1
|
Zhang Y, Li Y, Shan Y, Han H, Bai P, Xu L, Zhao Q, Liu N, Wang Y, Wang Y, Ga L, Xu L, Gao S, Lin K. A chromosome-level genome assembly of beet webworm, Loxostege sticticalis Linnaeus (Lepidoptera: Pyralidae). Sci Data 2025; 12:869. [PMID: 40419506 DOI: 10.1038/s41597-025-04371-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 01/01/2025] [Indexed: 05/28/2025] Open
Abstract
The beet webworm, Loxostege sticticalis Linnaeus (Lepidoptera, Pyralidae), is a major pest in agriculture and livestock production. However, the L. sticticalis genome has not yet been sequenced, limiting exploration of its biological features and population genetics. In this study, the genome of L. sticticalis was sequenced on the Illumina Novaseq. 6000 and PacBio Sequel II platforms, and chromosome conformation capture (Hi-C) methods were used to generate the high-quality chromosome-level genome, assessed at 98.7% by the Benchmarking Universal Single-Copy Orthologs (BUSCO) tool. The L. sticticalis genome showed an assembly of 485.9 Mb with a contig N50 of 16.4 Mb, a scaffold N50 of 16.6 Mb, and a GC content of 37.85%, with over 98.67% of the assembled bases located on 31 chromosomes. Repeat sequences accounted for 41.71% of the genome and 15 913 protein-coding genes were identified. Comparison of the genome of L. sticticalis with other closely related species indicated high chromosomal synteny. The sequencing of this genome contributes to research on the genetics and evolution of the Lepidoptera.
Collapse
Affiliation(s)
- Yu Zhang
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research of Chinese Academy of Agricultural Sciences, Hohhot, 010010, P. R. China
| | - Yanyan Li
- Research Center for Grassland Entomology, Inner Mongolia Agricultural University, Hohhot, 010020, P. R. China
| | - Yanmin Shan
- Inner Mongolia Forestry and Grassland Pest Control and Qurantine, Hohhot, 010051, P. R. China
| | - Haibin Han
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research of Chinese Academy of Agricultural Sciences, Hohhot, 010010, P. R. China
| | - Penghua Bai
- Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, Tianjin, 300384, P. R. China
| | - Linbo Xu
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research of Chinese Academy of Agricultural Sciences, Hohhot, 010010, P. R. China
| | - Qing Zhao
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research of Chinese Academy of Agricultural Sciences, Hohhot, 010010, P. R. China
| | - Ningyun Liu
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research of Chinese Academy of Agricultural Sciences, Hohhot, 010010, P. R. China
| | - Yuanyuan Wang
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research of Chinese Academy of Agricultural Sciences, Hohhot, 010010, P. R. China
| | - Ying Wang
- Ordos Natural Resources Bureau Kangbashi Branch, Ordos, 017010, P. R. China
| | - Liwa Ga
- Inner Mongolia Forestry and Grassland Pest Control and Qurantine, Hohhot, 010051, P. R. China
| | - Lei Xu
- Nanjing Genepioneer Biotechnologies Co., Ltd., Nanjing, 210000, P. R. China
| | - Shujing Gao
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research of Chinese Academy of Agricultural Sciences, Hohhot, 010010, P. R. China.
| | - Kejian Lin
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research of Chinese Academy of Agricultural Sciences, Hohhot, 010010, P. R. China.
| |
Collapse
|
2
|
Wang Y, Iqbal A, Ahmed KS, Zhou YY, Zhang C. Reproductive Success of Trichogramma ostriniae over Trichogramma dendrolimi in Multi-Generational Rearing on Corn Borer Eggs. INSECTS 2025; 16:297. [PMID: 40266801 PMCID: PMC11943255 DOI: 10.3390/insects16030297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/09/2025] [Accepted: 03/11/2025] [Indexed: 04/25/2025]
Abstract
In China, the Asian corn borer (ACB), Ostrinia furnacalis (Guenee) (Lepidoptera: Pyralidae), is the most significant economic insect pest of corn, causing losses ranging from six to nine million tons annually by feeding on all parts of maize, including damaging ears and leaves and making tunnels in stems. In China, since the 1970s, the Trichogramma species have extensively mass-reared from factitious hosts to control ACB and support integrated pest management programs. The Trichogramma dendrolimi Matsumura and T. ostriniae Pang and Chen are the most efficient biocontrol agents for controlling ACB among the available Trichogramma species. To evaluate the reproductive success of Trichogramma dendrolimi and T. ostriniae, we assessed the impact of varying parasitoid ratios (5:1, 3:1, 1:1, 1:3, and 1:5 representing T. dendrolimi and T. ostriniae, respectively) on adult offspring emergence and mortality from ACB eggs over multiple generations (from first (F1) to third (F3) generations). We discovered that both Trichogramma species' offspring emergence was significantly influenced by the parasitoid generations, parasitoid ratios, and their interactions. The offspring mortality in both Trichogramma species was significantly affected by parasitoid generations but was not significantly influenced by parasitoid ratios or interaction between parasitoid generations and parasitoid ratios. Furthermore, at parasitoid ratios of 5:1, 3:1, and 1:1, the emergence rate of the F1 generation of T. dendrolimi was significantly higher compared to the ratios of 1:3 and 1:5. However, in the F2 generation, the emergence of T. dendrolimi decreased considerably, and no emergence was observed in the F3 generation. A contrasting trend was observed in the emergence of T. ostriniae offspring. Overall, regardless of the parasitoid ratios, the offspring emergence of T. ostriniae in all three generations was significantly higher than that of T. dendrolimi. After assessing the offspring mortality in our research by dissecting the unhatched eggs, we found an inverse relationship between the T. dendrolimi generations and their mortality across different parasitoid ratios. Notably, mortality exhibited a significant decline with an increasing number of generations. A positive correlation was observed between the number of T. ostriniae generations and their mortality across different parasitoid ratios, indicating that mortality increased with successive generations. Overall, across all parasitoid ratios and generations, the offspring mortality of T. ostriniae was considerably greater than that of T. dendrolimi. These results suggest that mortality is a crucial empirical measure that validates T. ostriniae's superiority over T. dendrolimi. These findings highlight the importance of selecting suitable parasitoid species when implementing Trichogramma for pest management.
Collapse
Affiliation(s)
- Yu Wang
- Agricultural College, Jilin Agricultural Science and Technology University, Jilin 132101, China; (Y.W.); (Y.-Y.Z.)
| | - Asim Iqbal
- Imdaad: Integrated Facilities Management Company, Street Number 1100, South Zone Jebel Ali, Dubai P.O. Box 18220, United Arab Emirates;
| | - Kanwer Shahzad Ahmed
- Biological Research & Resource Center, Mastermind Scientific Consultants (SMC-Private) Limited, Sargodha 40100, Punjab, Pakistan;
| | - Yuan-Yuan Zhou
- Agricultural College, Jilin Agricultural Science and Technology University, Jilin 132101, China; (Y.W.); (Y.-Y.Z.)
| | - Chen Zhang
- Agricultural College, Jilin Agricultural Science and Technology University, Jilin 132101, China; (Y.W.); (Y.-Y.Z.)
| |
Collapse
|
3
|
Feng X, Ullah F, Liu J, Ji Y, Abbas S, Liao S, Ali J, Desneux N, Chen R. Instar identification and weight prediction of Ostrinia furnacalis (Guenée) larvae using machine learning. BULLETIN OF ENTOMOLOGICAL RESEARCH 2025; 115:93-104. [PMID: 39865975 DOI: 10.1017/s0007485324000932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The Asian corn borer, Ostrinia furnacalis (Guenée), emerges as a significant threat to maize cultivation, inflicting substantial damage upon the crops. Particularly, its larval stage represents a critical point characterised by significant economic consequences on maize yield. To manage the infestation of this pest effectively, timely and precise identification of its larval stages is required. Currently, the absence of techniques capable of addressing this urgent need poses a formidable challenge to agricultural practitioners. To mitigate this issue, the current study aims to establish models conducive to the identification of larval stages. Furthermore, this study aims to devise predictive models for estimating larval weights, thereby enhancing the precision and efficacy of pest management strategies. For this, 9 classification and 11 regression models were established using four feature datasets based on the following features geometry, colour, and texture. Effectiveness of the models was determined by comparing metrics such as accuracy, precision, recall, F1-score, coefficient of determination, root mean squared error, mean absolute error, and mean absolute percentage error. Furthermore, Shapley Additive exPlanations analysis was employed to analyse the importance of features. Our results revealed that for instar identification, the DecisionTreeClassifier model exhibited the best performance with an accuracy of 84%. For larval weight, the SupportVectorRegressor model performed best with R2 of 0.9742. Overall, these findings present a novel and accurate approach to identify instar and predict the weight of O. furnacalis larvae, offering valuable insights for the implementation of management strategies against this key pest.
Collapse
Affiliation(s)
- Xiao Feng
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, PR China
| | - Farman Ullah
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jiali Liu
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, PR China
| | - Yunliang Ji
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, PR China
| | - Sohail Abbas
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, PR China
| | - Siqi Liao
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, PR China
| | - Jamin Ali
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, PR China
| | - Nicolas Desneux
- Université Côte d'Azur, INRAE, CNRS, UMR ISA, 06000Nice, France
| | - Rizhao Chen
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, PR China
| |
Collapse
|
4
|
Abbas A, Saddam B, Ullah F, Hassan MA, Shoukat K, Hafeez F, Alam A, Abbas S, Ghramh HA, Khan KA, Iqbal R, Dara MZN, Ali J, Ri Zhao C. Global distribution and sustainable management of Asian corn borer (ACB), Ostrinia furnacalis (Lepidoptera: Crambidae): recent advancement and future prospects. BULLETIN OF ENTOMOLOGICAL RESEARCH 2025; 115:105-120. [PMID: 39834216 DOI: 10.1017/s0007485324000919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The Asian corn borer (ACB), Ostrinia furnacalis (Guenée, 1854), is a serious pest of several crops, particularly a destructive pest of maize and other cereals throughout most of Asia, including China, the Philippines, Indonesia, Malaysia, Thailand, Sri Lanka, India, Bangladesh, Japan, Korea, Vietnam, Laos, Myanmar, Afghanistan, Pakistan and Cambodia. It has long been known as a pest in South-east Asia and has invaded other parts of Asia, Solomon Islands, parts of Africa and certain regions of Australia and Russia. Consequently, worldwide efforts have been increased to ensure new control strategies for O. furnacalis management. In this article, we provide a comprehensive review of the ACB covering its (i) distribution (geographic range and seasonal variations), (ii) morphology and ecology (taxonomy, life-history, host plants and economic importance) and (iii) management strategies (which include agroecological approaches, mating disruption, integrated genetic approaches, chemical as well as biological control). Furthermore, we conclude this review with recommendations to provide some suggestions for improving eco-friendly pest management strategies to enhance the sustainable management of ACB in infested areas.
Collapse
Affiliation(s)
- Arzlan Abbas
- College of Plant Protection, Jilin Agricultural University, Changchun, P.R. China
| | - Babu Saddam
- College of Plant Protection, Northwest A&F University, Yangling, P.R. China
| | - Farman Ullah
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Muhammad Asghar Hassan
- Institute of Entomology, Guizhou University, Guiyang, P.R. China
- The Provincial Special Key Laboratory for Development and Utilization of Insect Resources, Guizhou University; Guiyang, P.R. China
| | - Komal Shoukat
- Department of Chemistry, Government College University, Faisalabad, Punjab, Pakistan
| | - Faisal Hafeez
- Entomological Research Institute, Ayub Agricultural Research Institute, Faisalabad, Punjab, Pakistan
| | - Aleena Alam
- College of Plant Protection, Jilin Agricultural University, Changchun, P.R. China
| | - Sohail Abbas
- College of Plant Protection, Jilin Agricultural University, Changchun, P.R. China
| | - Hamed A Ghramh
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
- Center of Bee Research and its Products (CBRP), and Unit of Bee Research and Honey Production, King Khalid University, Abha, Saudi Arabia
| | - Khalid Ali Khan
- Center of Bee Research and its Products (CBRP), and Unit of Bee Research and Honey Production, King Khalid University, Abha, Saudi Arabia
- Applied College, King Khalid University, Abha, Saudi Arabia
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
- Department of Life Sciences, Western Caspian University, Baku, Azerbaijan
| | | | - Jamin Ali
- College of Plant Protection, Jilin Agricultural University, Changchun, P.R. China
| | - Chen Ri Zhao
- College of Plant Protection, Jilin Agricultural University, Changchun, P.R. China
| |
Collapse
|
5
|
Hou XQ, Zhang DD, Zhao H, Liu Y, Löfstedt C, Wang G. Attraction and aversion of noctuid moths to fermented food sources coordinated by olfactory receptors from distinct gene families. BMC Biol 2025; 23:1. [PMID: 39757197 DOI: 10.1186/s12915-024-02102-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 12/20/2024] [Indexed: 01/07/2025] Open
Abstract
BACKGROUND Alternative food sources are crucial for the survival and reproduction of moths during nectar scarcity. Noctuid moths make a better use of fermented food sources than moths from other families, while the underlying molecular and genetic basis remain unexplored. As the fermentation progresses, yeasts lysis and the accumulation of metabolic byproducts alter the composition and the volatile release of the sugary substrates. However, it is unclear whether and how this would affect the feeding preference of moths. RESULTS Here, we identified eight compounds abundant in the dynamic volatile profiles of several sugary substrates during yeast fermentation. We showed that the cotton bollworm moths were attracted to the fermented sugary substrates while being repelled when the sugary substrates were over-fermented. The attraction and aversion were respectively mediated by isoamyl alcohol and octanoic acid. We deorphanized the olfactory receptors detecting these two compounds and found that they belonged to two distinct gene families and were functionally conserved across four noctuid subfamilies; HarmOR52 orthologues responded to the attractive isoamyl alcohol and HarmIR75q.1 orthologues responded to the aversive octanoic acid. CONCLUSIONS Our findings suggest that this functional conservation is an olfactory adaptation that has allowed noctuid moths to extend their diet to fermented food sources.
Collapse
Affiliation(s)
- Xiao-Qing Hou
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Synthetic Biology Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Xianghu Laboratory, Hangzhou, Zhejiang, China
| | - Dan-Dan Zhang
- Department of Biology, Lund University, Lund, Sweden
| | - Hanbo Zhao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Synthetic Biology Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Christer Löfstedt
- Department of Biology, Lund University, Lund, Sweden
- Xianghu Laboratory, Hangzhou, Zhejiang, China
| | - Guirong Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Synthetic Biology Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
6
|
Lv P, Yang X, Zhao X, Zhao Z, Du J. Genome-wide profiles of H3K9me3, H3K27me3 modifications, and DNA methylation during diapause of Asian corn borer ( Ostrinia furnacalis). Genome Res 2024; 34:725-739. [PMID: 38866549 PMCID: PMC11216315 DOI: 10.1101/gr.278661.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 05/09/2024] [Indexed: 06/14/2024]
Abstract
Diapause represents a crucial adaptive strategy used by insects to cope with changing environmental conditions. In North China, the Asian corn borer (Ostrinia furnacalis) enters a winter larval diapause stage. Although there is growing evidence implicating epigenetic mechanisms in diapause regulation, it remains unclear whether dynamic genome-wide profiles of epigenetic modifications exist during this process. By investigating multiple histone modifications, we have discovered the essential roles of H3K9me3 and H3K27me3 during diapause of the Asian corn borer. Building upon previous findings in vertebrates highlighting the connection between DNA methylation and repressive histone methylations, we have examined changes in the genome-wide profile of H3K9me3, H3K27me3, and DNA methylation at the nondiapause, prediapause, and diapause stages. Data analysis reveals significant alterations in these three modifications during diapause. Moreover, we observe a correlation between the H3K9me3 and H3K27me3 modification sites during diapause, whereas DNA modifications show little association with either H3K9me3 or H3K27me3. Integrative analysis of epigenome and expression data unveils the relationship between these epigenetic modifications and gene expression levels at corresponding diapause stages. Furthermore, by studying the function of histone modifications on genes known to be important in diapause, especially those involved in the juvenile pathway, we discover that the juvenile hormone pathway lies downstream from H3K9me3 and H3K27me3 histone modifications. Finally, the analysis of gene loci with modified modifications unreported in diapause uncovers novel pathways potentially crucial in diapause regulation. This study provides a valuable resource for future investigations aiming to elucidate the underlying mechanisms of diapause.
Collapse
Affiliation(s)
- Pengfei Lv
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xingzhuo Yang
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xianguo Zhao
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Zhangwu Zhao
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Juan Du
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| |
Collapse
|
7
|
Wang C, Qiao K, Ding Y, Liu Y, Niu J, Cao H. Enhanced control efficacy of spinosad on corn borer using polylactic acid encapsulated mesoporous silica nanoparticles as a smart delivery system. Int J Biol Macromol 2023; 253:126425. [PMID: 37607654 DOI: 10.1016/j.ijbiomac.2023.126425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/27/2023] [Accepted: 08/17/2023] [Indexed: 08/24/2023]
Abstract
Asion corn borer (Ostrinia furnacalis (Guenee)) is one of the most important factors affecting the normal growth and yield of corn. However, chemical control methods currently in use cause severe pollution. In the present study, aminated mesoporous silica nanoparticles (MSNs-NH2) and polylactic acid (PLA) were used as the carrier and capping agent respectively to construct an insect gut microenvironment nano-response system that loaded spinosad, a biopesticide used to control O. furnacalis. The resulting spinosad@MSNs-PLA demonstrated high loading capacity (38.6 %) and improved photostability of spinosad. Moreover, this delivery system could intelligently respond to the intestinal microenvironment of the corn borer's gut and achieve the smart release of spinosad. Compared with the conventional pesticide, spinosad@MSNs-PLA exhibited superior efficacy in controlling the O. furnacalis and could uptake and transport in maize plants without adverse effects on their growth. Furthermore, the toxicity of spinosad@MSNs-PLA on zebrafish was reduced by over 50 times. The prepared spinosad@MSNs-PLA has great potential and could be widely applied in agricultural production in the future. This approach could improve the utilization of pesticide and reduce environmental pollution. In addition, MSNs-PLA nano vectors provide new ideas for the control of other borer pests.
Collapse
Affiliation(s)
- Chao Wang
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Ke Qiao
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Yi Ding
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Ying Liu
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Junfan Niu
- School of Plant Protection, Anhui Agricultural University, Hefei, China.
| | - Haiqun Cao
- School of Plant Protection, Anhui Agricultural University, Hefei, China.
| |
Collapse
|
8
|
Zhang P, Jialaliding Z, Gu J, Merchant A, Zhang Q, Zhou X. Knockout of ovary serine protease Leads to Ovary Deformation and Female Sterility in the Asian Corn Borer, Ostrinia furnacalis. Int J Mol Sci 2023; 24:16311. [PMID: 38003502 PMCID: PMC10671606 DOI: 10.3390/ijms242216311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Oogenesis in insects is a carefully orchestrated process, facilitating the formation of female gametes, which is regulated by multiple extrinsic and intrinsic factors, including ovary serine protease (Osp). As a member of the serine protease family, Osp is a homolog of Nudel, a maternally required protease defining embryonic dorsoventral polarity in Drosophila. In this study, we used CRISPR/Cas9-mediated mutagenesis to functionally characterize Osp in the Asian corn borer, Ostrinia furnacalis, a devastating maize pest throughout Asia and Australia. Building on previous knowledge, we hypothesized that knockout of Osp would disrupt embryonic development in O. furnacalis females. To examine this overarching hypothesis, we (1) cloned and characterized Osp from O. furnacalis, (2) designed target sites on exons 1 and 4 to construct a CRISPR/Cas9 mutagenesis system, and (3) documented phenotypic impacts among O. furnacalis Osp mutants. As a result, we (1) examined the temporal-spatial expression profiles of OfOsp, which has an open reading frame of 5648 bp in length and encodes a protein of 1873 amino acids; (2) established O. furnacalis Osp mutants; and (3) documented recessive, female-specific sterility among OfOspF mutants, including absent or deformed oviducts and reduced fertility in female but not male mutants. Overall, the combined results support our initial hypothesis that Osp is required for embryonic development, specifically ovarian maturation, in O. furnacalis females. Given its substantial impacts on female sterility, Osp provides a potential target for the Sterile Insect Technique (SIT) to manage Lepidoptera pests in general and the species complex Ostrinia in particular.
Collapse
Affiliation(s)
- Porui Zhang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; (P.Z.); (Z.J.); (J.G.)
| | - Zuerdong Jialaliding
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; (P.Z.); (Z.J.); (J.G.)
| | - Junwen Gu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; (P.Z.); (Z.J.); (J.G.)
| | - Austin Merchant
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA;
| | - Qi Zhang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; (P.Z.); (Z.J.); (J.G.)
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA;
| |
Collapse
|
9
|
Tong D, Zhang L, Wu N, Xie D, Fang G, Coates BS, Sappington TW, Liu Y, Cheng Y, Xia J, Jiang X, Zhan S. The oriental armyworm genome yields insights into the long-distance migration of noctuid moths. Cell Rep 2022; 41:111843. [PMID: 36543122 DOI: 10.1016/j.celrep.2022.111843] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 07/28/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022] Open
Abstract
The oriental armyworm, Mythimna separata, is known for its long-distance seasonal migration and environment-dependent phase polymorphisms. Here, we present a chromosome-level genome reference and integrate multi-omics, functional genetics, and behavioral assays to explore the genetic bases of the hallmark traits of M. separata migration. Gene family comparisons show expansion of gustatory receptor genes in this cereal crop pest. Functional investigation of magnetoreception-related genes and associated flight behaviors suggest that M. separata may use the geomagnetic field to guide orientation in its nocturnal flight. Comparative transcriptome characterizes a suite of genes that may confer the observed plasticity between phases, including genes involved in protein processing, hormone regulation, and dopamine metabolism. We further report molecular signatures that underlie the dynamic regulation of a migratory syndrome coordinating reproduction and flight. Our study yields insights into environment-dependent developmental plasticity in moths and advances our understanding of long-distance migration in nocturnal insect pests.
Collapse
Affiliation(s)
- Dandan Tong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lei Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ningning Wu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Dianjie Xie
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Gangqi Fang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Brad S Coates
- USDA-ARS Corn Insects and Crop Genetics Research Unit, Science Hall II, 2310 Pammel Dr., Ames, IA 50011, USA
| | - Thomas W Sappington
- USDA-ARS Corn Insects and Crop Genetics Research Unit, Science Hall II, 2310 Pammel Dr., Ames, IA 50011, USA
| | - Yueqiu Liu
- School of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China
| | - Yunxia Cheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jixing Xia
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xingfu Jiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Shuai Zhan
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
10
|
Bi H, Merchant A, Gu J, Li X, Zhou X, Zhang Q. CRISPR/Cas9-Mediated Mutagenesis of Abdominal-A and Ultrabithorax in the Asian Corn Borer, Ostrinia furnacalis. INSECTS 2022; 13:insects13040384. [PMID: 35447826 PMCID: PMC9031573 DOI: 10.3390/insects13040384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/02/2022] [Accepted: 04/09/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Homeotic genes encode transcription factors that coordinated the anatomical structure formation during the early embryonic development of organisms. In this study, we functionally characterized two homeotic genes, Abdominal-A (Abd-A) and Ultrabithorax (Ubx), in the Asian corn borer, Ostrinia furnacalis (a maize pest that has devastated the Asia-Pacific region) by using a CRISPR/Cas9 genome editing system. Our results show that the mutagenesis of OfAbd-A and OfUbx led to severe morphological defects in O. furnacalis, which included fused segments and segmental twist during the larval stage, and hollowed and incision-like segments during the pupal stage in OfAbd-A mutants, as well as defects in the wing-pad development in pupal and adult OfUbx mutants. Overall, knocking out Abd-A and Ubx in O. furnacalis resulted in the embryonic lethality to, and pleiotropic impact on, other homeotic genes. This study not only confirms the conserved body planning functions in OfAbd-A and OfUbx, but it also strengthens the control implications of these homeotic genes for lepidopteran pests. Abstract (1) Background: Abdominal-A (Abd-A) and Ultrabithorax (Ubx) are homeotic genes that determine the identity and morphology of the thorax and abdomen in insects. The Asian corn borer, Ostrinia furnacalis (Guenée) (Lepidoptera: Pyralidae), is a devastating maize pest throughout Asia, the Western Pacific, and Australia. Building on previous knowledge, we hypothesized that the knockout of Abd-A and Ubx would disrupt the abdominal body planning in O. furnacalis. (2) Methods: CRISPR/Cas9-targeted mutagenesis was employed to decipher the functions of these homeotic genes. (3) Results: Knockout insects demonstrated classical homeotic transformations. Specifically, the mutagenesis of OfAbd-A resulted in: (1) Fused segments and segmental twist during the larval stage; (2) Embryonic lethality; and (3) The pleiotropic upregulation of other homeotic genes, including Lab, Pd, Dfd, Antp, and Abd-B. The mutagenesis of OfUbx led to: (1) Severe defects in the wing pads, which limited the ability of the adults to fly and mate; (2) Female sterility; and (3) The pleiotropic upregulation of other homeotic genes, including Dfd, Abd-B, and Wnt1. (4) Conclusions: These combined results not only support our hypothesis, but they also strengthen the potential of using homeotic genes as molecular targets for the genetic control of this global insect pest.
Collapse
Affiliation(s)
- Honglun Bi
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; (H.B.); (J.G.)
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Austin Merchant
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA; (A.M.); (X.Z.)
| | - Junwen Gu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; (H.B.); (J.G.)
| | - Xiaowei Li
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China;
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA; (A.M.); (X.Z.)
| | - Qi Zhang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; (H.B.); (J.G.)
- Correspondence: ; Tel.: +86-13609876667
| |
Collapse
|