1
|
Yang TT, Ma Y, Dai Z, Li Y, Wang JX, Bai TF, Getahun MN, Obiero GFO, Dong SL, Zhang J, Yan Q. Molecular mechanisms based on peripheral level of vanillin recognition in Orthaga achatina (Lepidoptera: Pyralidae). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2025; 180:104317. [PMID: 40294874 DOI: 10.1016/j.ibmb.2025.104317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/17/2025] [Accepted: 04/23/2025] [Indexed: 04/30/2025]
Abstract
Orthaga achatina (Lepidoptera Pyralidae) is a specialist pest of the camphor tree Cinnamomum camphora. Vanillin is a volatile compound found in many plants, and its effects on insects can be either attractive or repellent, depending on the species. However, the behavioral response of Orthaga achatina to vanillin, a volatile compound emitted by camphor trees, remains unexplored. In this study, we found that vanillin attracts both male and female O. achatina adults. Fluorescence competitive binding assays further revealed that among the five odorant-binding proteins (OBPs) highly expressed in both male and female antennae, OachOBP7 exhibited the most prominent binding affinity with vanillin. Furthermore, by employing the Xenopus oocyte expression and two-electrode voltage clamp recording system (XOE-TEVC) to conduct a functional characterization of 40 ORs, vanillin was the optimal ligand for OachOR7 among all tested ligands. In addition, with the 3D structure modeling and molecular docking techniques, it was revealed that OachOR7 displayed a relatively high binding affinity (-5.5 kcal/mol), and Gln84 and Asn189 were predicted to be key amino acid residues for binding vanillin. Finally, the two amino acids were verified by site-specific mutagenesis followed by XOE-TEVC, showing that the binding ability of OR7 to vanillin was significantly reduced to 9.23 × 10-2 μM after the mutation of two amino acids. This study demonstrate vanillin's behavioral attraction to O. achatina and reveal its molecular basis, offering new possibilities for targeted pest management using this compound.
Collapse
Affiliation(s)
- Ting-Ting Yang
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China; Key Laboratory of Integrated Management of Crop Disease and Pests (Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China
| | - Yu Ma
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zheng Dai
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China; Key Laboratory of Integrated Management of Crop Disease and Pests (Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China
| | - Ying Li
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ji-Xiang Wang
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Teng-Fei Bai
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Merid Negash Getahun
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya
| | - George F O Obiero
- Department of Biochemistry and Biotechnology, The Technical University of Kenya, PO Box 52428-00200, Nairobi, Kenya
| | - Shuang-Lin Dong
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China; Key Laboratory of Integrated Management of Crop Disease and Pests (Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China
| | - Jin Zhang
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China; Key Laboratory of Integrated Management of Crop Disease and Pests (Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China.
| | - Qi Yan
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China; Key Laboratory of Integrated Management of Crop Disease and Pests (Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
2
|
Huang X, Xiao T, Deng M, Zhao X, Wang W, Li J, Xu X, Yang Z, Sun Z, Lu K. Binding Properties of the General Odorant-Binding Protein GOBP2 to Herbicides and Insecticides in Spodoptera litura. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:3977-3989. [PMID: 39913678 DOI: 10.1021/acs.jafc.4c12251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
We previously reported that the general odorant-binding protein GOBP2 enhances chlorpyrifos tolerance in Spodoptera litura by perceiving the herbicides. However, the direct interaction between GOBP2 and pesticides remains unknown. Herein, we verified the effect of the direct binding of GOBP2 to pesticides on the herbicide-induced insecticide tolerance in S. litura. Fluorescence competitive binding assays indicated that GOBP2 exhibits high binding affinities to the herbicide trifluralin and the insecticides indoxacarb, chlorpyrifos, and fipronil, with Ki values ranging from 1.95 to 13.01 μM. Moreover, Ala136 and Thr30 were determined as the key binding sites of GOBP2 to the pesticides through molecular docking and site-directed mutagenesis. Finally, the knockdown of GOBP2 significantly increased the larval susceptibility to trifluralin and three types of insecticides. Our findings provide a valuable reference for the further exploration of the molecular mechanisms underlying herbicide-induced insecticide tolerance in S. litura, laying the foundation for innovative pest management strategies.
Collapse
Affiliation(s)
- Xiaodan Huang
- Key Laboratory of Agri-products Quality and Biosafety (Ministry of Education), Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Tianxiang Xiao
- Key Laboratory of Agri-products Quality and Biosafety (Ministry of Education), Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Mengqing Deng
- Key Laboratory of Agri-products Quality and Biosafety (Ministry of Education), Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Xinyu Zhao
- Key Laboratory of Agri-products Quality and Biosafety (Ministry of Education), Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Wenxiu Wang
- Key Laboratory of Agri-products Quality and Biosafety (Ministry of Education), Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Jun Li
- Key Laboratory of Agri-products Quality and Biosafety (Ministry of Education), Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Xiyue Xu
- Key Laboratory of Agri-products Quality and Biosafety (Ministry of Education), Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Zhiming Yang
- Key Laboratory of Agri-products Quality and Biosafety (Ministry of Education), Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Zhongxiang Sun
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Kai Lu
- Key Laboratory of Agri-products Quality and Biosafety (Ministry of Education), Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
3
|
Duan SG, Mao L, Sun SF, Chen RD, Taha Abdelkhalek S, Wang MQ. Key site residues of Cnaphalocrocis medinalis odorant-binding protein 13 CmedOBP13 involved in interacting with rice plant volatiles. Int J Biol Macromol 2025; 290:139007. [PMID: 39708865 DOI: 10.1016/j.ijbiomac.2024.139007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/03/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024]
Abstract
Odorant binding proteins (OBPs) play key roles in the insect olfactory system by assisting the neuronal response to hydrophobic odor molecules, understanding their interaction with ligands will facilitate the virtual screening of behaviorally active compounds in insects. Here, we successfully cloned and confirmed CmedOBP13, an antennae-biased OBP from the rice leaffolder Cnaphalocrocis medinalis, as a secreted protein. Recombinant CmedOBP13 was obtained using the Escherichia coli system, and its binding affinities to 35 volatile compounds emitted by rice plants and three sex pheromone components from female moths were assessed by a competitive binding assay. The results revealed that CmedOBP13 exhibited binding affinity to 23 rice volatiles, while no binding affinity for sex pheromone components. Furthermore, the stability of its conformation was found to be dependent on the pH level. Finally, the interaction between CmedOBP13 and odorants was predicted and confirmed by molecular docking and mutation functional assays, respectively. The combination of multiple hydrophobic residues created an adequate hydrophobic setting for ligands, and three residues (Glu13, Arg34, and Tyr115) might form hydrogen bonds with 15 odorants. Single mutations of Glu13, Arg34, Leu72, and Tyr115 diminished the binding affinities of CmedOBP13 to corresponding odorants, respectively. These findings provided valuable insights into the mode of action of CmedOBP13 interacting with the volatiles of rice plants and will guide the screening of behaviorally active compounds against C. medinalis in future.
Collapse
Affiliation(s)
- Shuang-Gang Duan
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China; Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, PR China
| | - Ling Mao
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Shuang-Feng Sun
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China; Xianning Bureau of Agriculture and Rural Affairs, Xianning 437100, PR China
| | - Ru-Di Chen
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Sara Taha Abdelkhalek
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China; Department of Entomology, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| | - Man-Qun Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
4
|
Tu J, Wang Z, Yang F, Liu H, Qiao G, Zhang A, Wang S. The Female-Biased General Odorant Binding Protein 2 of Semiothisa cinerearia Displays Binding Affinity for Biologically Active Host Plant Volatiles. BIOLOGY 2024; 13:274. [PMID: 38666886 PMCID: PMC11048283 DOI: 10.3390/biology13040274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024]
Abstract
Herbivorous insects rely on volatile chemical cues from host plants to locate food sources and oviposition sites. General odorant binding proteins (GOBPs) are believed to be involved in the detection of host plant volatiles. In the present study, one GOBP gene, ScinGOBP2, was cloned from the antennae of adult Semiothisa cinerearia. Reverse-transcription PCR and real-time quantitative PCR analysis revealed that the expression of ScinGOBP2 was strongly biased towards the female antennae. Fluorescence-based competitive binding assays revealed that 8 of the 27 host plant volatiles, including geranyl acetone, decanal, cis-3-hexenyl n-valerate, cis-3-hexenyl butyrate, 1-nonene, dipentene, α-pinene and β-pinene, bound to ScinGOBP2 (KD = 2.21-14.94 μM). The electrical activities of all eight ScinGOBP2 ligands were confirmed using electroantennography. Furthermore, oviposition preference experiments showed that eight host volatiles, such as decanal, cis-3-hexenyl n-valerate, cis-3-hexenyl butyrate, and α-pinene, had an attractive effect on female S. cinerearia, whereas geranyl acetone, 1-nonene, β-pinene, and dipentene inhibited oviposition in females. Consequently, it can be postulated that ScinGOBP2 may be implicated in the perception of host plant volatiles and that ScinGOBP2 ligands represent significant semiochemicals mediating the interactions between plants and S. cinerearia. This insight could facilitate the development of a chemical ecology-based approach for the management of S. cinerearia.
Collapse
Affiliation(s)
- Jingjing Tu
- Key Laboratory of Environment Friendly Management on Fruit and Vegetable Pests in North China (Coconstructed by the Ministry and Province), Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.T.); (Z.W.); (F.Y.); (H.L.); (G.Q.)
- College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing 102206, China;
| | - Zehua Wang
- Key Laboratory of Environment Friendly Management on Fruit and Vegetable Pests in North China (Coconstructed by the Ministry and Province), Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.T.); (Z.W.); (F.Y.); (H.L.); (G.Q.)
| | - Fan Yang
- Key Laboratory of Environment Friendly Management on Fruit and Vegetable Pests in North China (Coconstructed by the Ministry and Province), Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.T.); (Z.W.); (F.Y.); (H.L.); (G.Q.)
| | - Han Liu
- Key Laboratory of Environment Friendly Management on Fruit and Vegetable Pests in North China (Coconstructed by the Ministry and Province), Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.T.); (Z.W.); (F.Y.); (H.L.); (G.Q.)
| | - Guanghang Qiao
- Key Laboratory of Environment Friendly Management on Fruit and Vegetable Pests in North China (Coconstructed by the Ministry and Province), Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.T.); (Z.W.); (F.Y.); (H.L.); (G.Q.)
| | - Aihuan Zhang
- College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing 102206, China;
| | - Shanning Wang
- Key Laboratory of Environment Friendly Management on Fruit and Vegetable Pests in North China (Coconstructed by the Ministry and Province), Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.T.); (Z.W.); (F.Y.); (H.L.); (G.Q.)
| |
Collapse
|
5
|
Wang P, Liu M, Lv C, Tian Z, Li R, Li Y, Zhang Y, Liu J. Identifying the Key Role of Plutella xylostella General Odorant Binding Protein 2 in Perceiving a Larval Attractant, ( E, E)-2,6-Farnesol. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5690-5698. [PMID: 38447177 DOI: 10.1021/acs.jafc.4c00621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
There is currently a lack of effective olfaction-based techniques to control diamondback moth (DBM) larvae. Identifying behaviorally active odorants for DBM larvae and exploring their recognition mechanisms can provide insights into olfaction-based larval control strategies. Through the two-choice assay, (E,E)-2,6-farnesol (farnesol) was identified as a compound exhibiting significant attractant activity toward DBM larvae, achieving an attraction index of 0.48 ± 0.13. PxylGOBP1 and PxylGOBP2, highly expressed in the antennae of DBM larvae, both showed high affinity toward farnesol. RNAi technology was used to knock down PxylGOBP1 and PxylGOBP2, revealing that the attraction of DBM larvae to farnesol nearly vanished following the knockdown of PxylGOBP2, indicating its critical role in recognizing farnesol. Further investigation into the PxylGOBP2-farnesol interaction revealed the importance of residues like Thr9, Trp37, and Phe118 in PxylGOBP2's binding to farnesol. This research is significant for unveiling the olfactory mechanisms of DBM larvae and developing larval behavior regulation techniques.
Collapse
Affiliation(s)
- Pei Wang
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Miao Liu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Changhong Lv
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhen Tian
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ruichi Li
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yifan Li
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yalin Zhang
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiyuan Liu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
6
|
Yuan W, Rao X, Zhong B, Chen M, Ali H, Lv C, Niu C. Exploring the functional profiles of odorant binding proteins crucial for sensing key odorants in the new leaves of coconut palms in Rhynchophorus ferrugineus. Int J Biol Macromol 2024; 261:129852. [PMID: 38307432 DOI: 10.1016/j.ijbiomac.2024.129852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/28/2024] [Accepted: 01/28/2024] [Indexed: 02/04/2024]
Abstract
The red palm weevil (RPW), Rhynchophorus ferrugineus (Curculionidae: Coleoptera) is a highly destructive global pest of coconut trees, with a preference for laying its eggs on new leaves. Females can identify where to lay eggs by using their sense of smell to detect specific odorants found in new leaves. In this study, we focused on the two odorants commonly found in new leaves by GC-MS: trans, trans-2,4-nonadienal and trans-2-nonenal. Our behavioral assays demonstrated a significant attraction of females to both of these odorants, with their electrophysiological responses being dose-dependent. Furthermore, we examined the expression patterns induced by these odorants in eleven RferOBP genes. Among them, RferOBP3 and RferOBP1768 exhibited the most significant and simultaneous upregulation. To further understand the role of these two genes, we conducted experiments with females injected with OBP-dsRNA. This resulted in a significant decrease in the expression of RferOBP3 and RferOBP1768, as well as impaired the perception of the two odorants. A fluorescence competitive binding assay also showed that both RferOBPs strongly bound to the odorants. Additionally, sequence analysis revealed that these two RferOBPs belong to the Minus-C family and possess four conserved cysteines. Molecular docking simulations showed strong interactions between these two RferOBPs and the odorant molecules. Overall, our findings highlight the crucial role of RferOBP3 and RferOBP1768 in the olfactory perception of the key odorants in coconut palm new leaves. This knowledge significantly improves our understanding of how RPW females locate sites for oviposition and lays the foundation for future research on the development of environmentally friendly pest attractants.
Collapse
Affiliation(s)
- Weiqin Yuan
- Coconut Research Institute/Tropical Oil Crops Research Institute, Chinese Academy of Tropical Agriculture Sciences, Wenchang, Hainan 571300, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xinjie Rao
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; New Horizon Health Co., Ltd., Hangzhou 310051, China
| | - Baozhu Zhong
- Coconut Research Institute/Tropical Oil Crops Research Institute, Chinese Academy of Tropical Agriculture Sciences, Wenchang, Hainan 571300, China
| | - Mengran Chen
- College of Plant Protection/Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Hainan University, Haikou 570228, China
| | - Habib Ali
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information technology, Rahim Yar Khan 64200, Pakistan
| | - Chaojun Lv
- Coconut Research Institute/Tropical Oil Crops Research Institute, Chinese Academy of Tropical Agriculture Sciences, Wenchang, Hainan 571300, China.
| | - Changying Niu
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
7
|
Ma Y, Yang TT, Ni S, Wang JX, He Y, Si YX, Zhang J, Dong SL, Yan Q. The Odorant Receptor Recognizing Camphor in a Camphor Tree Specialist Orthaga achatina (Lepidoptera: Pyralidae). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2689-2696. [PMID: 38267394 DOI: 10.1021/acs.jafc.3c08877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Camphor has been used as an effective repellent and pesticide to stored products for a long history, but Orthaga achatina (Lepidoptera: Pyralidae) has evolved to specifically feed on the camphor tree Cinnamomum camphora. However, the behavioral response of O. achatina to camphor and the molecular basis of camphor perception are totally unknown. Here, we demonstrated that both male and female adults were behaviorally attracted to camphor, suggesting the adaptation of O. achatina to and utilization of camphor as a signal of C. camphora. Second, in 40 O. achatina OR genes obtained by analyzing antenna transcriptomes, only OachOR16/Orco significantly responded to camphor in the Xenopus oocyte system. Finally, by molecular docking analysis and site-directed mutagenesis, the Ser209 residue is confirmed to be essential for binding of the oachOR16 with camphor. This study not only reveals the camphor-based host plant choice and olfactory mechanisms of O. achatina but also provides a molecular target for screening more potential insect repellents.
Collapse
Affiliation(s)
- Yu Ma
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Ting-Ting Yang
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuang Ni
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Ji-Xiang Wang
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu He
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu-Xiao Si
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jin Zhang
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuang-Lin Dong
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Qi Yan
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
8
|
Han WK, Tang FX, Yan YY, Wang Y, Zhang YX, Yu N, Wang K, Liu ZW. An OBP gene highly expressed in non-chemosensory tissues affects the phototaxis and reproduction of Spodoptera frugiperda. INSECT MOLECULAR BIOLOGY 2024; 33:81-90. [PMID: 37815404 DOI: 10.1111/imb.12880] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 09/22/2023] [Indexed: 10/11/2023]
Abstract
Insect odorant binding proteins (OBPs) were initially regarded as carriers of the odorants involved in chemosensation. However, it had been observed that a growing number of OBP genes exhibited broad expression patterns beyond chemosensory tissues. Here, an OBP gene (OBP31) was found to be highly expressed in the larval ventral nerve cord, adult brain and male reproductive organ of Spodoptera frugiperda. An OBP31 knockout strain (OBP31-/- ) was generated by CRISPR/Cas9 mutagenesis. For OBP31-/- , the larvae needed longer time to pupate, but there was no difference in the pupal weight between OBP31-/- and wild type (WT). OBP31-/- larvae showed stronger phototaxis than the WT larvae, indicating the importance of OBP31 in light perception. For mating rhythm of adults, OBP31-/- moths displayed an earlier second mating peak. In the cross-pairing of OBP31-/- and WT moths, the mating duration was longer, and hatchability was lower in OBP31-/- group and OBP31+/- ♂ group than that in the WT group. These results suggested that OBP31 played a vital role in larval light perception and male reproductive process and could provide valuable insights into understanding the biological functions of OBPs that were not specific in chemosensory tissues.
Collapse
Affiliation(s)
- Wei-Kang Han
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Feng-Xian Tang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yang-Yang Yan
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yan Wang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yi-Xi Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Na Yu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Kan Wang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Ze-Wen Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
9
|
Liu XL, Wu ZR, Liao W, Zhang XQ, Pei YW, Lu M. The binding affinity of two general odorant binding proteins in Spodoptera frugiperda to general volatiles and insecticides. Int J Biol Macromol 2023; 252:126338. [PMID: 37591429 DOI: 10.1016/j.ijbiomac.2023.126338] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/19/2023]
Abstract
Spodoptera frugiperda is a kind of polyphagous pest, and can damage a large number different host plants around the worldwide. The molecular mechanisms of two general odorant binding proteins (GOBPs) binding with general volatiles and insecticides are still blank. In this study, we investigated the function of two GOBPs in S. frugiperda, by expressing two SfruGOBPs and tested the binding affinities by the fluorescence competition binding assays. The results exhibited that SfruGOBP1 has binding affinities to 4 of 38 general volatiles and 3 of 7 insecticides. In contrast, SfruGOBP2 showed a broader ligand-binding spectrum to 21 volatiles and 4 insecticides, suggesting SfruGOBP2 may plays a more important role in perceiving host volatiles than SfruGOBP1. Furthermore, we used molecular docking and site-directed mutagenesis assay to explored the key amino acid residues of two SfruGOBP to insecticides ligand. This study provides some valuable information to exploring the olfactory mechanism of two GOBPs bound the host plant volatiles and insecticides in S. frugiperda.
Collapse
Affiliation(s)
- Xiao-Long Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Zhe-Ran Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Wang Liao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Xiao-Qing Zhang
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yi-Wen Pei
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Min Lu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
| |
Collapse
|
10
|
Han WK, Tang FX, Yu N, Zhang YX, Liu ZW. A nonsensory odorant-binding protein plays an important role in the larval development and adult mating of Spodoptera frugiperda. INSECT SCIENCE 2023; 30:1325-1336. [PMID: 36647341 DOI: 10.1111/1744-7917.13178] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 11/25/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Odorant-binding proteins (OBPs) play key roles in the perception of semiochemicals in insects. Several OBPs in insect olfactory systems have been functionally characterized, and they provide excellent targets for pest control. The functions of some OBPs that are highly expressed in the nonsensory organs of insects remain unclear. Here, the physiological function of an OBP (OBP27) that was highly expressed in the nonsensory organs of Spodoptera frugiperda was studied. OBP27 was nested within the Plus-C cluster according to phylogenetic analysis. The transcription of OBP27 steadily increased throughout the development of S. frugiperda, and transcripts of this gene were abundant in the fat body and male reproductive organs. An OBP27 knockout strain with an early frameshift mutation was obtained using the clustered regularly interspaced palindromic repeats (CRISPR) / CRISPR-associated protein 9 (Cas9) system. The development time of OBP27-/- larvae was significantly longer than that of other larvae. Both male and female OBP27-/- pupae weighed significantly less than wild-type (WT) pupae. In crosses of OBP27-/- males or females, the mating rate was lower and the mating duration was longer for OBP27-/- male-WT female pairs than for WT-WT pairs. By contrast, the mating rate, hatching rate, and number of eggs of OBP27-/- female-WT male pairs and WT-WT pairs were similar. These findings indicate that OBP27 plays an important role in the larval development and mating process in male adults. Generally, our findings provide new insights into the physiological roles of nonsensory OBPs.
Collapse
Affiliation(s)
- Wei-Kang Han
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Feng-Xian Tang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Na Yu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yi-Xi Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Ze-Wen Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
11
|
Dong JF, Wang K, Sun YL, Tian CH, Wang SL. Antennal transcriptome analysis of odorant-binding proteins and characterization of GOBP2 in the variegated cutworm Peridroma saucia. Front Physiol 2023; 14:1241324. [PMID: 37637146 PMCID: PMC10450149 DOI: 10.3389/fphys.2023.1241324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/26/2023] [Indexed: 08/29/2023] Open
Abstract
Odorant-binding proteins (OBPs) are expressed at extremely high concentrations in the chemo-sensilla lymph of insects and have long been thought to be crucial for delivering the semiochemicals to the odorant receptors. They are represented by multiple classes: general odorant-binding proteins (GOBP1 and GOBP2) and pheromone-binding proteins. In the current study, we identified a total of 35 OBPs in the antennal transcriptome of Peridroma saucia, a worldwide pest that causes serious damage to various crops. A gene expression value (TPM, transcripts per million) analysis revealed that seven OBPs (PsauPBP1/2/3, PsauGOBP1/2, PsauOBP6, and PsauOBP8) were highly abundant in the antennae. Next, we focused on the expression and functional characterization of PsauGOBP2. Real-time quantitative-PCR analysis demonstrated that PsauGOBP2 was predominantly expressed in the antennae of both sexes. Fluorescence binding assays showed that the recombinant PsauGOBP2 strongly binds to the female sex pheromone components Z11-16: Ac (Ki = 4.2 μM) and Z9-14: Ac (Ki = 4.9 μM) and binds moderately (6 µM ≤ Ki ≤ 13 µM) to the host plant volatiles phenylethyl acetate, β-myrcene, and dodecanol. Further 3D structural modeling and molecular docking revealed that several crucial amino acid residues are involved in ligand binding. The results not only increase our understanding of the olfactory system of P. saucia but also provide insights into the function of PsauGOBP2 that has implications for developing sustainable approaches for P. saucia management.
Collapse
Affiliation(s)
- Jun-Feng Dong
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Ke Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ya-Lan Sun
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Cai-Hong Tian
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Shao-Li Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
12
|
Ha TS, Sengupta S, Powell J, Smith DP. An angiotensin converting enzyme homolog is required for volatile pheromone detection, odorant binding protein secretion and normal courtship behavior in Drosophila melanogaster. Genetics 2023; 224:iyad109. [PMID: 37283550 PMCID: PMC10484059 DOI: 10.1093/genetics/iyad109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/23/2023] [Accepted: 05/30/2023] [Indexed: 06/08/2023] Open
Abstract
In many arthropods, including insects responsible for transmission of human diseases, behaviors that include mating, aggregation, and aggression are triggered by detection of pheromones. Extracellular odorant binding proteins are critical for pheromone detection in many insects and are secreted into the fluid bathing the olfactory neuron dendrites. In Drosophila melanogaster, the odorant binding protein LUSH is essential for normal sensitivity to the volatile sex pheromone, 11-cis vaccenyl acetate (cVA). Using a genetic screen for cVA pheromone insensitivity, we identified ANCE-3, a homolog of human angiotensin converting enzyme that is required for detection of cVA pheromone. The mutants have normal dose-response curves for food odors, although olfactory neuron amplitudes are reduced in all olfactory neurons examined. ance-3 mutants have profound delays in mating, and the courtship defects are primarily but not exclusively due to loss of ance-3 function in males. We demonstrate that ANCE-3 is required in the sensillae support cells for normal reproductive behavior, and that localization of odorant binding proteins to the sensillum lymph is blocked in the mutants. Expression of an ance-3 cDNA in sensillae support cells completely rescues the cVA responses, LUSH localization, and courtship defects. We show the courtship latency defects are not due to effects on olfactory neurons in the antenna nor mediated through ORCO receptors, but instead stem from ANCE-3-dependent effects on chemosensory sensillae in other body parts. These findings reveal an unexpected factor critical for pheromone detection with profound influence on reproductive behaviors.
Collapse
Affiliation(s)
- Tal Soo Ha
- Department of Biomedical Science, Daegu University, 201 Daegudae-ro, Gyeongsan-si, Gyeongbuk, 38453 Republic of Korea
| | - Samarpita Sengupta
- Department of Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9111, USA
- Department of Physician Assistant Studies, School of Health Professions, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9111, USA
| | - Jordan Powell
- Department of Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9111, USA
| | - Dean P Smith
- Department of Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9111, USA
- Department of Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9111, USA
- O’Donnell Brain Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9111, USA
| |
Collapse
|
13
|
Jia ZQ, Zhang SG, Wang Y, Pan JH, Liu FF, Zhan EL, Fouad EA, Fu YL, Pan QR, Zhao CQ. Physiological Function of RDL1 and RDL2 Subunits of the Ionotropic GABA Receptor in the Spodoptera litura with the CRISPR/Cas9 System In Vivo. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:11875-11883. [PMID: 37490029 DOI: 10.1021/acs.jafc.3c02811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
In insect ionotropic γ-aminobutyric acid receptor (iGABAR) subunits, only resistance to dieldrin (RDL) can be individually and functionally expressed in vitro. In lepidopteran, two to three RDL subtypes are identified; however, their physiological roles have not been distinguished in vivo. In this study, SlRdl1 and SlRdl2 of S. litura were individually knocked out using CRISPR/Cas9, respectively. The mortality and larval and pupal duration of KOSlRdl1 and KOSlRdl2 were increased. The flight time and distance were increased by 43.30%-80.66% and 58.96%-198.22%, respectively, in KOSlRdl1. The GABA-induced current was significantly decreased by 53.57%-74.28% and 46.91%-63.34% in the ventral nerve cord, and the GABA titer was significantly reduced by 17.65%-28.05% and 19.85%-42.46% in KOSlRdl1 and KOSlRdl2, respectively. In conclusion, SlRdl1 and SlRdl2 are necessary for the transmission of GABA-induced neural signals; however, only SlRdl1 could regulate the flight capability of S. litura. Our results provided a new avenue to study lepidopteran iGABARs.
Collapse
Affiliation(s)
- Zhong Qiang Jia
- Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Su Gui Zhang
- Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Ying Wang
- Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Jun Heng Pan
- Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Fei Fan Liu
- Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - En Ling Zhan
- Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Eman Atef Fouad
- Department of Bioassay, Central Agricultural Pesticides Laboratory, Agricultural Research Center, 12618 Giza, Egypt
| | - Ya Li Fu
- Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Qi Rui Pan
- Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Chun Qing Zhao
- Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, P.R. China
| |
Collapse
|
14
|
Tian Z, Li R, Cheng S, Zhou T, Liu J. The Mythimna separata general odorant binding protein 2 (MsepGOBP2) is involved in the larval detection of the sex pheromone (Z)-11-hexadecenal. PEST MANAGEMENT SCIENCE 2023; 79:2005-2016. [PMID: 36680502 DOI: 10.1002/ps.7373] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/15/2023] [Accepted: 01/21/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Mythimna separata is a notorious pest causing crop damages at the larval stage. Gaining insight into larval olfaction mechanisms would provide knowledge for olfaction-based management of M. separata larvae. RESULTS In the present research, (Z)-11-hexadecenal (Z11-16: Ald), a major component of M. separata sex pheromone, was found to attract early-instar larvae of M. separata in a food context. Using a fluorescent binding assay, we found that M. separata general odorant binding protein 2 (MsepGOBP2) exhibited high binding affinity to Z11-16: Ald. Further, silencing of MsepGOBP2 resulted in a sharp reduction of the response to Z11-16: Ald, which could not be mitigated by increasing the concentration of Z11-16: Ald. Additionally, we employed molecular dynamics-based approaches to unravel the interaction details between MsepGOBP2 and Z11-16: Ald, specifically the binding of Z11-16: Ald to MsepGOBP2. CONCLUSION Z11-16: Ald is attractive to early-instar larvae of M. separata, and MsepGOBP2 is identified to be indispensable in the larval detection of Z11-16: Ald. These results could aid in the development of olfaction-based methods for controlling M. separata in the larval stage. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhen Tian
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Ruichi Li
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Shichang Cheng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Tong Zhou
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Jiyuan Liu
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
15
|
Han WK, Tang FX, Gao HL, Wang Y, Yu N, Jiang JJ, Liu ZW. Co-CRISPR: A valuable toolkit for mutation enrichment in the gene editing of Spodoptera frugiperda. INSECT SCIENCE 2023; 30:625-636. [PMID: 36169087 DOI: 10.1111/1744-7917.13122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/28/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
The CRISPR/Cas9 system has been successfully applied in dozens of diverse species; although the screening of successful CRISPR/Cas9 editing events remains particularly laborious, especially for those that occur at relatively low frequency. Recently, a co-CRISPR strategy was proved to enrich the desired CRISPR events. Here, the co-CRISPR strategy was developed in the Fall armyworm, Spodoptera frugiperda, with kynurenine 3-monooxygenase gene (kmo) as a marker. The kmo mosaics induced by single-guide RNAs (sgRNAs)/Cas9 displayed the darker green color phenotype in larvae, compared with wild type (brown), and mosaic-eye adults were significantly acquired from the mosaic larvae group. In the kmo knockout strain, no significant difference was observed in larval development and adult reproduction. Acetylcholinesterase 2 (ace2) and Wnt1 were selected as target genes to construct the co-CRISPR strategy using kmo marker. By co-injection of kmo and ace2 sgRNAs, the mutant efficiency of ace2 was significantly increased in the kmo mosaic (larvae or adults) groups. Similarly, more malformed pupae with Wnt1 mutations were observed in the darker green larvae group. Taken together, these results demonstrated that kmo was a suitable visible marker gene for the application and extension of co-CRISPR strategy in Fall armyworm. Using darker green color in larvae or mosaic-eye in adults from kmo knockout as a marker, the mutant efficiency of a target gene could be enriched in a Fall armyworm group consisting of marked individuals. The co-CRISPR strategy is helpful for gene function studies by the knockout technique with no or lethal phenotypes.
Collapse
Affiliation(s)
- Wei-Kang Han
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Feng-Xian Tang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Hao-Li Gao
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yan Wang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Na Yu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jian-Jun Jiang
- Plant Protection Research Institute, Guangxi Academy of Agricultural Science, Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Nanning, China
| | - Ze-Wen Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
16
|
Dong JF, Sun YL, Wang K, Guo H, Wang SL. Expression, affinity, and binding mode analysis of antennal-binding protein X in the variegated cutworm Peridroma saucia (Hübner). Int J Biol Macromol 2023; 242:124671. [PMID: 37137349 DOI: 10.1016/j.ijbiomac.2023.124671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/17/2023] [Accepted: 04/26/2023] [Indexed: 05/05/2023]
Abstract
The variegated cutworm Peridroma saucia (Hübner) is a worldwide pest that causes serious damage to many crops. Odorant-binding proteins (OBPs) are small soluble proteins involved in the first step of odorant reception. In moths, antennal-binding protein Xs (ABPXs) represent a main subfamily of classic OBPs. However, their functions remain unclear. Here, we cloned the ABPX gene from the antennae of P. saucia. RT-qPCR and western-blot analyses showed that PsauABPX is antenna-predominant and male-biased. Further temporal expression investigation indicated that the expression of PsauABPX started 1 day before eclosion and reached the highest 3 days after eclosion. Next, fluorescence binding assays revealed that recombinant PsauABPX had high binding affinities with P. saucia female sex pheromone components Z11-16: Ac and Z9-14: Ac. Then, molecular docking, molecular dynamics simulation, and site-directed mutagenesis were employed to identify key amino acid residues involved in the binding of PsauABPX to Z11-16: Ac and Z9-14: Ac. The results demonstrated that Val-32, Gln-107 and Tyr-114 are essential for the binding to both sex pheromones. This study not only give us insight into the function and binding mechanism of ABPXs in moths, but could also be used to explore novel strategies to control P. saucia.
Collapse
Affiliation(s)
- Jun-Feng Dong
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471000, China
| | - Ya-Lan Sun
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471000, China
| | - Ke Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hao Guo
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China.
| | - Shao-Li Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
17
|
Zhang X, Purba ER, Sun J, Zhang QH, Dong SL, Zhang YN, He P, Mang D, Zhang L. Functional differentiation of two general-odorant binding proteins in Hyphantria cunea (Drury) (Lepidoptera: Erebidae). PEST MANAGEMENT SCIENCE 2023. [PMID: 37103977 DOI: 10.1002/ps.7515] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/21/2023] [Accepted: 04/27/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND General odor-binding proteins (GOBPs) play critical roles in insect olfactory recognition of sex pheromones and plant volatiles. Therefore, the identification of GOBPs in Hyphantria cunea (Drury) based on their characterization to pheromone components and plant volatiles is remain unknown. RESULTS In this study, two H. cunea (HcunGOBPs) genes were cloned, and their expression profiles and odorant binding characteristics were systematically analyzed. Firstly, the tissue expression study showed that both HcunGOBP1 and HcunGOBP2 were highly expressed in the antennae of both sexes, indicating their potential involvement in the perception of sex pheromones. Secondly, these two HcunGOBPs genes were expressed in Escherichia coli and ligand binding assays were used to assess the binding affinities to its sex pheromone components including two aldehydes and two epoxides, and some plant volatiles. HcunGOBP2 showed high binding affinities to two aldehyde components (Z9, Z12, Z15-18Ald and Z9, Z12-18Ald), and showed low binding affinities to two epoxide components (1, Z3, Z6-9S, 10R-epoxy-21Hy and Z3, Z6-9S, 10R-epoxy-21Hy), whereas HcunGOBP1 showed weak but significant binding to all four sex pheromone components. Furthermore, both HcunGOBPs demonstrated variable binding affinities to the plant volatiles tested. Thirdly, in silico studies of HcunGOBPs utilized homology, structure modeling, and molecular docking revealed critical hydrophobic residues might be involved in the binding of HcunGOBPs to their sex pheromone components and plant volatiles. CONCLUSION Our study suggests that these two HcunGOBPs may serve as potential targets for future studies of HcunGOBPs ligand binding, providing insight in the mechanism of olfaction in H. cunea. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaoqing Zhang
- Anhui Provincial Key Laboratory of Microbial Control, Engineering Research Center of Fungal Biotechnology, Ministry of Education School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, China
- Education Ministry, Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Endang R Purba
- Structural Cellular Biology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Jing Sun
- College of Life Science, Hebei University, Baoding, China
| | | | - Shuang-Lin Dong
- Education Ministry, Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Ya-Nan Zhang
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Peng He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Dingze Mang
- College of Life Science, Hebei University, Baoding, China
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Longwa Zhang
- Anhui Provincial Key Laboratory of Microbial Control, Engineering Research Center of Fungal Biotechnology, Ministry of Education School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, China
| |
Collapse
|
18
|
Li J, Zhang L. Current understandings of olfactory molecular events in the Asian corn borer, Ostrinia furnacalis (Lepidoptera: Crambidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 112:e21996. [PMID: 36575613 DOI: 10.1002/arch.21996] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/25/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
The Asian corn borer Ostrinia furnacalis (Lepidoptera: Crambidae) is a serious corn pest with widespread distribution in East Asia. Its olfactory mechanism is a focus of scientific study, aiming to find good ways to control this pest. Molecular events are considered to be important in olfactory mechanism. Current understandings of olfactory molecular events in O. furnacalis, mainly involving sex pheromones and olfactory proteins, were summarized to provide a reference for further studies. O. furnacalis sex pheromone contains two components E-12-tetradecenyl acetate and Z-12-tetradecenyl acetate, which may be recognized and bound by the pheromone binding proteins OfurPBP3 and OfurPBP2, and then transported to the odorant receptors (ORs) OfurOR4 and OfurOR6 to activate them. The ORs OfurOR8, OfurOR7 and OfurOR5b mainly respond to the sex pheromone components of other Ostrinia species, E-11-tetradecenyl acetate, Z-11-tetradecenyl acetate and Z-9-tetradecenyl acetate. The OR OfurOR27 responds strongly to plant odorants nonanal, octanal and 1-octanol. Much work remains to be done to fully understand odorants with olfactory activity to O. furnacalis and the functions of its olfactory proteins. These studies will help to reveal olfactory mechanism in O. furnacalis, with the aim of regulating its behaviors to control this pest.
Collapse
Affiliation(s)
- Jia Li
- Plant Protection College, Shenyang Agricultural University, Shenyang, China
| | - Long Zhang
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
19
|
Ma Y, Li Y, Wei ZQ, Hou JH, Si YX, Zhang J, Dong SL, Yan Q. Identification and Functional Characterization of General Odorant Binding Proteins in Orthaga achatina. INSECTS 2023; 14:216. [PMID: 36975901 PMCID: PMC10051560 DOI: 10.3390/insects14030216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/06/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
The olfactory system in insects are crucial for recognition of host plants and oviposition sites. General odorant binding proteins (GOBPs) are thought to be involved in detecting odorants released by host plants. Orthaga achatina (Lepidoptera: Pyralidae) is one of the most serious pests of camphor trees, Cinnamomum camphora (L.) Presl, an important urban tree species in southern China. In this study, we study the GOBPs of O. achatina. Firstly, two full-length GOBP genes (OachGOBP1 and OachGOBP2) were successfully cloned according to transcriptome sequencing results, and real-time quantitative PCR measurements showed that both GOBP genes were specifically expressed in the antennae of both sexes, proposing their important roles in olfaction. Then, both GOBP genes were heterologous expressed in Escherichia coli and fluorescence competitive binding assays were conducted. The results showed that OachGOBP1 could bind Farnesol (Ki = 9.49 μM) and Z11-16: OH (Ki = 1.57 μM). OachGOBP2 has a high binding affinity with two camphor plant volatiles (Farnesol, Ki = 7.33 μM; α-Phellandrene, Ki = 8.71 μM) and two sex pheromone components (Z11-16: OAc, Ki = 2.84 μM; Z11-16: OH, Ki = 3.30 μM). These results indicate that OachGOBP1 and OachGOBP2 differ in terms of odorants and other ligands. Furthermore, key amino acid residues that bind to plant volatiles were identified in GOBPs using 3-D structure modeling and ligand molecular docking, predicting the interactions between the GOBPs and the host plant volatiles.
Collapse
|
20
|
Wu ZR, Fan JT, Tong N, Guo JM, Li Y, Lu M, Liu XL. Transcriptome analysis and identification of chemosensory genes in the larvae of Plagiodera versicolora. BMC Genomics 2022; 23:845. [PMID: 36544089 PMCID: PMC9773597 DOI: 10.1186/s12864-022-09079-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND In insects, the chemosensory system is crucial in guiding their behaviors for survival. Plagiodera versicolora (Coleoptera: Chrysomelidae), is a worldwide leaf-eating forest pest in salicaceous trees. There is little known about the chemosensory genes in P. versicolora. Here, we conducted a transcriptome analysis of larvae heads in P. versicolora. RESULTS In this study, 29 odorant binding proteins (OBPs), 6 chemosensory proteins (CSPs), 14 odorant receptors (ORs), 13 gustatory receptors (GRs), 8 ionotropic receptors (IRs) and 4 sensory neuron membrane proteins (SNMPs) were identified by transcriptome analysis. Compared to the previous antennae and foreleg transcriptome data in adults, 12 OBPs, 2 CSPs, 5 ORs, 4 IRs, and 7 GRs were newly identified in the larvae. Phylogenetic analyses were conducted and found a new candidate CO2 receptor (PverGR18) and a new sugar receptor (PverGR23) in the tree of GRs. Subsequently, the dynamic expression profiles of various genes were analyzed by quantitative real-time PCR. The results showed that PverOBP31, OBP34, OBP35, OBP38, and OBP40 were highly expressed in larvae, PverOBP33 and OBP37 were highly expressed in pupae, and PverCSP13 was highly expressed in eggs, respectively. CONCLUSIONS We identified a total of 74 putative chemosensory genes based on a transcriptome analysis of larvae heads in P. versicolora. This work provides new information for functional studies on the chemoreception mechanism in P. versicolora.
Collapse
Affiliation(s)
- Zhe-Ran Wu
- grid.34418.3a0000 0001 0727 9022State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Jian-Ting Fan
- grid.443483.c0000 0000 9152 7385School of Forestry and Biotechnology, Zhejiang A & F University, National Joint Local Engineering Laboratory for High-Efficient Preparation of Biopesticide, Lin’an, 311300 China
| | - Na Tong
- grid.34418.3a0000 0001 0727 9022State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Jin-Meng Guo
- grid.27871.3b0000 0000 9750 7019Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/ Department of Entomology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yang Li
- grid.34418.3a0000 0001 0727 9022State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Min Lu
- grid.34418.3a0000 0001 0727 9022State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Xiao-Long Liu
- grid.34418.3a0000 0001 0727 9022State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062 China
| |
Collapse
|
21
|
Ha TS, Smith DP. Recent Insights into Insect Olfactory Receptors and Odorant-Binding Proteins. INSECTS 2022; 13:insects13100926. [PMID: 36292874 PMCID: PMC9604063 DOI: 10.3390/insects13100926] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 05/20/2023]
Abstract
Human and insect olfaction share many general features, but insects differ from mammalian systems in important ways. Mammalian olfactory neurons share the same overlying fluid layer in the nose, and neuronal tuning entirely depends upon receptor specificity. In insects, the olfactory neurons are anatomically segregated into sensilla, and small clusters of olfactory neurons dendrites share extracellular fluid that can be independently regulated in different sensilla. Small extracellular proteins called odorant-binding proteins are differentially secreted into this sensillum lymph fluid where they have been shown to confer sensitivity to specific odorants, and they can also affect the kinetics of the olfactory neuron responses. Insect olfactory receptors are not G-protein-coupled receptors, such as vertebrate olfactory receptors, but are ligand-gated ion channels opened by direct interactions with odorant molecules. Recently, several examples of insect olfactory neurons expressing multiple receptors have been identified, indicating that the mechanisms for neuronal tuning may be broader in insects than mammals. Finally, recent advances in genome editing are finding applications in many species, including agricultural pests and human disease vectors.
Collapse
Affiliation(s)
- Tal Soo Ha
- Department of Biomedical Science, College of Natural Science, Daegu University, Gyeongsan 38453, Gyeongsangbuk-do, Korea
| | - Dean P. Smith
- Departments of Pharmacology and Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Correspondence:
| |
Collapse
|
22
|
Ma S, Li LL, Yao WC, Yin MZ, Li JQ, Xu JW, Dewer Y, Zhu XY, Zhang YN. Two Odorant-Binding Proteins Involved in the Recognition of Sex Pheromones in Spodoptera litura Larvae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12372-12382. [PMID: 36129378 DOI: 10.1021/acs.jafc.2c04335] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Usually, the recognition of sex pheromone signals is restricted to adult moths. Here, our behavioral assay showed that fourth-instar Spodoptera litura larvae are attracted to cabbage laced with minor sex pheromones Z9,E12-tetradecadienyl acetate (Z9,E12-14:Ac) or Z9-tetradecenyl acetate (Z9-14:Ac). Seven odorant-binding proteins (OBPs) were upregulated after exposure to Z9,E12-14:Ac, and one OBP was upregulated after exposure to Z9-14:Ac. Fluorescence competitive binding assays showed that GOBP2 and OBP7 bound to sex pheromones. RNAi treatment significantly downregulated GOBP2 and OBP7 mRNA expression by 70.37 and 63.27%, respectively. The siOBP-treated larvae were not attracted to Z9,E12-14:Ac or Z9-14:Ac, and the corresponding preference indices were significantly lower than those in siGFP-treated larvae. Therefore, we concluded that GOBP2 and OBP7 are involved in the attraction of S. litura larvae to food containing Z9,E12-14:Ac and Z9-14:Ac. These results provide an important basis for exploring the olfactory mechanisms underlying sex pheromone attraction in moth larvae.
Collapse
Affiliation(s)
- Sai Ma
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei 235000, China
| | - Lu Lu Li
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei 235000, China
| | - Wei-Chen Yao
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei 235000, China
| | - Mao-Zhu Yin
- Institute of Plant Protection, Suzhou Academy of Agricultural Sciences, Suzhou 234000, China
| | - Jian-Qiao Li
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei 235000, China
| | - Ji-Wei Xu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei 235000, China
| | - Youssef Dewer
- Phytotoxicity Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, 7 Nadi El-Seid Street, Dokki 12618, Giza, Egypt
| | - Xiu-Yun Zhu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei 235000, China
| | - Ya-Nan Zhang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei 235000, China
| |
Collapse
|
23
|
Sun YL, Jiang PS, Dong BX, Tian CH, Dong JF. Candidate chemosensory receptors in the antennae and maxillae of Spodoptera frugiperda (J. E. Smith) larvae. Front Physiol 2022; 13:970915. [PMID: 36187799 PMCID: PMC9520170 DOI: 10.3389/fphys.2022.970915] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Although most of the damage caused by lepidopteran insects to plants is caused by the larval stage, chemosensory systems have been investigated much more frequently for lepidopteran adults than for larvae. The fall armyworm Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) is a polyphagous and worldwide pest. To understand the larval chemosensory system in S. frugiperda, we sequenced and assembled the antennae and maxillae transcriptome of larvae in the sixth instar (larval a-m) using the Illumina platform. A total of 30 putative chemosensory receptor genes were identified, and these receptors included 11 odorant receptors (ORs), 4 gustatory receptors (GRs), and 15 ionotropic receptors/ionotropic glutamate receptors (IRs/iGluRs). Phylogeny tests with the candidate receptors and homologs from other insect species revealed some specific genes, including a fructose receptor, a pheromone receptor, IR co-receptors, CO2 receptors, and the OR co-receptor. Comparison of the expression of annotated genes between S. frugiperda adults and larvae (larval a-m) using RT-qPCR showed that most of the annotated OR and GR genes were predominantly expressed in the adult stage, but that 2 ORs and 1 GR were highly expressed in both the adult antennae and the larval a-m. Although most of the tested IR/iGluR genes were mainly expressed in adult antennae, transcripts of 3 iGluRs were significantly more abundant in the larval a-m than in the adult antennae of both sexes. Comparison of the expression levels of larval a-m expressed chemosensory receptors among the first, fourth, and sixth instars revealed that the expression of some of the genes varied significantly among different larval stages. These results increase our understanding of the chemosensory systems of S. frugiperda larvae and provide a basis for future functional studies aimed at the development of novel strategies to manage this pest.
Collapse
Affiliation(s)
- Ya-Lan Sun
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Peng-Shuo Jiang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Bing-Xin Dong
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Cai-Hong Tian
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Jun-Feng Dong
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
24
|
Yin NN, Yang AJ, Wu C, Xiao HY, Guo YR, Liu NY. Genome-Wide Analysis of Odorant-Binding Proteins in Papilio xuthus with Focus on the Perception of Two PxutGOBPs to Host Odorants and Insecticides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10747-10761. [PMID: 36002911 DOI: 10.1021/acs.jafc.2c03396] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this study, we annotated 49 odorant-binding proteins (OBPs) in Papilio xuthus, with four novel genes and seven improved sequences. Expression profiles identified numerous OBPs in antennae or reproductive tissues. Using two antenna-enriched general OBPs (PxutGOBP1 and PxutGOBP2) as targets, we screened three key compounds by a reverse chemical ecology strategy. Of these, an oviposition stimulant vicenin-2 could strongly interact with PxutGOBP1, representing a dissociation constant (Ki) value of 10.34 ± 0.07 μM. Molecular simulations and site-directed mutagenesis revealed the importance of His66, Thr73, and Phe118 between PxutGOBP1 and vicenin-2 interactions. Two other compounds, an ordinary floral scent β-ionone and a widely used insecticide chlorpyrifos, exhibited high affinities to PxutGOBPs (Ki < 13 μM). Furthermore, two mutations His66Ala and Thr73Ala of PxutGOBP1 significantly reduced the binding to chlorpyrifos. Our study provides insights into the putative roles of PxutGOBPs in odorant perception and identifies key binding sites of PxutGOBP1 to vicenin-2 and chlorpyrifos.
Collapse
Affiliation(s)
- Ning-Na Yin
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - An-Jin Yang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Chun Wu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Hai-Yan Xiao
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Yu-Ruo Guo
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Nai-Yong Liu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
25
|
Hu P, Hao E, Yang Z, Qiu Z, Fu H, Lu J, He Z, Huang Y. EsigGOBP1: The Key Protein Binding Alpha-Phellandrene in Endoclita signifer Larvae. Int J Mol Sci 2022; 23:9269. [PMID: 36012538 PMCID: PMC9409361 DOI: 10.3390/ijms23169269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
Endoclita signifer larvae show olfactory recognition towards volatiles of eucalyptus trunks and humus soils. Further, EsigGOBP1 was identified through larval head transcriptome and speculated as the main odorant-binding proteins in E. signifer larvae. In this study, the highest expression of EsigGOBP1 was only expressed in the heads of 3rd instar larvae of E. signifer, compared with the thorax and abdomen; this was consistent with the phenomenon of habitat transfer of 3rd instar larvae, indicating that EsigGOBP1 was a key OBP gene in E. signifer larvae. Results of fluorescence competition binding assays (FCBA) showed that EsigGOBP1 had high binding affinities to eight GC-EAD active ligands. Furthermore, screening of key active odorants for EsigGOBP1 and molecular docking analysis, indicated that EsigGOBP1 showed high binding activity to alpha-phellandrene in 3rd instar larvae of E. signifer. Conformational analysis of the EsigGOBP1-alpha-phellandrene complex, showed that MET49 and GLU38 were the key sites involved in binding. These results demonstrated that EsigGOBP1 is a key odorant-binding protein in E. signifer larvae, which recognizes and transports eight key volatiles from eucalyptus trunk, especially the main eucalyptus trunks volatile, alpha-phellandrene. Taken together, our results showed that EsigGOBP1 is involved in host selection of E. signifer larvae, which would aid in developing EsigGOBP1 as molecular targets for controlling pests at the larval stage.
Collapse
Affiliation(s)
- Ping Hu
- Forestry College, Guangxi University, Nanning 540003, China
| | - Enhua Hao
- Forestry College, Beijing Forestry University, Beijing 100083, China
| | - Zhende Yang
- Forestry College, Guangxi University, Nanning 540003, China
| | - Zhisong Qiu
- Forestry College, Guangxi University, Nanning 540003, China
| | - Hengfei Fu
- Forestry College, Guangxi University, Nanning 540003, China
| | - Jintao Lu
- Forestry College, Guangxi University, Nanning 540003, China
| | - Ziting He
- Forestry College, Guangxi University, Nanning 540003, China
| | - Yingqi Huang
- Forestry College, Guangxi University, Nanning 540003, China
| |
Collapse
|
26
|
Li JB, Yin MZ, Yao WC, Ma S, Dewer Y, Liu XZ, Wang YY, Wang CW, Li BP, Zhu XY. Genome-Wide Analysis of Odorant-Binding Proteins and Chemosensory Proteins in the Bean bug Riptortus pedestris. Front Physiol 2022; 13:949607. [PMID: 35910558 PMCID: PMC9329939 DOI: 10.3389/fphys.2022.949607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 06/20/2022] [Indexed: 11/30/2022] Open
Abstract
Insects have sensitive olfactory systems to interact with environment and respond to the change in host plant conditions. Key genes in the system can be potential targets for developing new and efficient pest behaviour control methods. Riptortus pedestris is an important soybean pest in East Asia and has caused serious damage to the soybean plants in Huang-Huai-Hai region of China. However, the current treatment of pests is dominated by chemical insecticides and lacks efficient sustainable prevention and control technologies. In this study, we identified 49 putative odorant-binding proteins (OBPs) (43 were new genes) and 25 chemosensory proteins (CSPs) (17 were new genes) in R. pedestris genome. These OBP and CSP genes are clustered in highly conserved groups from other hemipteran species in phylogenetic trees. Most RpedOBPs displayed antennal-biased expression. Among the 49 RpedOBPs, 33 were significantly highly expressed in the antennae, including three male-biased and nine female-biased. While many RpedCSPs were detected both in the antennae and in non-antennal tissues, only 11 RpedCSPs displayed antennal-biased expression, in which four RpedCSPs were male-biased and five RpedCSPs were female-biased. Some OBP and CSP genes showed sex-biased expression profiles. Our results not only provide a foundation for future exploration of the functions of RpedOBPs and RpedCSPs but also aid in developing environmentally friendly insecticides in the future.
Collapse
Affiliation(s)
- Jin-Bu Li
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Institute of Plant Protection, Suzhou Academy of Agricultural Sciences, Suzhou, China
| | - Mao-Zhu Yin
- Institute of Plant Protection, Suzhou Academy of Agricultural Sciences, Suzhou, China
| | - Wei-Chen Yao
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Sai Ma
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Youssef Dewer
- Phytotoxicity Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Giza, Egypt
| | - Xing-Zhou Liu
- Institute of Plant Protection, Suzhou Academy of Agricultural Sciences, Suzhou, China
| | - Yue-Ying Wang
- Institute of Plant Protection, Suzhou Academy of Agricultural Sciences, Suzhou, China
| | - Chao-Wei Wang
- Institute of Plant Protection, Suzhou Academy of Agricultural Sciences, Suzhou, China
| | - Bao-Ping Li
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Bao-Ping Li, ; Xiu-Yun Zhu,
| | - Xiu-Yun Zhu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, China
- *Correspondence: Bao-Ping Li, ; Xiu-Yun Zhu,
| |
Collapse
|
27
|
Hu J, Wang XY, Tan LS, Lu W, Zheng XL. Identification of Chemosensory Genes, Including Candidate Pheromone Receptors, in Phauda flammans (Walker) (Lepidoptera: Phaudidae) Through Transcriptomic Analyses. Front Physiol 2022; 13:907694. [PMID: 35846004 PMCID: PMC9283972 DOI: 10.3389/fphys.2022.907694] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
Olfactory and gustatory systems play an irreplaceable role in all cycles of growth of insects, such as host location, mating, and oviposition. Many chemosensory genes in many nocturnal moths have been identified via omics technology, but knowledge of these genes in diurnal moths is lacking. In our recent studies, we reported two sex pheromone compounds and three host plant volatiles that play a vital role in attracting the diurnal moth, Phauda flammans. The antennal full-length transcriptome sequence of P. flammans was obtained using the Pacbio sequencing to further explore the process of sex pheromone and host plant volatile recognition in P. flammans. Transcriptome analysis identified 166 candidate olfactory and gustatory genes, including 58 odorant-binding proteins (OBPs), 19 chemosensory proteins (CSPs), 59 olfactory receptors (ORs), 16 ionotropic receptors (IRs), 14 gustatory receptors (GRs), and 2 sensory neuron membrane proteins (SNMPs). Subsequently, a phylogenetic tree was established using P. flammans and other lepidopteran species to investigate orthologs. Among the 17 candidate pheromone receptor (PR) genes, the expression levels of PflaOR21, PflaOR25, PflaOR35, PflaOR40, PflaOR41, PflaOR42, PflaOR44, PflaOR49, PflaOR51, PflaOR61, and PflaOR63 in the antennae were significantly higher than those in other non-antennae tissues. Among these PR genes, PflaOR21, PflaOR27, PflaOR29, PflaOR35, PflaOR37, PflaOR40, PflaOR42, PflaOR44, PflaOR60, and PflaOR62 showed male-biased expression, whereas PflaOR49, PflaOR61, and PflaOR63 revealed female-biased expression. The functions of related OR genes were also discussed. This research filled the gap of the chemosensory genes of P. flammans and provided basic data for future functional molecular mechanisms studies on P. flammans olfaction.
Collapse
|