1
|
Pereira J, Rios T, Amorim J, Faria-Reis A, de Almeida E, Neves M, Santos-Araújo S, Selim L, Bertuci F, Silva MB, Onofre R, Brandão M, Moraes B, Walter-Nuno AB, Logullo C, Paiva-Silva GO, Gondim KC, Ramos I. Functional characterization of vitellogenin unveils novel roles in RHBP uptake and lifespan regulation in the insect vector Rhodnius prolixus. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2025; 180:104301. [PMID: 40089120 DOI: 10.1016/j.ibmb.2025.104301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/17/2025] [Accepted: 03/11/2025] [Indexed: 03/17/2025]
Abstract
In insects, vitellogenesis plays a critical role in providing the energy reserves needed for embryonic development as it ensures the accumulation of yolk in the oocytes. Vitellogenin (Vg), the precursor to vitellin (Vt), is primarily synthesized in the fat body of females and transported to the oocytes via receptor-mediated endocytosis. In Rhodnius prolixus, a key vector of Chagas disease, two Vg genes, Vg1 and Vg2, were characterized. These genes share 65 % amino acid identity and present the conserved Vitellogenin_N, DUF1943, and VWD domains typical of Vg proteins across various species. We found that Vg1 is expressed at significantly higher levels than Vg2 in adult females. Still, the expression of both isoforms was also detected in organs such as the flight muscle, midgut, and ovary, as well as in males and nymphs. RNAi-mediated knockdown of Vg1 and Vg2 in adult females resulted in the production of yolk-depleted eggs with drastically reduced levels of Vg and RHBP, the second most import yolk protein in this species. Despite regular oviposition rates, most of these eggs were inviable, highlighting the essential role of Vg and RHBP in embryo development. Although Vg expression was detected in adult males, the mating of Vg-knockdown males with wild-type females did not impact oviposition or egg viability, indicating that male Vg is not crucial for oogenesis in this species. Interestingly, Vg knockdown increased lifespan for both males and females, suggesting additional physiological functions beyond reproduction. These findings reveal the importance of Vg in oogenesis and embryonic development in R. prolixus while also suggesting potential non-reproductive roles of Vg in adult insect physiology.
Collapse
Affiliation(s)
- Jéssica Pereira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil
| | - Thamara Rios
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil
| | - Juliana Amorim
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil
| | - Allana Faria-Reis
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil
| | - Elisa de Almeida
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil
| | - Matheus Neves
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil
| | - Samara Santos-Araújo
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil
| | - Lukas Selim
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil
| | - Felipe Bertuci
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil
| | - Marcyellen B Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil
| | - Raquel Onofre
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil
| | - Mellisia Brandão
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil
| | - Bruno Moraes
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil
| | - Ana Beatriz Walter-Nuno
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil
| | - Carlos Logullo
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular/CNPq, Brazil
| | - Gabriela O Paiva-Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular/CNPq, Brazil
| | - Katia C Gondim
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular/CNPq, Brazil
| | - Isabela Ramos
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular/CNPq, Brazil.
| |
Collapse
|
2
|
Fruttero LL, Leyria J, Canavoso LE. Insect Flight and Lipid Metabolism: Beyond the Classic Knowledge. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025. [PMID: 40100334 DOI: 10.1007/5584_2024_849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Insects are the most successful animal group by various ecological and evolutionary metrics, including species count, adaptation diversity, biomass, and environmental influence. This book delves into the underlying reasons behind insects' dominance on Earth. Lipids play pivotal roles in insect biology, serving as fuel for physiological processes, signaling molecules, and structural components of biomembranes and providing waterproofing against dehydration, among other functions. The study of insect flight has been instrumental in advancing our understanding of insect metabolism, with the migratory locust (Locusta migratoria) and the tobacco hornworm (Manduca sexta) serving as prominent models. Throughout the 1980s and 1990s, numerous studies shed light on the role of adipokinetic hormone (AKH), a crucial neuropeptide in lipid mobilization, to support the extraordinary energy demands of insect flight. Remarkably, AKH was the first identified peptide hormone in insects. These pioneering works linking lipids and flight laid the groundwork for subsequent research characterizing the physiological roles of other neuroendocrine factors in energy substrate mobilization across diverse insect species. However, in the omics era, one may be surprised by the limited understanding of the complex cascade of events governing lipid supply to insect flight muscles. Thus, this chapter aims to provide a concise overview of the evolutionary significance of insect flight, emphasizing key advancements that expand our classical knowledge in this field. Ultimately, we hope this chapter serves as a modest tribute to the pioneering researchers of one of the most captivating areas in insect biology, inspiring further exploration into the myriad roles of lipids in insect biology.
Collapse
Affiliation(s)
- Leonardo L Fruttero
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, CP, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Jimena Leyria
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, CP, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Lilián E Canavoso
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, CP, Argentina.
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina.
| |
Collapse
|
3
|
Toprak U, İnak E, Nauen R. Lipid Metabolism as a Target Site in Pest Control. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 39466572 DOI: 10.1007/5584_2024_822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Lipid metabolism is essential to insect life as insects use lipids for their development, reproduction, flight, diapause, and a wide range of other functions. The central organ for insect lipid metabolism is the fat body, which is analogous to mammalian adipose tissue and liver, albeit less structured. Various other systems including the midgut, brain, and neural organs also contribute functionally to insect lipid metabolism. Lipid metabolism is under the control of core lipogenic [e.g. acetyl-CoA-carboxylase (ACC), fatty acid synthase (FAS), perilipin 2 (LSD2)], and lipolytic (lipases, perilipin 1) enzymes that are primarily expressed in the fat body, as well as hormones [insulin-like peptides (ILP), adipokinetic hormone (AKH)], transcription factors (SREBPs, foxO, and CREB), secondary messengers (calcium) and post-translational modifications (phosphorylation). Essential roles of the fat body, together with the fact that proper coordination of lipid metabolism is critical for insects, render lipid metabolism an attractive target site in pest control. In the current chapter, we focus on pest control tactics that target insect lipid metabolism. Various classes of traditional chemical insecticides [e.g. organophosphates, pyrethroids, neonicotinoids, and chitin synthesis inhibitors (Sects. 2.1 and 2.2)] have been shown to interfere with lipid metabolism, albeit it is not their primary site of action. However, the discovery of "lipid biosynthesis inhibitors", tetronic and tetramic acid derivatives commonly known as ketoenols (Sect. 2.3), was a milestone in applied entomology as they directly target lipid biosynthesis, particularly in sucking pests. Spirodiclofen, spiromesifen, and spirotetramat targeting ACC act against various insect and mite pests, while spiropidion and spidoxamat have been introduced to the market only recently. Efforts have concentrated on the development of chemical alternatives, such as hormone agonists and antagonists (Sect. 2.4), dsRNA-based pesticides that depend on RNA interference, which have great potential in pest control (Sect. 2.5) and other eco-friendly alternatives (Sect. 2.6).
Collapse
Affiliation(s)
- Umut Toprak
- Faculty of Agriculture, Department of Plant Protection Ankara, Molecular Entomology Lab, Ankara University, Ankara, Turkey.
| | - Emre İnak
- Faculty of Agriculture, Department of Plant Protection Ankara, Molecular Entomology Lab, Ankara University, Ankara, Turkey
| | - Ralf Nauen
- Bayer AG, Crop Science Division, Monheim, Germany.
| |
Collapse
|
4
|
Santos-Araujo S, Gomes F, Carvalho-Kelly LF, Meyer-Fernandes JR, Gondim KC, Ramos I. In the fed state, autophagy plays a crucial role in assisting the insect vector Rhodnius prolixus mobilize TAG reserves under forced flight activity. Front Physiol 2024; 15:1352766. [PMID: 38725570 PMCID: PMC11079428 DOI: 10.3389/fphys.2024.1352766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/09/2024] [Indexed: 05/12/2024] Open
Abstract
Autophagy is a cellular degradation pathway mediated by highly conserved autophagy-related genes (Atgs). In our previous work, we showed that inhibiting autophagy under starvation conditions leads to significant physiological changes in the insect vector of Chagas disease Rhodnius prolixus; these changes include triacylglycerol (TAG) retention in the fat body, reduced survival and impaired locomotion and flight capabilities. Herein, because it is known that autophagy can be modulated in response to various stimuli, we further investigated the role of autophagy in the fed state, following blood feeding. Interestingly, the primary indicator for the presence of autophagosomes, the lipidated form of Atg8 (Atg8-II), displayed 20%-50% higher autophagic activation in the first 2 weeks after feeding compared to the third week when digestion was complete. Despite the elevated detection of autophagosomes, RNAi-mediated suppression of RpAtg6 and RpAtg8 did not cause substantial changes in TAG or protein levels in the fat body or the flight muscle during blood digestion. We also found that knockdown of RpAtg6 and RpAtg8 led to modest modulations in the gene expression of essential enzymes involved in lipid metabolism and did not significantly stimulate the expression of the chaperones BiP and PDI, which are the main effectors of the unfolded protein response. These findings indicate that impaired autophagy leads to slight disturbances in lipid metabolism and general cell proteostasis. However, the ability of insects to fly during forced flight until exhaustion was reduced by 60% after knockdown of RpAtg6 and RpAtg8. This change was accompanied by TAG and protein increases as well as decreased ATP levels in the fat body and flight muscle, indicating that autophagy during digestion, i.e., under fed conditions, is necessary to sustain high-performance activity.
Collapse
Affiliation(s)
- Samara Santos-Araujo
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabio Gomes
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Katia C. Gondim
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Isabela Ramos
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Arêdes DS, Rios T, Carvalho-Kelly LF, Braz V, Araripe LO, Bruno RV, Meyer-Fernandes JR, Ramos I, Gondim KC. Deficiency of Brummer lipase disturbs lipid mobilization and locomotion, and impairs reproduction due to defects in the eggshell ultrastructure in the insect vector Rhodnius prolixus. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159442. [PMID: 38042331 DOI: 10.1016/j.bbalip.2023.159442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/04/2023]
Abstract
Rhodnius prolixus is a hematophagous insect, which feeds on large and infrequent blood meals, and is a vector of trypanosomatids that cause Chagas disease. After feeding, lipids derived from blood meal are stored in the fat body as triacylglycerol, which is recruited under conditions of energy demand by lipolysis, where the first step is catalyzed by the Brummer lipase (Bmm), whose orthologue in mammals is the adipose triglyceride lipase (ATGL). Here, we investigated the roles of Bmm in adult Rhodnius prolixus under starvation, and after feeding. Its gene (RhoprBmm) was expressed in all the analyzed insect organs, and its transcript levels in the fat body were not altered by nutritional status. RNAi-mediated knockdown of RhoprBmm caused triacylglycerol retention in the fat body during starvation, resulting in larger lipid droplets and lower ATP levels compared to control females. The silenced females showed decreased flight capacity and locomotor activity. When RhoprBmm knockdown occurred before the blood meal and the insects were fed, the females laid fewer eggs, which collapsed and showed low hatching rates. Their hemolymph had reduced diacylglycerol content and vitellogenin concentration. The chorion (eggshell) of their eggs had no difference in hydrocarbon amounts or in dityrosine crosslinking levels compared to control eggs. However, it showed ultrastructural defects. These results demonstrated that Bmm activity is important not only to guarantee lipid mobilization to maintain energy homeostasis during starvation, but also for the production of viable eggs after a blood meal, by somehow contributing to the right formation of the egg chorion.
Collapse
Affiliation(s)
- Daniela Saar Arêdes
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thamara Rios
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Valdir Braz
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana O Araripe
- Laboratório de Biologia Molecular de Insetos, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT-EM/CNPq, Brazil
| | - Rafaela V Bruno
- Laboratório de Biologia Molecular de Insetos, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT-EM/CNPq, Brazil
| | - José Roberto Meyer-Fernandes
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem - INCT-BEB/CNPq, Brazil
| | - Isabela Ramos
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT-EM/CNPq, Brazil
| | - Katia C Gondim
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT-EM/CNPq, Brazil.
| |
Collapse
|
6
|
Wang G, Jiang G, Peng R, Wang Y, Li J, Sima Y, Xu S. Multi-omics integrative analysis revealed characteristic changes in blood cell immunity and amino acid metabolism in a silkworm model of hyperproteinemia. Int J Biol Macromol 2024; 258:128809. [PMID: 38128801 DOI: 10.1016/j.ijbiomac.2023.128809] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
Hyperproteinemia is a serious metabolic disease of both humans and animals characterized by an abnormally high plasma protein concentration (HPPC). Although hyperproteinemia can cause an imbalance in blood cell homeostasis, the functional changes to blood cells remain unclear. Here, a HPPC silkworm model was used to assess changes to the chromatin accessibility and transcript levels of genes related to blood cell metabolism and immune function. The results showed that HPPC enhanced phagocytosis of blood cells, increased chromatin accessibility and transcript levels of genes involved in cell phagocytosis, proliferation, stress, and programmed death, while genes associated with aromatic amino acid metabolism, and antibacterial peptide synthesis were inhibited in blood cells. Further analysis of the chromatin accessibility of the promoter region found that the high chromatin accessibility of genes sensitive to HPPC, was related to histone modifications, including tri-methylation of lysine residue 4 of histone H3 and acetylation of lysine residue 27 of histone H3. Changes to the chromatin accessibility and transcript levels of genes related to immune function and amino acid metabolism in the blood cells of the HPPC silkworm model provided useful references for future studies of the mechanisms underlying epigenomic regulation mediated by hyperproteinemia.
Collapse
Affiliation(s)
- Guang Wang
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China; Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China
| | - Guihua Jiang
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China; Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China
| | - Ruji Peng
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China; Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China
| | - Yongfeng Wang
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China; Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China
| | - Jianglan Li
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China; Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China
| | - Yanghu Sima
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China; Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China
| | - Shiqing Xu
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China; Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China.
| |
Collapse
|
7
|
Dos Santos LV, Silva ERMND, Caiado MS, Rezende SRDF, de Carvalho MG, Pontes EG. Differential expression of brummer and levels of TAG in different developmental stages Aedes aegypti (Diptera: Culicidae), including fasted adults. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 115:e22084. [PMID: 38288494 DOI: 10.1002/arch.22084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/19/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024]
Abstract
Lipid storage in the form of triacylglycerol (TAG) is essential for insect life, as it enables flight, development, and reproduction. The activity of the lipase brummer (bmm) has been shown to be essential to insects' homeostasis. The objective of this study was to evaluate how bmm expression occurs in Aedes aegypti larvae and adults, and to observe TAG levels during fasting in adult females. The bmm sequence was identified in A. aegypti and exhibited a patatin-like phospholipase domain reinforced by the presence of a catalytic dyad with serine and aspartate residues, revealing a high degree of similarity with other organisms. Bmm expression was differentiated in the larvae and adult fat body (FB) following TAG reserve dynamics. Bmm was expressed three times in larval stages L3, L4, and pupae compared with L1 and L2, which could indicate its role in the maturation of these insects. In the postemergence (PE) and post-blood meal (PBM) FB of adult insects, bmm expression varied over several days. PE adults showed a pronounced bmm increase from the third day onward compared with those not subjected to fasting. This was accompanied by a decrease in TAG from the third day onward, suggesting the participation of bmm. Six hours after blood feeding, TAG levels increased in mosquitos reared in the absence of sucrose, suggesting lipid accumulation to guarantee reproduction. Bmm responded positively to fasting, followed by TAG mobilization in adult FB. During the previtellogenic period, bmm levels responded to low TAG levels, unlike the PBM period.
Collapse
Affiliation(s)
- Luan Valim Dos Santos
- Departamento de Bioquímica, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil
| | | | - Matheus Silva Caiado
- Departamento de Bioquímica, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil
| | | | - Mario Geraldo de Carvalho
- Departamento de Química Orgânica, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil
| | - Emerson Guedes Pontes
- Departamento de Bioquímica, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Hao K, Wang J, Yu H, Chen L, Zeng W, Wang Z, Hu G. Peroxisome Proliferator-Activated Receptor γ Regulates Lipid Metabolism in Sheep Trophoblast Cells through mTOR Pathway-Mediated Autophagy. PPAR Res 2023; 2023:6422804. [PMID: 38020065 PMCID: PMC10651342 DOI: 10.1155/2023/6422804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/03/2023] [Accepted: 10/14/2023] [Indexed: 12/01/2023] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) is a key nuclear receptor transcription factor that is highly expressed in trophoblastic cells during embryonic attachment and is accompanied by rapid cell proliferation and increased lipid accumulation. We previously showed that the autophagy pathway is activated in cells after activation of PPARγ, accompanied by increased lipid accumulation. In this study, we used PPARγ agonist rosiglitazone and inhibitor GW9662, as well as autophagy activator rapamycin and inhibitor 3-methyladenine, to unravel the probable mechanism of PPARγ engaged in lipid metabolism in sheep trophoblast cells (STCs). After 12 h, 24 h, and 48 h of drug treatment, the levels of autophagy-related proteins were detected by Western blot, the triglyceride content and MDA level of cells were detected by colorimetry, and the lipid droplets and lysosomes were localized by immunofluorescence. We found that PPARγ inhibited the activity of mammalian target of rapamycin (mTOR) pathway in STCs for a certain period of time, promoted the increase of autophagy and lysosome formation, and enhanced the accumulation of lipid droplets and triglycerides. Compared with cells whose PPARγ function is activated, blocking autophagy before activating PPARγ will hinder lipid accumulation in STCs. Pretreatment of cells with rapamycin promoted autophagy with results similar to rosiglitazone treatment, while inhibition of autophagy with 3-methyladenine reduced lysosome and lipid accumulation. Based on these observations, we conclude that PPARγ can induce autophagy by blocking the mTOR pathway, thereby promoting the accumulation of lipid droplets and lysosomal degradation, providing an energy basis for the rapid proliferation of trophoblast cells during embryo implantation. In brief, this study partially revealed the molecular regulatory mechanism of PPARγ, mTOR pathway, and autophagy on trophoblast cell lipid metabolism, which provides a theoretical basis for further exploring the functional regulatory network of trophoblast cells during the attachment of sheep embryos.
Collapse
Affiliation(s)
- Kexing Hao
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production/Institute of Animal Husbandry and Veterinary, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China
| | - Jing Wang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production/Institute of Animal Husbandry and Veterinary, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China
| | - Hengbin Yu
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China
| | - Lei Chen
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China
| | - Weibin Zeng
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China
| | - Zhengrong Wang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production/Institute of Animal Husbandry and Veterinary, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Guangdong Hu
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China
| |
Collapse
|
9
|
De Paula IF, Santos-Araujo S, Majerowicz D, Ramos I, Gondim KC. Knockdown of carnitine palmitoyltransferase I (CPT1) reduces fat body lipid mobilization and resistance to starvation in the insect vector Rhodnius prolixus. Front Physiol 2023; 14:1201670. [PMID: 37469565 PMCID: PMC10352773 DOI: 10.3389/fphys.2023.1201670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/21/2023] [Indexed: 07/21/2023] Open
Abstract
The energy stored in fatty acids is essential for several critical activities of insects, such as embryogenesis, oviposition, and flight. Rhodnius prolixus is an obligatory hematophagous hemipteran and vector of Chagas disease, and it feeds infrequently on very large blood meals. As digestion slowly occurs, lipids are synthesized and accumulate in the fat body, mainly as triacylglycerol, in lipid droplets. Between feeding bouts, proper mobilization and oxidation of stored lipids are crucial for survival, and released fatty acids are oxidized by mitochondrial β-oxidation. Carnitine palmitoyl transferase I (CPT1) is the enzyme that catalyzes the first reaction of the carnitine shuttle, where the activated fatty acid, acyl-CoA, is converted to acyl-carnitine to be transported into the mitochondria. Here, we investigated the role of CPT1 in lipid metabolism and in resistance to starvation in Rhodnius prolixus. The expression of the CPT1 gene (RhoprCpt1) was determined in the organs of adult females on the fourth day after a blood meal, and the flight muscle showed higher expression levels than the ovary, fat body, and anterior and posterior midgut. RhoprCpt1 expression in the fat body dramatically decreased after feeding, and started to increase again 10 days later, but no changes were observed in the flight muscle. β-oxidation rates were determined in flight muscle and fat body homogenates with the use of 3H-palmitate, and in unfed females, they were higher in the flight muscle. In the fat body, lipid oxidation activity did not show any variation before or at different days after feeding, and was not affected by the presence of etomoxir or malonyl-CoA. We used RNAi and generated RhoprCPT1-deficient insects, which surprisingly did not show a decrease in measured 3H-palmitate oxidation rates. However, the RNAi-knockdown females presented increased amounts of triacylglycerol and larger lipid droplets in the fat body, but not in the flight muscle. When subjected to starvation, these insects had a shorter lifespan. These results indicated that the inhibition of RhoprCpt1 expression compromised lipid mobilization and affected resistance to starvation.
Collapse
Affiliation(s)
- Iron F. De Paula
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Samara Santos-Araujo
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - David Majerowicz
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Biociências, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Isabela Ramos
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Katia C. Gondim
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Faria-Reis A, Santos-Araújo S, Pereira J, Rios T, Majerowicz D, Gondim KC, Ramos I. Silencing of the 20S proteasomal subunit-α6 triggers full oogenesis arrest and increased mRNA levels of the selective autophagy adaptor protein p62/SQSTM1 in the ovary of the vector Rhodnius prolixus. PLoS Negl Trop Dis 2023; 17:e0011380. [PMID: 37267415 DOI: 10.1371/journal.pntd.0011380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/15/2023] [Indexed: 06/04/2023] Open
Abstract
The high reproductive rates of insects contribute significantly to their ability to act as vectors of a variety of vector-borne diseases. Therefore, it is strategically critical to find molecular targets with biotechnological potential through the functional study of genes essential for insect reproduction. The ubiquitin-proteasome system is a vital degradative pathway that contributes to the maintenance of regular eukaryotic cell proteostasis. This mechanism involves the action of enzymes to covalently link ubiquitin to proteins that are meant to be delivered to the 26S proteasome and broken down. The 26S proteasome is a large protease complex (including the 20S and 19S subcomplexes) that binds, deubiquitylates, unfolds, and degrades its substrates. Here, we used bioinformatics to identify the genes that encode the seven α and β subunits of the 20S proteasome in the genome of R. prolixus and learned that those transcripts are accumulated into mature oocytes. To access proteasome function during oogenesis, we conducted RNAi functional tests employing one of the 20S proteasome subunits (Prosα6) as a tool to suppress 20S proteasomal activity. We found that Prosα6 silencing resulted in no changes in TAG buildup in the fat body and unaffected availability of yolk proteins in the hemolymph of vitellogenic females. Despite this, the silencing of Prosα6 culminated in the impairment of oocyte maturation at the early stages of oogenesis. Overall, we discovered that proteasome activity is especially important for the signals that initiate oogenesis in R. prolixus and discuss in what manner further investigations on the regulation of proteasome assembly and activity might contribute to the unraveling of oogenesis molecular mechanisms and oocyte maturation in this vector.
Collapse
Affiliation(s)
- Allana Faria-Reis
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil
| | - Samara Santos-Araújo
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil
| | - Jéssica Pereira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil
| | - Thamara Rios
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil
| | - David Majerowicz
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia
- Programa de Pós-Graduação em Biociências, Universidade do Estado do Rio de Janeiro
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular-INCT-EM/CNPq
| | - Katia C Gondim
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular-INCT-EM/CNPq
| | - Isabela Ramos
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular-INCT-EM/CNPq
| |
Collapse
|
11
|
Almeida-Oliveira F, Santos-Araujo S, Carvalho-Kelly LF, Macedo-Silva A, Meyer-Fernandes JR, Gondim KC, Majerowicz D. ATP synthase affects lipid metabolism in the kissing bug Rhodnius prolixus beyond its role in energy metabolism. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023:103956. [PMID: 37196906 DOI: 10.1016/j.ibmb.2023.103956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/19/2023] [Accepted: 04/28/2023] [Indexed: 05/19/2023]
Abstract
ATP synthase plays an essential role in mitochondrial metabolism, being responsible for the production of ATP in oxidative phosphorylation. However, recent results have shown that it may also be present in the cell membrane, involved in lipophorin binding to its receptors. Here, we used a functional genetics approach to investigate the roles of ATP synthase in lipid metabolism in the kissing bug Rhodnius prolixus. The genome of R. prolixus encodes five nucleotide-binding domain genes of the ATP synthase alpha and beta family, including the alpha and beta subunits of ATP synthase (RpATPSynA and RpATPSynB), and the catalytic and non-catalytic subunits of the vacuolar ATPase (RpVha68 and RpVha55). These genes were expressed in all analyzed organs, being their expression highest in the ovaries, fat body and flight muscle. Feeding did not regulate the expression of ATP synthases in the posterior midgut or fat body. Furthermore, ATP synthase is present in the fat body's mitochondrial and membrane fractions. RpATPSynB knockdown by RNAi impaired ovarian development and reduced egg-laying by approximately 85%. Furthermore, the lack of RpATPSynB increased the amount of triacylglycerol in the fat body due to increased de novo fatty acid synthesis and reduced transfer of lipids to lipophorin. RpATPSynA knockdown had similar effects, with altered ovarian development, reduced oviposition, and triacylglycerol accumulation in the fat body. However, ATP synthases knockdown had only a slight effect on the amount of ATP in the fat body. These results support the hypothesis that ATP synthase has a direct role in lipid metabolism and lipophorin physiology, which are not directly due to changes in energy metabolism.
Collapse
Affiliation(s)
| | - Samara Santos-Araujo
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil
| | | | - Alessa Macedo-Silva
- Programa de Pós-Graduação em Biociências, Universidade do Estado do Rio de Janeiro, Brazil
| | | | - Katia C Gondim
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Brazil
| | - David Majerowicz
- Programa de Pós-Graduação em Biociências, Universidade do Estado do Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Brazil; Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Brazil.
| |
Collapse
|
12
|
Chen WF, Wang HF, Wang Y, Liu ZG, Xu BH. AmAtg2B-Mediated Lipophagy Regulates Lipolysis of Pupae in Apis mellifera. Int J Mol Sci 2023; 24:2096. [PMID: 36768418 PMCID: PMC9916532 DOI: 10.3390/ijms24032096] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/23/2022] [Accepted: 12/29/2022] [Indexed: 01/21/2023] Open
Abstract
Lipophagy plays an important role in regulating lipid metabolism in mammals. The exact function of autophagy-related protein 2 (Atg2) has been investigated in mammals, but research on the existence and functions of Atg2 in Apis mellifera (AmAtg2) is still limited. Here, autophagy occurred in honeybee pupae, which targeted lipid droplets (LDs) in fat body, namely lipophagy, which was verified by co-localization of LDs with microtubule-associated protein 1A/1B light chain 3 beta (LC3). Moreover, AmAtg2 homolog B (AmAtg2B) was expressed specifically in pupal fat body, which indicated that AmAtg2B might have special function in fat body. Further, AmAtg2B antibody neutralization and AmAtg2B knock-down were undertaken to verify the functions in pupae. Results showed that low expression of AmAtg2B at the protein and transcriptional levels led to lipophagy inhibition, which down-regulated the expression levels of proteins and genes related to lipolysis. Altogether, results in this study systematically revealed that AmAtg2B interfered with lipophagy and then caused abnormal lipolysis in the pupal stage.
Collapse
Affiliation(s)
| | | | | | | | - Bao-Hua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Tai’an 271018, China
| |
Collapse
|
13
|
Transcriptomic Analysis Revealed the Differences in Lipid Accumulation between Spores and Mycelia of Mucor circinelloides WJ11 under Solid–State Fermentation. FERMENTATION 2022. [DOI: 10.3390/fermentation8120667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The oleaginous fungus Mucor circinelloides has been studied for microbial oil production. Solid–state fermentation may be more suitable for lipid production than submerged fermentation due to its special filamentous structure and lower fermentation costs. M. circinelloides WJ11 under solid–state fermentation indicated that the total fatty acid content of mycelia was significantly higher than that of spores (15.0 and 10.4% in mycelia and spores after 192 h, respectively), while the biomass of the fungal mycelia was lower than that of the spores, reaching 78.2 and 86.9 mg/g, respectively. Transcriptomic studies showed that a total of 9069 genes were differentially expressed between spores and mycelia during solid–state fermentation, of which 4748 were up-regulated and 4321 were down-regulated. Among them, triglyceride-related synthases in M. circinelloides were significantly up-regulated in the mycelia. The mRNA expression level of ATP: citrate lyase was obviously increased to provide more acetyl-CoA for fatty acid synthesis in mycelia, moreover, the metabolism of leucine and isoleucine can also produce more acetyl-CoA for lipid accumulation in M. circinelloides. For NADPH supply, the expression of the pentose phosphate pathway was significantly up-regulated in mycelia, while NADP+-dependent malic enzyme was also increased by 9.5-fold under solid–state fermentation. Compared with gene expression in spores, the autophagy pathway was clearly up-regulated in mycelia to prove that autophagy was related to lipid accumulation in M. circinelloides.
Collapse
|
14
|
Moraes B, Braz V, Santos-Araujo S, Oliveira IA, Bomfim L, Ramos I, Gondim KC. Deficiency of Acetyl-CoA Carboxylase Impairs Digestion, Lipid Synthesis, and Reproduction in the Kissing Bug Rhodnius prolixus. Front Physiol 2022; 13:934667. [PMID: 35936892 PMCID: PMC9353303 DOI: 10.3389/fphys.2022.934667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/14/2022] [Indexed: 11/14/2022] Open
Abstract
Rhodnius prolixus is a hematophagous insect, vector of Chagas disease. After feeding, as blood is slowly digested, amino acids are used as substrates to fuel lipid synthesis, and adult females accumulate lipids in the fat body and produce eggs. In order to evaluate the importance of de novo fatty acid synthesis for this insect metabolism, we generated acetyl-CoA carboxylase (ACC) deficient insects. The knockdown (AccKD) females had delayed blood digestion and a shorter lifespan. Their fat bodies showed reduced de novo lipogenesis activity, did not accumulate triacylglycerol during the days after blood meal, and had smaller lipid droplets. At 10 days after feeding, there was a general decrease in the amounts of neutral lipids and phospholipids in the fat body. In the hemolymph, no difference was observed in lipid composition at 5 days after blood meal, but at day ten, there was an increase in hydrocarbon content and a decrease in phospholipids. Total protein concentration and amino acid composition were not affected. The AccKD females laid 60% fewer eggs than the control ones, and only 7% hatched (89% for control), although their total protein and triacylglycerol contents were not different. Scanning electron microscopy of the egg surface showed that chorion (eggshell) from the eggs laid by the AccKD insects had an altered ultrastructural pattern when compared to control ones. These results show that ACC has a central role in R. prolixus nutrient homeostasis, and its appropriate activity is important to digestion, lipid synthesis and storage, and reproductive success.
Collapse
Affiliation(s)
- Bruno Moraes
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Valdir Braz
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Samara Santos-Araujo
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Isadora A. Oliveira
- Centro de Espectrometria de Massas de Biomoléculas, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Larissa Bomfim
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Isabela Ramos
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Katia C. Gondim
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
15
|
Arêdes DS, De Paula IF, Santos-Araujo S, Gondim KC. Silencing of Mitochondrial Trifunctional Protein A Subunit (HADHA) Increases Lipid Stores, and Reduces Oviposition and Flight Capacity in the Vector Insect Rhodnius prolixus. FRONTIERS IN INSECT SCIENCE 2022; 2:885172. [PMID: 38468769 PMCID: PMC10926480 DOI: 10.3389/finsc.2022.885172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/16/2022] [Indexed: 03/13/2024]
Abstract
Rhodnius prolixus is an obligatory hematophagous insect, vector of Chagas disease. After blood meal, lipids are absorbed, metabolized, synthesized, and accumulated in the fat body. When necessary, stored lipids are mobilized, transported to other organs, or are oxidized to provide energy. Mitochondrial β-oxidation is a cyclic conserved pathway, where degradation of long-chain fatty acids occurs to contribute to cellular energetic demands. Three of its reactions are catalyzed by the mitochondrial trifunctional protein (MTP), which is composed by hydroxyacyl-CoA dehydrogenase trifunctional multienzyme complex subunits alpha and beta (HADHA and HADHB, respectively). Here, we investigated the role of HADHA in lipid metabolism and reproduction of Rhodnius prolixus females. The expression of HADHA gene (RhoprHadha) was determined in the organs of starving adult insects. The flight muscle and ovary had higher expression levels when compared to the anterior and posterior midguts or the fat body. RhoprHadha gene expression was upregulated by blood meal in the flight muscle and fat body. We generated insects with RNAi-mediated knockdown of RhoprHadha to address the physiological role of this gene. RhoprHadha deficiency resulted in higher triacylglycerol content and larger lipid droplets in the fat body during starvation. After feeding, lifespan of the knockdown females was not affected, but they exhibited a decrease in oviposition, although hatching was the same in both groups. Silenced females showed lower forced flight capacity than the control ones, and their fat bodies had lower gene expression levels of Brummer lipase (RhoprBmm) and long-chain acyl-CoA synthetase 2 (RhoprAcsl2). Taken together, these findings indicate that HADHA is important to guarantee successful reproduction and efficient mobilization of lipid stores during starvation and flight.
Collapse
Affiliation(s)
| | | | | | - Katia C. Gondim
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
16
|
Analysis of Transcriptome Difference between Blood-Fed and Starved Tropical Bed Bug, Cimex hemipterus (F.) (Hemiptera: Cimicidae). INSECTS 2022; 13:insects13040387. [PMID: 35447830 PMCID: PMC9029146 DOI: 10.3390/insects13040387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/01/2022] [Accepted: 04/12/2022] [Indexed: 11/19/2022]
Abstract
Simple Summary Bed bugs are well known for their extreme resilience to starvation. The molecular mechanisms behind this ability, however, are little known. Thus, the whole transcriptomes of blood-fed and starved bed bugs from the species Cimex hemipterus (tropical bed bugs) were sequenced and compared. The transcriptome of tropical bed bugs was initially annotated. Following differentially expressed genes (DEGs) analysis, regulated transcripts were mostly identified in biological processes during blood-feeding and starvation. The results provide an overview of the functional genes proportion of this species and a deeper understanding of the bed bug’s molecular mechanism of resistance to blood feeding and starvation. Abstract The reference transcriptome for Cimex hemipterus (tropical bed bug) was assembled de novo in this study, and differential expression analysis was conducted between blood-fed and starved tropical bed bug. A total of 24,609 transcripts were assembled, with around 79% of them being annotated against the Eukaryotic Orthologous Groups (KOG) database. The transcriptomic comparison revealed several differentially expressed genes between blood-fed and starved bed bugs, with 38 of them being identifiable. There were 20 and 18 genes significantly upregulated in blood-fed and starved bed bugs, respectively. Differentially expressed genes (DEGs) were revealed to be associated with regulation, metabolism, transport, motility, immune, and stress response; endocytosis; and signal transduction. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis showed an enrichment of genes encoding steroid biosynthesis, glycosaminoglycan biosynthesis, butanoate metabolism, and autophagy in both blood-fed and starved bed bugs. However, in blood-fed bed bugs, genes involved in histidine metabolism, caffeine metabolism, ubiquinone/terpenoid-quinone biosynthesis, and sulfur relay system were enriched. On the other hand, starvation activates genes related to nicotinate and nicotinamide metabolism, fatty acid elongation, terpenoid backbone biosynthesis, metabolism of xenobiotics by cytochrome P450, riboflavin metabolism, apoptosis, and protein export. The present study is the first to report a de novo transcriptomic analysis in C. hemipterus and demonstrated differential responses of bed bugs in facing blood-feeding and starvation.
Collapse
|
17
|
Aedes fluviatilis cell lines as new tools to study metabolic and immune interactions in mosquito-Wolbachia symbiosis. Sci Rep 2021; 11:19202. [PMID: 34584163 PMCID: PMC8478883 DOI: 10.1038/s41598-021-98738-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 09/14/2021] [Indexed: 12/02/2022] Open
Abstract
In the present work, we established two novel embryonic cell lines from the mosquito Aedes fluviatilis containing or not the naturally occurring symbiont bacteria Wolbachia, which were called wAflu1 and Aflu2, respectively. We also obtained wAflu1 without Wolbachia after tetracycline treatment, named wAflu1.tet. Morphofunctional characterization was performed to help elucidate the symbiont-host interaction in the context of energy metabolism regulation and molecular mechanisms of the immune responses involved. The presence of Wolbachia pipientis improves energy performance in A. fluviatilis cells; it affects the regulation of key energy sources such as lipids, proteins, and carbohydrates, making the distribution of actin more peripheral and with extensions that come into contact with neighboring cells. Additionally, innate immunity mechanisms were activated, showing that the wAflu1 and wAflu1.tet cells are responsive after the stimulus using Gram negative bacteria. Therefore, this work confirms the natural, mutually co-regulating symbiotic relationship between W. pipientis and A. fluviatilis, modulating the host metabolism and immune pathway activation. The results presented here add important resources to the current knowledge of Wolbachia-arthropod interactions.
Collapse
|
18
|
Jo YH, Lee JH, Patnaik BB, Keshavarz M, Lee YS, Han YS. Autophagy in Tenebrio molitor Immunity: Conserved Antimicrobial Functions in Insect Defenses. Front Immunol 2021; 12:667664. [PMID: 34135896 PMCID: PMC8202003 DOI: 10.3389/fimmu.2021.667664] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 05/13/2021] [Indexed: 12/16/2022] Open
Abstract
The yellow mealworm beetle (Tenebrio molitor) has been exploited as an experimental model to unravel the intricacies of cellular and humoral immunity against pathogenic infections. Studies on this insect model have provided valuable insights into the phenotypic plasticity of immune defenses against parasites and pathogens. It has thus been possible to characterize the hemocoelic defenses of T. molitor that rely on the recognition of non-self-components of pathogens by pattern recognition receptors (PRRs). The subsequent signaling cascade activating pathways such as the NF-κB controlled by Toll and IMD pathways lead to the synthesis of antimicrobial peptides (AMPs), onset of hemocyte-driven phagocytosis, and activation of the prophenoloxidase cascade regulating the process of melanization. Nevertheless, the activation of autophagy-mediated defenses of T. molitor against the facultative intracellular gram-positive bacterium Listeria monocytogenes provides clear evidence of the existence of a cross-talk between autophagy and the IMD pathway. Moreover, the identification of several autophagy-related genes (Atgs) in T. molitor transcriptome and expressed sequence tag (EST) databases has contributed to the understanding of the autophagy-signaling cascade triggered by L. monocytogenes challenge. Providing further evidence of the cross-talk hypothesis, TmRelish has been shown to be required not only for regulating the synthesis of AMPs through the PGRP-LE/IMD pathway activation but also for the expression of Atgs in T. molitor larvae following L. monocytogenes challenge. Notably, L. monocytogenes can stimulate the T. molitor innate immune system by producing molecules recognized by the multifunctional PRR (TmPGRP-LE), which stimulates intracellular activation of the IMD pathway and autophagy. Considering the conservation of autophagy components involved in combating intracellular pathogens, it will be interesting to extrapolate a dynamic cross-talk model of immune activation. This review summarizes the most significant findings on the regulation of autophagy in T. molitor during L. monocytogenes infection and on the role of the innate immunity machinery, including the NF-κB pathway, in the control of pathogenic load.
Collapse
Affiliation(s)
- Yong Hun Jo
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
| | - Jung Hee Lee
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
| | - Bharat Bhusan Patnaik
- P. G. Department of Biosciences and Biotechnology, Fakir Mohan University, Balasore, India
| | - Maryam Keshavarz
- Department of Evolutionary Biology, Institute for Biology-Zoology, Free University of Berlin, Berlin, Germany
| | - Yong Seok Lee
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan City, South Korea
| | - Yeon Soo Han
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
19
|
Talyuli OAC, Bottino-Rojas V, Polycarpo CR, Oliveira PL, Paiva-Silva GO. Non-immune Traits Triggered by Blood Intake Impact Vectorial Competence. Front Physiol 2021; 12:638033. [PMID: 33737885 PMCID: PMC7960658 DOI: 10.3389/fphys.2021.638033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/08/2021] [Indexed: 11/13/2022] Open
Abstract
Blood-feeding arthropods are considered an enormous public health threat. They are vectors of a plethora of infectious agents that cause potentially fatal diseases like Malaria, Dengue fever, Leishmaniasis, and Lyme disease. These vectors shine due to their own physiological idiosyncrasies, but one biological aspect brings them all together: the requirement of blood intake for development and reproduction. It is through blood-feeding that they acquire pathogens and during blood digestion that they summon a collection of multisystemic events critical for vector competence. The literature is focused on how classical immune pathways (Toll, IMD, and JAK/Stat) are elicited throughout the course of vector infection. Still, they are not the sole determinants of host permissiveness. The dramatic changes that are the hallmark of the insect physiology after a blood meal intake are the landscape where a successful infection takes place. Dominant processes that occur in response to a blood meal are not canonical immunological traits yet are critical in establishing vector competence. These include hormonal circuitries and reproductive physiology, midgut permeability barriers, midgut homeostasis, energy metabolism, and proteolytic activity. On the other hand, the parasites themselves have a role in the outcome of these blood triggered physiological events, consistently using them in their favor. Here, to enlighten the knowledge on vector-pathogen interaction beyond the immune pathways, we will explore different aspects of the vector physiology, discussing how they give support to these long-dated host-parasite relationships.
Collapse
Affiliation(s)
- Octavio A C Talyuli
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vanessa Bottino-Rojas
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carla R Polycarpo
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Pedro L Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Gabriela O Paiva-Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| |
Collapse
|