insect KPIs and provides new insights into the regulatory mechanism of insect immune homeostasis.
Collapse
Affiliation(s)
- Jingya Heng
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China.,Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Huawei Liu
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China.,Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Jiahui Xu
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China.,Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Xuan Huang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China.,Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Xiaotong Sun
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China
| | - Runze Yang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China.,Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China.,Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| |
Collapse
|
15
|
Kvetkina A, Pislyagin E, Menchinskaya E, Yurchenko E, Kalina R, Kozlovskiy S, Kaluzhskiy L, Menshov A, Kim N, Peigneur S, Tytgat J, Ivanov A, Ayvazyan N, Leychenko E, Aminin D. Kunitz-Type Peptides from Sea Anemones Protect Neuronal Cells against Parkinson's Disease Inductors via Inhibition of ROS Production and ATP-Induced P2X7 Receptor Activation. Int J Mol Sci 2022; 23:ijms23095115. [PMID: 35563513 PMCID: PMC9103184 DOI: 10.3390/ijms23095115] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 11/16/2022] Open
Abstract
Parkinson’s disease (PD) is a socially significant disease, during the development of which oxidative stress and inflammation play a significant role. Here, we studied the neuroprotective effects of four Kunitz-type peptides from Heteractis crispa and Heteractis magnifica sea anemones against PD inductors. The peptide HCIQ1c9, which was obtained for the first time, inhibited trypsin less than other peptides due to unfavorable interactions of Arg17 with Lys43 in the enzyme. Its activity was reduced by up to 70% over the temperature range of 60–100 °C, while HCIQ2c1, HCIQ4c7, and HMIQ3c1 retained their conformation and stayed active up to 90–100 °C. All studied peptides inhibited paraquat- and rotenone-induced intracellular ROS formation, in particular NO, and scavenged free radicals outside the cells. The peptides did not modulate the TRPV1 channels but they affected the P2X7R, both of which are considered therapeutic targets in Parkinson’s disease. HMIQ3c1 and HCIQ4c7 almost completely inhibited the ATP-induced uptake of YO-PRO-1 dye in Neuro-2a cells through P2X7 ion channels and significantly reduced the stable calcium response in these cells. The complex formation of the peptides with the P2X7R extracellular domain was determined via SPR analysis. Thus, these peptides may be considered promising compounds to protect neuronal cells against PD inductors, which act as ROS production inhibitors and partially act as ATP-induced P2X7R activation inhibitors.
Collapse
Affiliation(s)
- Aleksandra Kvetkina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 690022 Vladivostok, Russia; (A.K.); (E.P.); (E.M.); (E.Y.); (R.K.); (S.K.); (A.M.); (N.K.); (E.L.)
| | - Evgeny Pislyagin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 690022 Vladivostok, Russia; (A.K.); (E.P.); (E.M.); (E.Y.); (R.K.); (S.K.); (A.M.); (N.K.); (E.L.)
| | - Ekaterina Menchinskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 690022 Vladivostok, Russia; (A.K.); (E.P.); (E.M.); (E.Y.); (R.K.); (S.K.); (A.M.); (N.K.); (E.L.)
| | - Ekaterina Yurchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 690022 Vladivostok, Russia; (A.K.); (E.P.); (E.M.); (E.Y.); (R.K.); (S.K.); (A.M.); (N.K.); (E.L.)
| | - Rimma Kalina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 690022 Vladivostok, Russia; (A.K.); (E.P.); (E.M.); (E.Y.); (R.K.); (S.K.); (A.M.); (N.K.); (E.L.)
| | - Sergei Kozlovskiy
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 690022 Vladivostok, Russia; (A.K.); (E.P.); (E.M.); (E.Y.); (R.K.); (S.K.); (A.M.); (N.K.); (E.L.)
| | - Leonid Kaluzhskiy
- V.N. Orekhovich Institute of Biomedical Chemistry, 10, Pogodinskaya St., 119121 Moscow, Russia; (L.K.); (A.I.)
| | - Alexander Menshov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 690022 Vladivostok, Russia; (A.K.); (E.P.); (E.M.); (E.Y.); (R.K.); (S.K.); (A.M.); (N.K.); (E.L.)
| | - Natalia Kim
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 690022 Vladivostok, Russia; (A.K.); (E.P.); (E.M.); (E.Y.); (R.K.); (S.K.); (A.M.); (N.K.); (E.L.)
| | - Steve Peigneur
- Toxicology and Pharmacology, Campus Gasthuisberg O&N2, University of Leuven (KU Leuven), Herestraat 49, P.O. Box 922, B-3000 Leuven, Belgium; (S.P.); (J.T.)
| | - Jan Tytgat
- Toxicology and Pharmacology, Campus Gasthuisberg O&N2, University of Leuven (KU Leuven), Herestraat 49, P.O. Box 922, B-3000 Leuven, Belgium; (S.P.); (J.T.)
| | - Alexis Ivanov
- V.N. Orekhovich Institute of Biomedical Chemistry, 10, Pogodinskaya St., 119121 Moscow, Russia; (L.K.); (A.I.)
| | - Naira Ayvazyan
- L.A. Orbeli Institute of Physiology, National Academy of Sciences of Armenia, Yerevan 0028, Armenia;
| | - Elena Leychenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 690022 Vladivostok, Russia; (A.K.); (E.P.); (E.M.); (E.Y.); (R.K.); (S.K.); (A.M.); (N.K.); (E.L.)
| | - Dmitry Aminin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 690022 Vladivostok, Russia; (A.K.); (E.P.); (E.M.); (E.Y.); (R.K.); (S.K.); (A.M.); (N.K.); (E.L.)
- Correspondence:
| |
Collapse
|
16
|
From Naturally-Sourced Protease Inhibitors to New Treatments for Fungal Infections. J Fungi (Basel) 2021; 7:jof7121016. [PMID: 34946998 PMCID: PMC8704869 DOI: 10.3390/jof7121016] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 02/08/2023] Open
Abstract
Proteases are involved in a broad range of physiological processes, including host invasion by fungal pathogens, and enzymatic inhibition is a key molecular mechanism controlling proteolytic activity. Importantly, inhibitors from natural or synthetic sources have demonstrated applications in biochemistry, biotechnology, and biomedicine. However, the need to discover new reservoirs of these inhibitory molecules with improved efficacy and target range has been underscored by recent protease characterization related to infection and antimicrobial resistance. In this regard, naturally-sourced inhibitors show promise for application in diverse biological systems due to high stability at physiological conditions and low cytotoxicity. Moreover, natural sources (e.g., plants, invertebrates, and microbes) provide a large reservoir of undiscovered and/or uncharacterized bioactive molecules involved in host defense against predators and pathogens. In this Review, we highlight discoveries of protease inhibitors from environmental sources, propose new opportunities for assessment of antifungal activity, and discuss novel applications to combat biomedically-relevant fungal diseases with in vivo and clinical purpose.
Collapse
|
17
|
Inhibition of Serine Protease, α-Amylase and Growth of Phytopathogenic Fungi by Antimicrobial Peptides from Capsicum chinense Fruits. Probiotics Antimicrob Proteins 2021; 15:502-515. [PMID: 34671924 DOI: 10.1007/s12602-021-09865-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2021] [Indexed: 10/20/2022]
Abstract
Plant fungal diseases cause major problems for the global economy. Antimicrobial peptides have aroused great interest in the control of phytopathogens, as they are natural molecules and have a broad spectrum of inhibitory activity. Herein, we have tried to identify and characterize antimicrobial peptides present in fruits of Capsicum chinense and to evaluate their enzymatic and antifungal activities. The retained fraction obtained in the anion exchange chromatography with strong antifungal activity was subjected to molecular exclusion chromatography and obtained four fractions named G1, G2, G3, and G4. The 6.0-kDa protein band of G2 showed similarity with protease inhibitors type II, and it was able to inhibit 100% of trypsin and α-amylase activities. The protein band with approximately 6.5 kDa of G3 showed similarity with sequences of protease inhibitors from genus Capsicum and showed growth inhibition of 48% for Colletotrichum lindemuthianum, 49% for Fusarium lateritium, and 51% for F. solani and F. oxysporum. Additionally, G3 causes morphological changes, membrane permeabilization, and ROS increase in F. oxysporum cells. The 9-kDa protein band of G4 fraction was similar to a nsLTP type 1, and a protein band of 6.5 kDa was similar to a nsLTP type 2. The G4 fraction was able to inhibit 100% of the activities of glycosidases tested and showed growth inhibition of 35 and 50% of F. oxysporum and C. lindemuthianum, respectively. C. chinense fruits have peptides with antifungal activity and enzyme inhibition with biotechnological potential.
Collapse
|
18
|
Dong Z, An L, Lu M, Tang M, Chen H, Huang X, Hou Y, Shen G, Zhang X, Zhang Y, Xia Q, Zhao P. SPINK7 Recognizes Fungi and Initiates Hemocyte-Mediated Immune Defense Against Fungal Infections. Front Immunol 2021; 12:735497. [PMID: 34603317 PMCID: PMC8484702 DOI: 10.3389/fimmu.2021.735497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/30/2021] [Indexed: 12/02/2022] Open
Abstract
Serine protease inhibitors of Kazal-type (SPINKs) were widely identified in vertebrates and invertebrates, and played regulatory roles in digestion, coagulation, and fibrinolysis. In this study, we reported the important role of SPINK7 in regulating immune defense of silkworm, Bombyx mori. SPINK7 contains three Kazal domains and has 6 conserved cysteine residues in each domain. Quantitative real-time PCR analyses revealed that SPINK7 was exclusively expressed in hemocytes and was upregulated after infection with two fungi, Saccharomyces cerevisiae and Candida albicans. Enzyme activity inhibition test showed that SPINK7 significantly inhibited the activity of proteinase K from C. albicans. Additionally, SPINK7 inhibited the growth of three fungal spores, including S. cerevisiae, C. albicans, and Beauveria bassiana. The pathogen-associated molecular patterns (PAMP) binding assays suggested that SPINK7 could bind to β-D-glucan and agglutinate B. bassiana and C. albicans. In vitro assays were performed using SPINK7-coated agarose beads, and indicated that SPINK7 promoted encapsulation and melanization of agarose beads by B. mori hemocytes. Furthermore, co-localization studies using immunofluorescence revealed that SPINK7 induced hemocytes to aggregate and entrap the fungi spores of B. bassiana and C. albicans. Our study revealed that SPINK7 could recognize fungal PAMP and induce the aggregation, melanization, and encapsulation of hemocytes, and provided valuable clues for understanding the innate immunity and cellular immunity in insects.
Collapse
Affiliation(s)
- Zhaoming Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Biological Science Research Center, Southwest University, Chongqing, China.,Chongqing Key laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Lingna An
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Biological Science Research Center, Southwest University, Chongqing, China.,Chongqing Key laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Mengyao Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Biological Science Research Center, Southwest University, Chongqing, China.,Chongqing Key laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Muya Tang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Biological Science Research Center, Southwest University, Chongqing, China.,Chongqing Key laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Haiqin Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Biological Science Research Center, Southwest University, Chongqing, China.,Chongqing Key laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Xuan Huang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Biological Science Research Center, Southwest University, Chongqing, China.,Chongqing Key laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Yong Hou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Biological Science Research Center, Southwest University, Chongqing, China.,Chongqing Key laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Guanwang Shen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Biological Science Research Center, Southwest University, Chongqing, China.,Chongqing Key laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Xiaolu Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Biological Science Research Center, Southwest University, Chongqing, China.,Chongqing Key laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Yan Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Biological Science Research Center, Southwest University, Chongqing, China.,Chongqing Key laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Biological Science Research Center, Southwest University, Chongqing, China.,Chongqing Key laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Biological Science Research Center, Southwest University, Chongqing, China.,Chongqing Key laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| |
Collapse
|
19
|
Ye X, Zhao S, Wu M, Ruan J, Tang X, Wang X, Zhong B. Role of sericin 1 in the immune system of silkworms revealed by transcriptomic and proteomic analyses after gene knockout. FEBS Open Bio 2021. [PMID: 34185388 PMCID: PMC8329953 DOI: 10.1002/2211-5463.13239] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/11/2021] [Accepted: 06/28/2021] [Indexed: 12/01/2022] Open
Abstract
The domestic silkworm is a type of lepidopteran insect that feeds on mulberry leaves and has high economic value because of its ability to spin cocoons. Sericin 1 is an important component of silkworm cocoons, accounting for approximately 25% of the material. In this study, CRISPR/Cas9‐mediated gene editing was successfully used to destroy the sericin 1 gene, and homozygous mutants were obtained after continuous screening. Homozygous mutation resulted in premature termination of the translation of sericin 1 protein at 323 amino acids. Comparative transcriptomic and proteomic analyses of middle silk gland cells from wild‐type individuals and mutants were performed on the fourth day of the fifth instar, and the results suggest that sericin 1 plays an important role in the cellular immune system. In addition, the results suggest that sericin 1 has a synergistic effect with some protease inhibitors and that the secretion of these proteins is strictly regulated. These results will provide new insights into the function and expression pattern of sericin 1 and the mechanism of silk secretion.
Collapse
Affiliation(s)
- Xiaogang Ye
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Shuo Zhao
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Meiyu Wu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Jinghua Ruan
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xiaoli Tang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xiaoxiao Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Boxiong Zhong
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
20
|
Zhang X, Ni Y, Guo K, Dong Z, Chen Y, Zhu H, Xia Q, Zhao P. The mutation of SPI51, a protease inhibitor of silkworm, resulted in the change of antifungal activity during domestication. Int J Biol Macromol 2021; 178:63-70. [PMID: 33609582 DOI: 10.1016/j.ijbiomac.2021.02.076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 02/04/2023]
Abstract
Domestication of silkworm has led to alterations in various gene expression patterns. For instance, many protease inhibitors were significantly downregulated in the domestic silkworm cocoon compared to its wild progenitor. Considering that SPI51 is the most abundant protease inhibitor in silkworm cocoons, herein, we compared the gene structures and sequences of SPI51 from B. mori (BmoSPI51) and B. mandarina (BmaSPI51). Comparing to the "RGGFR" active site in BmaSPI51, that of BmoPI51 is "KGSFP" and the C-terminal "YNTCECSCP" tail sequence is lost in the latter. To investigate the effect elicited by the active site and tail sequences on the function of SPI51, we expressed two mutated forms of BmoSPI51, namely, BmoSPI51 + tail and BmoSPI51M. BmoSPI51, BmoSPI51 + tail and BmoSPI51M were compared and found to have similar levels of inhibitory activity against trypsin. However, the BmoSPI51 + tail and BmoSPI51M proteins exhibited significantly stronger capacities to inhibit fungi growth, compared to BmoSPI51. We concluded that the specific amino acid sequence of the active site, as well as its the disulfide bond formed by C-terminal sequence in the BmaSPI51, represent the key factors responsible for its higher antifungal activity. This study provided new insights into the antifungal mechanisms elicited by protease inhibitors in the cocoons of silkworms.
Collapse
Affiliation(s)
- Xiaolu Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400716, China
| | - Yuhui Ni
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Kaiyu Guo
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400716, China
| | - Zhaoming Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400716, China
| | - Yuqing Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Hongtao Zhu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400716, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400716, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400716, China.
| |
Collapse
|
21
|
Antibacterial Mechanism of Silkworm Seroins. Polymers (Basel) 2020; 12:polym12122985. [PMID: 33327635 PMCID: PMC7765120 DOI: 10.3390/polym12122985] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 12/16/2022] Open
Abstract
Seroin 1 and seroin 2 are abundant in silkworm cocoon silk and show strong antibacterial activities, and thus are thought to protect cocoon silk from damage by bacteria. In this study, we characterized the expression pattern of silkworm seroin 3, and found that seroin 3 is synthesized in the female ovary and secreted into egg to play its roles. After being infected, seroin 1, 2, and 3 were significantly up-regulated in the silkworm. We synthesized the full-length protein of seroin 1, 2, and 3 and their N/C-terminal domain (seroin-N/C), and compared the antimicrobial activities in vitro. All three seroins showed higher antibacterial activity against Gram-positive bacteria than against Gram-negative bacteria. Seroin 2 showed better antibacterial effect than seroin 1 and 3, whereas seroin 1/2/3-N was better than seroin 1/2/3-C. We found that seroin 2-C has stronger peptidoglycan binding ability than seroin 2-N per the ELISA test. The binding sites of seroin 2 with bacteria were blocked by peptidoglycan, which resulted in the loss of the antibacterial activity of seroin 2. Collectively, these findings suggest that seroin 1 and 2 play antibacterial roles in cocoon silk, whereas seroin 3 functions in the eggs. The three silkworm seroins have the same antibacterial mechanism, that is, binding to bacterial peptidoglycan by the C-terminal domain and inhibiting bacterial growth by the N-terminal domain.
Collapse
|