1
|
Amsalem E, Derstine N, Murray C. Hormetic response to pesticides in diapausing bees. Biol Lett 2025; 21:20240612. [PMID: 39837491 PMCID: PMC11750372 DOI: 10.1098/rsbl.2024.0612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/11/2024] [Accepted: 12/18/2024] [Indexed: 01/23/2025] Open
Abstract
Pollinators face declines and diversity loss associated with multiple stressors, particularly pesticides. Most pollination services are provided by annual bees that undergo winter diapause, and many common pesticides are highly soluble in water and move through soil and plants where bees hibernate and feed, yet the effects of pesticides on pollinators' diapause survival and performance are poorly understood. Pesticides may have complex effects in bees, and some were shown to induce hormetic effects on various traits characterized by high-dose inhibition coupled with low-dose stimulation. Here, we examined the occurrence of hormesis in the responses of bees to imidacloprid. We found that while longevity and reproduction were reduced following exposure to imidacloprid, the survival length of new queens (gynes) was greater. Diapause is a critical period in the life cycle of most bees with profound effects on their health. Exposure to sublethal doses of pesticides may increase bees' resistance to stress/cold during diapause but may also trade off with reduced reproductive performance later in life. Identifying these trade-offs is crucial to understanding how stressors affect pollinator health and should be accounted for when assessing pesticide risk, designing studies and facilitating conservation and management tools for supporting annual bees during diapause.
Collapse
Affiliation(s)
- Etya Amsalem
- Department of Entomology, Pennsylvania State University, University Park, PA, USA
| | - Nathan Derstine
- Department of Entomology, Pennsylvania State University, University Park, PA, USA
| | - Cameron Murray
- Department of Entomology, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
2
|
Gekière A, Breuer L, Dorio L, Evrard D, Vanderplanck M, Michez D. Bumble bees do not avoid field-realistic but innocuous concentrations of cadmium and copper. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:1123-1134. [PMID: 39261366 DOI: 10.1007/s10646-024-02802-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/27/2024] [Indexed: 09/13/2024]
Abstract
Bee populations are facing numerous stressors globally, including environmental pollution by trace metals and metalloids. Understanding whether bees can detect and avoid these pollutants in their food is pivotal, as avoidance abilities may mitigate their exposure to xenobiotics. While these pollutants are known to induce sublethal effects in bees, such as disrupting physiological mechanisms, their potential impacts on locomotive abilities, fat metabolism, and reproductive physiology remain poorly understood. In this study, utilising workers of the buff-tailed bumble bee and two prevalent trace metals, namely cadmium and copper, we aimed to address these knowledge gaps for field-realistic concentrations. Our findings reveal that workers did not reject field-realistic concentrations of cadmium and copper in sucrose solutions. Moreover, they did not reject lethal concentrations of cadmium, although they rejected lethal concentrations of copper. Additionally, we observed no significant effects of field-realistic concentrations of these metals on the walking and flying activities of workers, nor on their fat metabolism and reproductive physiology. Overall, our results suggest that bumble bees may not avoid cadmium and copper at environmental concentrations, but ingestion of these metals in natural settings may not adversely affect locomotive abilities, fat metabolism, or reproductive physiology. However, given the conservative nature of our study, we still recommend future research to employ higher concentrations over longer durations to mimic conditions in heavily polluted areas (i.e., mine surrounding). Furthermore, investigations should ascertain whether field-realistic concentrations of metals exert no impact on bee larvae.
Collapse
Affiliation(s)
- Antoine Gekière
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, 20 Place du Parc, 7000, Mons, Belgium.
| | - Luna Breuer
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, 20 Place du Parc, 7000, Mons, Belgium
| | - Luca Dorio
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, 20 Place du Parc, 7000, Mons, Belgium
| | - Dimitri Evrard
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, 20 Place du Parc, 7000, Mons, Belgium
| | - Maryse Vanderplanck
- CEFE, CNRS, University of Montpellier, EPHE, IRD, 1919 Route de Mende, 34293, Montpellier, France
| | - Denis Michez
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, 20 Place du Parc, 7000, Mons, Belgium
| |
Collapse
|
3
|
Manzer S, Thamm M, Hilsmann L, Krischke B, Steffan-Dewenter I, Scheiner R. The neonicotinoid acetamiprid reduces larval and adult survival in honeybees (Apis mellifera) and interacts with a fungicide mixture. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124643. [PMID: 39097258 DOI: 10.1016/j.envpol.2024.124643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
Plant protection products (PPPs), which are frequently used in agriculture, can be major stressors for honeybees. They have been found abundantly in the beehive, particularly in pollen. Few studies have analysed effects on honeybee larvae, and little is known about effects of insecticide-fungicide-mixtures, although this is a highly realistic exposure scenario. We asked whether the combination of a frequently used insecticide and fungicides would affect developing bees. Honeybee larvae (Apis mellifera carnica) were reared in vitro on larval diets containing different PPPs at two concentrations, derived from residues found in pollen. We used the neonicotinoid acetamiprid, the combined fungicides boscalid/dimoxystrobin and the mixture of all three substances. Mortality was assessed at larval, pupal, and adult stages, and the size and weight of newly emerged bees were measured. The insecticide treatment in higher concentrations significantly reduced larval and adult survival. Interestingly, survival was not affected by the high concentrated insecticide-fungicides-mixture. However, negative synergistic effects on adult survival were caused by the low concentrated insecticide-fungicides-mixture, which had no effect when applied alone. The lower concentrated combined fungicides led to significantly lighter adult bees, although the survival was unaffected. Our results suggest that environmental relevant concentrations can be harmful to honeybees. To fully understand the interaction of different PPPs, more combinations and concentrations should be studied in social and solitary bees with possibly different sensitivities.
Collapse
Affiliation(s)
- Sarah Manzer
- Behavioural Physiology and Sociobiology, Biocenter, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany; Animal Ecology and Tropical Biology, Biocenter, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Markus Thamm
- Behavioural Physiology and Sociobiology, Biocenter, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Lioba Hilsmann
- Behavioural Physiology and Sociobiology, Biocenter, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Beate Krischke
- Animal Ecology and Tropical Biology, Biocenter, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Ingolf Steffan-Dewenter
- Animal Ecology and Tropical Biology, Biocenter, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Ricarda Scheiner
- Behavioural Physiology and Sociobiology, Biocenter, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
4
|
Huang Y, Tang B, Wu L, Liang C, Giesy JP, Li W, Xu Y, Wang K, Purdy JR, Solomon KR, Qi S. Contamination profile and hazards of neonicotinoid insecticides in honey from apiaries in Beijing, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:60959-60970. [PMID: 39400668 DOI: 10.1007/s11356-024-35225-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024]
Abstract
The residues of neonicotinoid insecticides in honey have raised global concern for their adverse effects on non-target organisms. However, information on the presence of neonicotinoids in raw honey in China is limited. Our study investigated the distribution profiles of neonicotinoids in raw honey samples collected from apiaries in plain and mountainous areas surrounding Beijing City. At least one of four neonicotinoids, imidacloprid, thiamethoxam, acetamiprid, or clothianidin, was found in 46.9% of samples. Neonicotinoids in multi-floral honey in plain areas exhibited higher concentrations and prevalence than in uni-floral honey collected from mountainous areas. These results indicated that neonicotinoid residues in honey were linked to the agricultural ecosystems influenced by geographies, particularly the intensity of agriculture and nectariferous plant types. The dietary risks to adult and children health from neonicotinoid exposure were deemed de minimis, while risks to honeybees at the maximum concentration level require much attention through refined, higher-tier assessments and possible mitigation measures for the use of these products.
Collapse
Affiliation(s)
- Yuan Huang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Benyan Tang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Liming Wu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Chongbo Liang
- Beijing Municipal Forestry and Parks Bureau (Office of Beijing Greening Commission), Beijing Landscaping Industry Promotion Center, Beijing, 101118, China
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, SK, S7N 5B3, Canada
- Department of Integrative Biology and Center for Integrative Toxicology, Michigan State University, 1129 Farm Lane Road, East Lansing, MI, USA
- Department of Environmental Sciences, Baylor University, Waco, TX, 76706, USA
| | - Wanli Li
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Yandong Xu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Kai Wang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - John R Purdy
- Abacus Consulting Services Ltd., Campbellville, ON, Canada
| | - Keith R Solomon
- School of Environmental Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Suzhen Qi
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China.
| |
Collapse
|
5
|
Wu T, Choi YS, Kim DW, Wei X, Kang Y, Han B, Yang S, Gao J, Dai P. Interactive effects of chlorothalonil and Varroa destructor on Apis mellifera during adult stage. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106107. [PMID: 39277411 DOI: 10.1016/j.pestbp.2024.106107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/17/2024]
Abstract
The interaction between environmental factors affecting honey bees is of growing concern due to their potential synergistic effects on bee health. Our study investigated the interactive impact of Varroa destructor and chlorothalonil on workers' survival, fat body morphology, and the expression of gene associated with detoxification, immunity, and nutrition metabolism during their adult stage. We found that both chlorothalonil and V. destructor significantly decreased workers' survival rates, with a synergistic effect observed when bees were exposed to both stressors simultaneously. Morphological analysis of fat body revealed significant alterations in trophocytes, particularly a reduction in vacuoles and granules after Day 12, coinciding with the transition of the bees from nursing to other in-hive work tasks. Gene expression analysis showed significant changes in detoxification, immunity, and nutrition metabolism over time. Detoxification genes, such as CYP9Q2, CYP9Q3, and GST-D1, were downregulated in response to stressor exposure, indicating a potential impairment in detoxification processes. Immune-related genes, including defensin-1, Dorsal-1, and Kayak, exhibited an initially upregulation followed by varied expression patterns, suggesting a complex immune response to stressors. Nutrition metabolism genes, such as hex 70a, AmIlp2, VGMC, AmFABP, and AmPTL, displayed dynamic expression changes, reflecting alterations in nutrient utilization and energy metabolism in response to stressors. Overall, these findings highlight the interactive and dynamic effects of environmental stressor on honey bees, providing insights into the mechanisms underlying honey bee decline. These results emphasize the need to consider the interactions between multiple stressors in honey bee research and to develop management strategies to mitigate their adverse effects on bee populations.
Collapse
Affiliation(s)
- Tong Wu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yong Soo Choi
- Department of Agricultural Biology, National Institute of Agricultural Science, Rural Development Administration, Wanju-gun 55365, Republic of Korea
| | - Dong Won Kim
- Department of Agricultural Biology, National Institute of Agricultural Science, Rural Development Administration, Wanju-gun 55365, Republic of Korea
| | - Xiaoping Wei
- Modern Agricultural Development Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Yuxin Kang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bo Han
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Sa Yang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jing Gao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Pingli Dai
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
6
|
Maya-Aguirre CA, Torres A, Gutiérrez-Castañeda LD, Salazar LM, Abreu-Villaça Y, Manhães AC, Arenas NE. Changes in the proteome of Apis mellifera acutely exposed to sublethal dosage of glyphosate and imidacloprid. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:45954-45969. [PMID: 38980489 PMCID: PMC11269427 DOI: 10.1007/s11356-024-34185-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024]
Abstract
Uncontrolled use of pesticides has caused a dramatic reduction in the number of pollinators, including bees. Studies on the effects of pesticides on bees have reported effects on both metabolic and neurological levels under chronic exposure. In this study, variations in the differential expression of head and thorax-abdomen proteins in Africanized A. mellifera bees treated acutely with sublethal doses of glyphosate and imidacloprid were studied using a proteomic approach. A total of 92 proteins were detected, 49 of which were differentially expressed compared to those in the control group (47 downregulated and 2 upregulated). Protein interaction networks with differential protein expression ratios suggested that acute exposure of A. mellifera to sublethal doses of glyphosate could cause head damage, which is mainly associated with behavior and metabolism. Simultaneously, imidacloprid can cause damage associated with metabolism as well as, neuronal damage, cellular stress, and impairment of the detoxification system. Regarding the thorax-abdomen fractions, glyphosate could lead to cytoskeleton reorganization and a reduction in defense mechanisms, whereas imidacloprid could affect the coordination and impairment of the oxidative stress response.
Collapse
Affiliation(s)
- Carlos Andrés Maya-Aguirre
- Instituto de Biotecnología, Facultad de Ciencias, Universidad Nacional de Colombia, Ciudad Universitaria, Avenida Carrera 30 N° 45-03, Bogota, D.C, Colombia
- Grupo Ciencias Básicas en Salud-CBS-FUCS, Fundación Universitaria de Ciencias de La Salud, Hospital Infanti L Universitario de San José, Carrera 54 No.67A-80, Bogota, D.C., Colombia
| | - Angela Torres
- Departmento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Ciudad Universitaria, Avenida Carrera 30 N° 45-03, Bogota, D.C., Colombia
| | - Luz Dary Gutiérrez-Castañeda
- Grupo Ciencias Básicas en Salud-CBS-FUCS, Fundación Universitaria de Ciencias de La Salud, Hospital Infanti L Universitario de San José, Carrera 54 No.67A-80, Bogota, D.C., Colombia
| | - Luz Mary Salazar
- Departmento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Ciudad Universitaria, Avenida Carrera 30 N° 45-03, Bogota, D.C., Colombia
| | - Yael Abreu-Villaça
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade Do Estado Do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, 20550-170, Brazil
| | - Alex Christian Manhães
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade Do Estado Do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, 20550-170, Brazil
| | - Nelson Enrique Arenas
- Facultad de Medicina, Universidad de Cartagena, Campus Zaragocilla, Barrio Zaragocilla, Carrera 50a #24-63, Cartagena de Indias, Bolivar, Colombia.
| |
Collapse
|
7
|
Huang M, Fu B, Yin C, Gong P, Liu S, Yang J, Wei X, Liang J, Xue H, He C, Du T, Wang C, Ji Y, Hu J, Zhang R, Du H, Zhang Y, Yang X. Cytochrome P450 CYP6EM1 Underpins Dinotefuran Resistance in the Whitefly Bemisia tabaci. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5153-5164. [PMID: 38427964 DOI: 10.1021/acs.jafc.3c06953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Being a destructive pest worldwide, the whitefly Bemisia tabaci has evolved resistance to neonicotinoid insecticides. The third-generation neonicotinoid dinotefuran has commonly been applied to the control of the whitefly, but its underlying mechanism is currently unknown. On the base of our transcriptome data, here we aim to investigate whether the cytochrome P450 CYP6EM1 underlies dinotefuran resistance in the whitefly. Compared to the susceptible strain, the CYP6EM1 gene was found to be highly expressed in both laboratory and field dinotefuran-resistant populations. Upon exposure to dinotefuran, the mRNA levels of CYP6EM1 were increased. These results demonstrate the involvement of this gene in dinotefuran resistance. Loss and gain of functional studies in vivo were conducted through RNAi and transgenic Drosophila melanogaster assays, confirming the role of CYP6EM1 in conferring such resistance. In a metabolism assay in vitro, the CYP6EM1 protein could metabolize 28.11% of dinotefuran with a possible dinotefuran-dm-NNO metabolite via UPLC-QTOF/MS. Docking of dinotefuran to the CYP6EM1 protein showed a good binding affinity, with an energy of less than -6.0 kcal/mol. Overall, these results provide compelling evidence that CYP6EM1 plays a crucial role in the metabolic resistance of B. tabaci to dinotefuran. Our work provides new insights into the mechanism underlying neonicotinoid resistance and applied knowledge that can contribute to sustainable control of a global pest such as whitefly.
Collapse
Affiliation(s)
- Mingjiao Huang
- College of Plant Protection, Hunan Agricultural University, Changsha 410125, P. R. China
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Buli Fu
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- The Ministry of Agriculture and Rural Affairs Key Laboratory of Integrated Pest Management of Tropical Crops, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, P. R. China
| | - Cheng Yin
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, P. R. China
| | - Peipan Gong
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shaonan Liu
- College of Plant Protection, Hunan Agricultural University, Changsha 410125, P. R. China
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Yang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xuegao Wei
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, P. R. China
| | - Jinjin Liang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hu Xue
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, P. R. China
| | - Chao He
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tianhua Du
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chao Wang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, P. R. China
| | - Yao Ji
- College of Plant Protection, Hunan Agricultural University, Changsha 410125, P. R. China
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - JinYu Hu
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, P. R. China
| | - Rong Zhang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, P. R. China
| | - He Du
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Youjun Zhang
- College of Plant Protection, Hunan Agricultural University, Changsha 410125, P. R. China
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xin Yang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
8
|
Ulloa-Gomez AM, Waimin JF, Yu YC, Lucas A, Stanciu LA. A smartphone-integrated aptasensor for pesticide detection using gold-decorated microparticles. Mikrochim Acta 2024; 191:194. [PMID: 38472537 DOI: 10.1007/s00604-024-06255-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/07/2024] [Indexed: 03/14/2024]
Abstract
The increasing incidence of environmental concerns related to excessive use of pesticides, such as imidacloprid and carbendazim, poses risks to pollinators, water bodies, and human health, prompting regulatory scrutiny and bans in developed countries. In this study, we propose a portable smartphone-based biosensor for rapid and label-free colorimetric detection by using the gold-decorated polystyrene microparticles (Ps-AuNP) functionalized with specific aptamers to imidacloprid and carbendazim on a microfluidic paper-based analytical device (μ-PAD). Four aptamers were selected for the detection of these pesticides and their sensitivity and selectivity performance was evaluated. The sensitivity results show a detection limit for imidacloprid of 3.12 ppm and 1.56 ppm for carbendazim. The aptamers also exhibited high selectivity performance against other pesticides, such as thiamethoxam, fenamiphos, isoproturon, and atrazine. However, the platform presented cross-selectivity when detecting imidacloprid, carbendazim, and linuron, which is discussed herein. Overall, we present a promising platform for simple, on-site, and rapid colorimetric screening of specific pesticides, while highlighting the challenges of aptasensors in achieving selectivity amidst diverse molecular structures.
Collapse
Affiliation(s)
- Ana M Ulloa-Gomez
- School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Jose F Waimin
- School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Ya-Ching Yu
- School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Alec Lucas
- School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Lia A Stanciu
- School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA.
- Bindley Bioscience Center, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
9
|
Bogri A, Jensen EEB, Borchert AV, Brinch C, Otani S, Aarestrup FM. Transmission of antimicrobial resistance in the gut microbiome of gregarious cockroaches: the importance of interaction between antibiotic exposed and non-exposed populations. mSystems 2024; 9:e0101823. [PMID: 38095429 PMCID: PMC10805027 DOI: 10.1128/msystems.01018-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/17/2023] [Indexed: 01/24/2024] Open
Abstract
Antimicrobial resistance (AMR) is a major global health concern, further complicated by its spread via the microbiome bacterial members. While mathematical models discuss AMR transmission through the symbiotic microbiome, experimental studies are scarce. Herein, we used a gregarious cockroach, Pycnoscelus surinamensis, as an in vivo animal model for AMR transmission investigations. We explored whether the effect of antimicrobial treatment is detectable with metagenomic sequencing, and whether AMR genes can be spread and established in unchallenged (not treated with antibiotics) individuals following contact with treated donors, and under various frequencies of interaction. Gut and soil substrate microbiomes were investigated by metagenomic sequencing for bacterial community composition and resistome profiling. We found that tetracycline treatment altered the treated gut microbiome by decreasing bacterial diversity and increasing the abundance of tetracycline resistance genes. Untreated cockroaches that interacted with treated donors also had elevated tetracycline resistance. The levels of resistance differed depending on the magnitude and frequency of donor transfer. Additionally, treated donors showed signs of microbiome recovery due to their interaction with the untreated ones. Similar patterns were also recorded in the soil substrate microbiomes. Our results shed light on how interacting microbiomes facilitate AMR gene transmission to previously unchallenged hosts, a dynamic influenced by the interaction frequencies, using an in vivo model to validate theoretical AMR transmission models.IMPORTANCEAntimicrobial resistance is a rising threat to human and animal health. The spread of resistance through the transmission of the symbiotic gut microbiome is of concern and has been explored in theoretical modeling studies. In this study, we employ gregarious insect populations to examine the emergence and transmission of antimicrobial resistance in vivo and validate modeling hypotheses. We find that antimicrobial treatment increases the levels of resistance in treated populations. Most importantly, we show that resistance increased in untreated populations after interacting with the treated ones. The level of resistance transmission was affected by the magnitude and frequency of population mixing. Our results highlight the importance of microbial transmission in the spread of antimicrobial resistance.
Collapse
Affiliation(s)
- Amalia Bogri
- Research Group for Genomic Epidemiology, Technical University of Denmark, Kgs., Lyngby, Denmark
| | | | - Asbjørn Vedel Borchert
- Research Group for Genomic Epidemiology, Technical University of Denmark, Kgs., Lyngby, Denmark
| | - Christian Brinch
- Research Group for Genomic Epidemiology, Technical University of Denmark, Kgs., Lyngby, Denmark
| | - Saria Otani
- Research Group for Genomic Epidemiology, Technical University of Denmark, Kgs., Lyngby, Denmark
| | - Frank M. Aarestrup
- Research Group for Genomic Epidemiology, Technical University of Denmark, Kgs., Lyngby, Denmark
| |
Collapse
|
10
|
Casey MT, Machtley SA, Merten PV, Hagler JR. A simple computerized Arduino-based control system for insect rotary flight mills. JOURNAL OF INSECT SCIENCE (ONLINE) 2023; 23:5. [PMID: 37428828 PMCID: PMC10332499 DOI: 10.1093/jisesa/iead053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/11/2023] [Accepted: 06/22/2023] [Indexed: 07/12/2023]
Abstract
Flight mills are widely used to investigate insect flight behavior. As technology advances, the means to build a computerized control system for a flight mill has become more accessible in terms of both price and availability of components. However, the specialized electronics and programming knowledge required to build such a system can still present an obstacle to interested parties. Here, we describe a simple and inexpensive flight mill control system that can be easily assembled and operated without specialized experience. The hardware and software components are built around an Arduino single-board microcontroller, which outputs raw data in the form of timestamped detections of rotations of the flight mill arm. This control system is suitable both as the basis for new flight mills and for replacing outdated computer controls on existing flight mills. Additionally, it can be used with any rotary flight mill design that uses an electronic sensor to count rotations.
Collapse
Affiliation(s)
- Miles T Casey
- Arid-Land Agricultural Research Center, USDA-ARS, 21881 North Cardon Lane, Maricopa, AZ 85138, USA
| | - Scott A Machtley
- Arid-Land Agricultural Research Center, USDA-ARS, 21881 North Cardon Lane, Maricopa, AZ 85138, USA
| | - Paul V Merten
- Arid-Land Agricultural Research Center, USDA-ARS, 21881 North Cardon Lane, Maricopa, AZ 85138, USA
| | - James R Hagler
- Arid-Land Agricultural Research Center, USDA-ARS, 21881 North Cardon Lane, Maricopa, AZ 85138, USA
| |
Collapse
|