1
|
Xie J, Liu J, Khashaveh A, Tang H, Liu X, Zhao D, Wang Q, Shi W, Liu T, Zhang Y. Two Structural Analogs of Kairomones are Detected by an Odorant Receptor HvarOR28 in the Coccinellid Hippodamia variegata. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21624-21634. [PMID: 39300682 DOI: 10.1021/acs.jafc.4c05493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
In natural environments, general plant volatiles and herbivore-induced plant volatiles (HIPVs) serve as critical clues for predatory natural enemies in the search for prey. The insect olfactory system plays a vital role in perceiving plant volatiles including HIPVs. In this study, we found that HIPV (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene (TMTT) and the plant volatile geranyl acetate (GA), two structurally similar chemicals, displayed electrophysiological activities on the antennae of the ladybird Hippodamia variegata, but were only attractive to adult females in behavior. Moreover, mated female ladybirds laid a significantly higher number of eggs on TMTT-treated and GA-treated cotton leaves compared to controls. Screening of female-biased odorant receptors (ORs) from the antennal transcriptomes, performing Xenopus oocytes expression coupled with two-electrode voltage clamp recordings, suggested that HvarOR28 specifically tuned to TMTT and GA. Molecular docking and site-directed mutagenesis revealed that the amino acid residues Tyr143 and Phe81 of HvarOR28 are the key site for binding with TMTT and GA. Furthermore, RNA interference (RNAi) assay demonstrated that HvarOR28-silenced individuals demonstrated a notable decrease in electrophysiological responses, even female adults almost lost behavioral preference for the two compounds. Thus, it could be concluded that HvarOR28 in H. variegata contributes to facilitating egg laying through the perception of TMTT and GA. These findings may help to develop new olfactory modulators based on the behaviorally active ligands of HvarOR28.
Collapse
Affiliation(s)
- Jiaoxin Xie
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jingtao Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Sichuan University of Arts and Science, Dazhou 635000, China
| | - Adel Khashaveh
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Haoyu Tang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Xiaoxu Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, China
| | - Danyang Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Qingnan Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wangpeng Shi
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Tinghui Liu
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, China
| | - Yongjun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
2
|
Niu D, Xu L, Lin K. Multitrophic and Multilevel Interactions Mediated by Volatile Organic Compounds. INSECTS 2024; 15:572. [PMID: 39194777 DOI: 10.3390/insects15080572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/16/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024]
Abstract
Plants communicate with insects and other organisms through the release of volatile organic compounds (VOCs). Using Boolean operators, we retrieved 1093 articles from the Web of Science and Scopus databases, selecting 406 for detailed analysis, with approximately 50% focusing on herbivore-induced plant volatiles (HIPVs). This review examines the roles of VOCs in direct and indirect plant defense mechanisms and their influence on complex communication networks within ecosystems. Our research reveals significant functions of VOCs in four principal areas: activating insect antennae, attracting adult insects, attracting female insects, and attracting natural enemies. Terpenoids like α-pinene and β-myrcene significantly alter pest behavior by attracting natural enemies. β-ocimene and β-caryophyllene are crucial in regulating aboveground and belowground interactions. We emphasize the potential applications of VOCs in agriculture for developing novel pest control strategies and enhancing crop resilience. Additionally, we identify research gaps and propose new directions, stressing the importance of comparative studies across ecosystems and long-term observational research to better understand VOCs dynamics. In conclusion, we provide insights into the multifunctionality of VOCs in natural ecosystems, their potential for future research and applications, and their role in advancing sustainable agricultural and ecological practices, contributing to a deeper understanding of their mechanisms and ecological functions.
Collapse
Affiliation(s)
- Dongsheng Niu
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
- Inner Mongolia-CABI Joint Laboratory for Grassland Protection and Sustainable Utilization, Hohhot 010000, China
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Hohhot 010000, China
- Inner Mongolia Key Laboratory of Grassland Protection Ecology, Hohhot 010000, China
| | - Linbo Xu
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
- Inner Mongolia-CABI Joint Laboratory for Grassland Protection and Sustainable Utilization, Hohhot 010000, China
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Hohhot 010000, China
- Inner Mongolia Key Laboratory of Grassland Protection Ecology, Hohhot 010000, China
| | - Kejian Lin
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
- Inner Mongolia-CABI Joint Laboratory for Grassland Protection and Sustainable Utilization, Hohhot 010000, China
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Hohhot 010000, China
- Inner Mongolia Key Laboratory of Grassland Protection Ecology, Hohhot 010000, China
| |
Collapse
|
3
|
Yin N, Shen D, Liang Y, Wang P, Li Y, Liu N. A Female-Biased Chemosensory Protein PxutCSP19 in the Antennae of Papilio xuthus Tuned to Host Volatiles and Insecticides. INSECTS 2024; 15:501. [PMID: 39057234 PMCID: PMC11276849 DOI: 10.3390/insects15070501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024]
Abstract
Chemosensory protein (CSP) genes significantly enriched in the female antennae are potential molecular candidates for mediating female oviposition behaviors. In this study, we presented the interaction mechanisms of a female-antenna-biased PxutCSP19 in Papilio xuthus to 47 host volatiles, four biopesticides and 24 synthetic insecticides. Using a bioinformatics-based homology search, 22 genes orthologous to PxutCSP19 were identified from 22 other Papilio butterflies with high sequence identities to each other (73.20~98.72%). Multiple alignment analyses revealed a particularly extended N-terminus of Papilio CSP19s (an average of 154 residues) compared to insects' typical CSPs (approximately 120 residues). The expression profiles indicated that PxutCSP19 was significantly enriched in the female antennae, with a 31.81-fold difference relative to the male antennae. In ligand-binding assays, PxutCSP19 could strongly bind six host odorants with high affinities, ranging from dissociation constant (Ki) values of 20.44 ± 0.64 μM to 22.71 ± 0.73 μM. Notably, this protein was tuned to a monoterpenoid alcohol, linalool, which generally existed in the Rutaceae plants and elicited electrophysiological and behavioral activities of the swallowtail butterfly. On the other hand, PxutCSP19 was also capable of binding eight insecticides with stronger binding abilities (Ki < 12 μM) compared to host odorants. When an extended N-terminal region of PxutCSP19 was truncated into two different proteins, they did not significantly affect the binding of PxutCSP19 to ligands with high affinities, suggesting that this extended N-terminal sequences were not involved in the specificity of ligand recognition. Altogether, our study sheds light on the putative roles of PxutCSP19 enriched in the female antennae of P. xuthus in the perception of host volatiles and the sequestering of insecticides, and it complements the knowledge of butterfly CSPs in olfaction and insecticide resistance.
Collapse
Affiliation(s)
- Ningna Yin
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China; (N.Y.); (D.S.); (Y.L.); (P.W.)
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, China
| | - Dan Shen
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China; (N.Y.); (D.S.); (Y.L.); (P.W.)
| | - Yinlan Liang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China; (N.Y.); (D.S.); (Y.L.); (P.W.)
| | - Pengfei Wang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China; (N.Y.); (D.S.); (Y.L.); (P.W.)
| | - Yonghe Li
- College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Naiyong Liu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China; (N.Y.); (D.S.); (Y.L.); (P.W.)
| |
Collapse
|
4
|
Li P, Wei Y, Chen G, Sattar A. Perceptual Effects of Walnut Volatiles on the Codling Moth. INSECTS 2024; 15:402. [PMID: 38921117 PMCID: PMC11204062 DOI: 10.3390/insects15060402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024]
Abstract
The volatile organic compounds (VOCs) of plant hosts allow insect localization through olfactory recognition. In this study, the oviposition behavior of the codling moth was investigated and the VOCs from different walnut organs were extracted and analyzed to systematically study their composition and content differences. The electrophysiological and behavioral responses of the codling moth to walnut VOCs were measured using gas chromatography-electroantennographic detection (GC-EAD) and a four-arm olfactometer to screen the key active contents. The field investigation results indicated that 90.3% of the eggs spawned by the first generation of adult codling moths were adjacent to the walnut fruits. Walnut VOCs are mainly composed of terpenes, aromatics, and alkanes. Twelve VOCs can produce electroantennogenic (EAG) responses in the codling moths. Both adult males and females exhibit concentration dependence, with notable disparities in their EAG response levels. In the olfactory behavioral bioassay, linalool, eucalyptol, and high doses of geranyl acetate showed repellent effects on the codling moths, while myrcene, β-ocimene, nonanal, methyl salicylate, α-farnesene, and heptaldehyde showed the opposite. The relative levels of heptaldehyde, geranyl acetate, nonanal, and methyl salicylate were high in the fruits, which is intimately related to the localization of the walnut fruit by females. These VOCs can influence the oviposition behavior of codling moths but their application in the control of this pest needs to be confirmed and improved through further field experiments.
Collapse
Affiliation(s)
- Peixuan Li
- College of Horticulture, Xinjiang Agricultural University, Urumqi 830052, China;
| | - Yang Wei
- College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi 830052, China; (Y.W.); (G.C.)
| | - Guoxiang Chen
- College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi 830052, China; (Y.W.); (G.C.)
| | - Adil Sattar
- College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi 830052, China; (Y.W.); (G.C.)
| |
Collapse
|
5
|
Xu Z, Chen P, Yan R, Chen G, Qian J, Zhu G, Chen M, Guo Y. Antenna-Biased Odorant Receptor PstrOR17 Mediates Attraction of Phyllotreta striolata to (S)-Cis-Verbenol and (-)-Verbenone. Int J Mol Sci 2024; 25:4362. [PMID: 38673947 PMCID: PMC11049977 DOI: 10.3390/ijms25084362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/06/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Phyllotreta striolata, the striped flea beetle, is one of the most destructive pests in Brassicaceae plants worldwide. Given the drawbacks associated with long-term use of chemical insecticides, green strategies based on chemical ecology are an effective alternative for beetle control. However, the lack of information on beetle ecology has hindered the development of effective biocontrol strategies. In this report, we identified two odorants, (S)-cis-verbenol and (-)-verbenone, which displayed significant attraction for P. striolata (p < 0.05), indicating their great potential for P. striolata management. Using the Drosophila "empty neuron" system, an antenna-biased odorant receptor, PstrOR17, was identified as responsible for the detection of (-)-verbenone and (S)-cis-verbenol. Furthermore, the interactions between PstrOR17 and (-)-verbenone or (S)-cis-verbenol were predicted via modeling and molecular docking. Finally, we used RNAi to confirm that PstrOR17 is essential for the detection of (-)-verbenone and (S)-cis-verbenol to elicit an attraction effect. Our results not only lay a foundation for the development of new and effective nonchemical insecticide strategies based on (S)-cis-verbenol and (-)-verbenone, but also provide new insight into the molecular basis of odorant recognition in P. striolata.
Collapse
Affiliation(s)
- Zhanyi Xu
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China; (Z.X.); (P.C.); (J.Q.); (G.Z.)
| | - Peitong Chen
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China; (Z.X.); (P.C.); (J.Q.); (G.Z.)
| | - Ru Yan
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China;
| | - Guoxing Chen
- Key Lab for Biology of Crop Pathogens and Insect Pests and Their Ecological Regulation of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China;
| | - Jiali Qian
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China; (Z.X.); (P.C.); (J.Q.); (G.Z.)
| | - Guonian Zhu
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China; (Z.X.); (P.C.); (J.Q.); (G.Z.)
| | - Mengli Chen
- Key Lab for Biology of Crop Pathogens and Insect Pests and Their Ecological Regulation of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China;
| | - Yirong Guo
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China; (Z.X.); (P.C.); (J.Q.); (G.Z.)
| |
Collapse
|
6
|
Lu Y, Wyckhuys KAG, Wu K. Pest Status, Bio-Ecology, and Area-Wide Management of Mirids in East Asia. ANNUAL REVIEW OF ENTOMOLOGY 2024; 69:393-413. [PMID: 37758221 DOI: 10.1146/annurev-ento-121322-015345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Mirids (Hemiptera: Heteroptera: Miridae) feed upon a wide variety of cultivated and wild plants and can be economically important crop pests. They have traditionally been perceived as innocuous herbivores in East Asia; however, population levels of various mirid species have dramatically increased over the past decades. High-profile pests such as Apolygus spp., Adelphocoris spp., and Lygus spp. are now widely distributed across the region, and their infestation pressure is associated with climate, agroecological conditions, and farming practices. This review outlines how an in-depth understanding of pest biology, a systems-level characterization of pest ecology, and a comprehensive evaluation of integrated pest management tactics have enabled sustainable management of mirids across crop boundaries and harvest cycles. This work underscores how more holistic, integrative research approaches can accelerate the implementation of area-wide management of generalist pests, effectively prevent pest population build-up and yield impact, and shrink the environmental footprint of agriculture. In addition to highlighting the merits of interdisciplinary systems approaches, we discuss prospects and challenges for the sustainable management of polyphagous mirid pests in landscape matrices.
Collapse
Affiliation(s)
- Yanhui Lu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PR China; ,
| | - Kris A G Wyckhuys
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PR China; ,
- School of Biological Sciences, University of Queensland, Brisbane, Queensland, Australia;
- Chrysalis Consulting, Hanoi, Vietnam
| | - Kongming Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PR China; ,
| |
Collapse
|