1
|
Lei Q, Yang H, Wu SX, Xu L, Wei D, Wang JJ, Jiang HB. BdorOBP32 Perceiving β-Caryophyllene: A Molecular Target for Female Attractant Development in Bactrocera dorsalis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:11209-11217. [PMID: 40272313 DOI: 10.1021/acs.jafc.5c00167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Bactrocera dorsalis is a destructive agricultural pest that attacks over 600 plant species. β-Caryophyllene is considered a potential compound for developing novel female attractants due to its attraction to B. dorsalis females. However, the unknown perception mechanism of β-caryophyllene has been the bottleneck of this process. Odorant binding proteins (OBPs) function to bind odorants and transport them to olfactory receptors. Here, behavioral assays revealed that β-caryophyllene strongly attracted mated, instead of virgin females. RT-qPCR confirmed BdorOBP32 up-regulation out of five OBPs in mated females compared to virgin females. Microscale thermophoresis (MST) results showed BdorOBP32 bind β-caryophyllene with relatively high affinity. Subsequently, CRISPR/Cas9 knockout of BdorOBP32 reduced electroantennograms responses and behavioral preferences to β-caryophyllene in mutants. Moreover, molecular docking and behavioral analysis identified a novel female attractant (α-angelica lactone) targeting BdorOBP32. These findings highlight BdorOBP32 plays critical roles in β-caryophyllene perception and offer new insights for developing novel olfactory behavior modulators.
Collapse
Affiliation(s)
- Quan Lei
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Hui Yang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Shuang-Xiong Wu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Li Xu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Dong Wei
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Hong-Bo Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| |
Collapse
|
2
|
Liu F, Lai Y, Wu L, Li Q, Lei L, Yin W, Zhang Y, Huang ZY, Zhao H. AmelOBP4: an antenna-specific odor-binding protein gene required for olfactory behavior in the honey bee (Apis mellifera). Front Zool 2025; 22:2. [PMID: 39810219 PMCID: PMC11731170 DOI: 10.1186/s12983-024-00554-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Odorant binding proteins (OBPs) initiate the process of odorant perception. Numerous investigations have demonstrated that OBPs bind a broad variety of chemicals and are more likely to carry pheromones or odor molecules with high binding affinities. However, few studies have investigated its effects on insect behavior. Previously, we found that AmelOBP4 has a significantly higher expression in the heads of foragers than that of nurses regardless of their ages, revealing its importance in foraging behaviour of the honey bee. RNA interference (RNAi) is the induction of sequence specific gene silencing by double-stranded RNA (dsRNA), it is a powerful tool that makes gene inactivation possible in organisms that were not amenable to genetic analysis before. RESULTS In this study, we found that AmelOBP4 had high expression levels in the antennae of both nurses and foragers, and could be successfully inhibited by feeding double stranded RNA of AmelOBP4 (dsAmelOBP4). Foragers with inhibited AmelOBP4 showed significantly lower sugar responsiveness than control bees, and also significantly reduced EAG response to plant volatiles of nonanal, linalool and 1-Octen-3ol. On the other hand, nurses with inhibited AmelOBP4 showed significantly reduced EAG response to brood pheromone of ethyl oleate, methyl linoleate, methyl palmitate and β-ocimene. Finally, the Y-tube choice assay showed nurses only exhibited a significantly reduced preference to ethyl oleate, but foragers exhibited significantly reduced preference to all these three plant volatiles. CONCLUSIONS The findings of our study suggested that AmelOBP4 plays an important role in the odorant binding process, especially in modulating olfactory behaviour in workers. Our results provide a foundation for exploring the olfactory mechanism of Apis mellifera.
Collapse
Affiliation(s)
- Fang Liu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, People's Republic of China
| | - Yu Lai
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, People's Republic of China
| | - Lixian Wu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, People's Republic of China
| | - Qiang Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, People's Republic of China
| | - Linyue Lei
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, People's Republic of China
| | - Wei Yin
- The Core Facility, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yuan Zhang
- Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming, 650224, Yunnan, China
| | - Zachary Y Huang
- Department of Entomology, Michigan State University, East Lansing, MI, 48824, USA
| | - Hongxia Zhao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, People's Republic of China.
| |
Collapse
|
3
|
Wei H, Liu K, Zhang J, Guo K, Liu S, Xu C, Qiao H, Tan S. Young Goji Fruit Volatiles Regulate the Oviposition Behavior and Chemosensory Gene Expression of Gravid Female Neoceratitis asiatica. Int J Mol Sci 2024; 25:13249. [PMID: 39769014 PMCID: PMC11675652 DOI: 10.3390/ijms252413249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/30/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
The goji fruit fly, Neoceratitis asiatica, is a major pest on the well-known medicinal plant Lycium barbarum. Dissecting the molecular mechanisms of the oviposition selection of N. asiatica regarding the host plant will help to identify new strategies for pest fly control. However, the molecular mechanism of chemical communication between the goji fruit fly and the host goji remains unclear. Hence, our study found that young goji fruit volatiles induced the oviposition response of gravid female N. asiatica. After N. asiatica was exposed to young goji fruit volatiles, the expression of six chemosensory genes (NasiOBP56h3 and OBP99a1 in the antennae; OBP99a2, OBP99a3 and CSP2 in the legs; and OBP56a in the ovipositor) was significantly upregulated in different organs of female N. asiatica compared with the group without odor treatment according to transcriptome data. Further results of qPCR verification show that the expression levels of the six selected upregulated genes after the flies were exposed to host plant volatiles were mostly consistent with the results of transcriptome data. We concluded that six upregulated genes may be involved in the recognition of young goji fruit volatiles by gravid female N. asiatica. Our study preliminarily identifies young goji fruit volatiles as a key factor in the oviposition behavior of N. asiatica, which will facilitate further studies on the mechanisms of host oviposition selection in N. asiatica.
Collapse
Affiliation(s)
- Hongshuang Wei
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (H.W.); (K.L.); (J.Z.); (K.G.); (S.L.); (C.X.)
| | - Kexin Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (H.W.); (K.L.); (J.Z.); (K.G.); (S.L.); (C.X.)
| | - Jingyi Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (H.W.); (K.L.); (J.Z.); (K.G.); (S.L.); (C.X.)
| | - Kun Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (H.W.); (K.L.); (J.Z.); (K.G.); (S.L.); (C.X.)
| | - Sai Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (H.W.); (K.L.); (J.Z.); (K.G.); (S.L.); (C.X.)
| | - Changqing Xu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (H.W.); (K.L.); (J.Z.); (K.G.); (S.L.); (C.X.)
| | - Haili Qiao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (H.W.); (K.L.); (J.Z.); (K.G.); (S.L.); (C.X.)
| | - Shuqian Tan
- Key Lab of Integrated Pest Management, Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| |
Collapse
|
4
|
Peng Y, Wu S, Hu S, Wang P, Liu T, Fan Y, Wang J, Jiang H. Ionotropic Receptor 8a (Ir8a) Plays an Important Role in Acetic Acid Perception in the Oriental Fruit Fly, Bactrocera dorsalis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24207-24218. [PMID: 39436820 DOI: 10.1021/acs.jafc.4c04204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Bactrocera dorsalis is one of the major invasive pests worldwide. The acetic acid-enriched sweet bait trapping is an important method for monitoring and controlling this fly. Several studies showed that acetic acid is perceived by ionotropic receptors (IRs). Thus, we annotated 65 IR genes in the B. dorsalis genome. We also investigated the IRs involved in acetic acid perception in this fly by behavioral, electrophysiological, and molecular methods. As the results indicated, the antennae are the main olfactory organs to sense acetic acid. Among the antennal IRs showed acetic acid-induced expression profiles, IR8a was proven to perceive acetic acid by CRISPR/Cas9-mediated mutagenesis. Additionally, calcium imaging showed that IR64a and IR75a are potential acetic acid receptors respectively co-expressed with IR76b and IR8a. This study represents the first comprehensive characterization of IRs in B. dorsalis at the whole-genome level, revealing the significant role of IRs in acetic acid perception.
Collapse
Affiliation(s)
- Yuanyuan Peng
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Shuangxiong Wu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Siqi Hu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Peilin Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Tianao Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Yiping Fan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Jinjun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Hongbo Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| |
Collapse
|
5
|
Xu L, Jiang HB, Yu JL, Wang JJ. Plasticity of the olfactory behaviors in Bactrocera dorsalis under various physiological states and environmental conditions. CURRENT OPINION IN INSECT SCIENCE 2024; 63:101196. [PMID: 38555081 DOI: 10.1016/j.cois.2024.101196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
Insects rely heavily on their olfactory system for various behaviors, including foraging, mating, and oviposition. Numerous studies have demonstrated that insects can adjust their olfactory behaviors in response to different physiological states and environmental conditions. This flexibility allows them to perceive and process odorants according to different conditions. The Oriental fruit fly, Bactrocera dorsalis, is a highly destructive and invasive pest causing significant economic losses to fruit and vegetable crops worldwide. The olfactory behavior of B. dorsalis exhibits strong plasticity, resulting in its successful invasion. To enhance our understanding of B. dorsalis' olfactory behavior and explore potential strategies for behavior control, we have reviewed recent literature on its olfactory plasticity and potential molecular mechanisms.
Collapse
Affiliation(s)
- Li Xu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Hong-Bo Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Jie-Ling Yu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
6
|
Rong H, He X, Liu Y, Liu M, Liu X, Lu M. Odorant binding protein 18 increases the pathogen resistance of the imported willow leaf beetle, Plagiodera versicolora. Front Cell Infect Microbiol 2024; 14:1360680. [PMID: 38476166 PMCID: PMC10928693 DOI: 10.3389/fcimb.2024.1360680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 01/30/2024] [Indexed: 03/14/2024] Open
Abstract
Background Insect odorant-binding proteins (OBPs) are a class of small molecular weight soluble proteins. In the past few years, OBPs had been found to work as carriers of ligands and play a crucial role in olfaction and various other physiological processes, like immunity. A subset of insect OBPs had been found to be expressed differently and play a function in immunity of fungal infection. However, there are few studies on the role of OBPs in immunity of bacterial infection. Methods To identify the immune-related OBPs of Plagiodera versicolora after infected by Pseudomonas aeruginosa, we determined the mortality of P. versicolora to P. aeruginosa and selected the time point of 50% mortality of larvae to collect samples for RNA-seq. RNAi technology was used to investigate the function of immune-related OBPs after P. aeruginosa infection. Results RNA-seq data shows that PverOBP18 gene significantly up-regulated by 1.8-fold and further RT-qPCR affirmed its expression. Developmental expression profile showed that the expression of PverOBP18 was highest in the pupae, followed by the female adults, and lower in the 1st-3rd larvae and male adults with lowest in eggs. Tissue expression profiling showed that PverOBP18 was dominantly expressed in the epidermis. RNAi knockdown of PverOBP18 significantly reduced the expression of bacterial recognition receptor gene PGRP and antibacterial peptide gene Attacin and reduced the resistance of P. versicolora to P. aeruginosa infection. Conclusion Our results indicated that PverOBP18 gene increased the pathogen resistance of P. versicolora by cooperating with the immune genes and provided valuable insights into using OBPs as targets to design novel strategies for management of P. versicolora.
Collapse
Affiliation(s)
| | | | | | | | - Xiaolong Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Min Lu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
7
|
Lei Q, Xu L, Tang KY, Yu JL, Chen XF, Wu SX, Wang JJ, Jiang HB. An Antenna-Enriched Chemosensory Protein Plays Important Roles in the Perception of Host Plant Volatiles in Bactrocera dorsalis (Diptera: Tephritidae). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2888-2897. [PMID: 38294413 DOI: 10.1021/acs.jafc.3c06890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Olfaction plays indispensable roles in insect behavior such as host location, foraging, oviposition, and avoiding predators. Chemosensory proteins (CSPs) can discriminate the hydrophobic odorants and transfer them to the odorant receptors. Presently, CSPs have been identified in many insect species. However, their presence and functions remain unknown in Bactrocera dorsalis, a destructive and invasive insect pest in the fruit and vegetable industry. Here, we annotated eight CSP genes in the genome of B. dorsalis. The results of quantitative real-time polymerase chain reaction (RT-qPCR) showed that BdorCSP3 was highly expressed in the antennae. Molecular docking and in vitro binding assays showed that BdorCSP3 had a good binding ability to host volatiles methyl eugenol (ME, male-specific attractant) and β-caryophyllene (potential female attractant). Subsequently, CRISPR/Cas9 was used to generate BdorCSP3-/- mutants. Electroantennograms (EAGs) and behavioral assays revealed that male mutants significantly reduced the preference for ME, while female mutants lost their oviposition preference to β-caryophyllene. Our data indicated that BdorCSP3 played important roles in the perception of ME and β-caryophyllene. The results not only expanded our knowledge of the olfaction perception mechanism of insect CSPs but also provided a potential molecular target for the control of B. dorsalis.
Collapse
Affiliation(s)
- Quan Lei
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Li Xu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Kai-Yue Tang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Jie-Ling Yu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Xiao-Feng Chen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Shuang-Xiong Wu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Hong-Bo Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| |
Collapse
|
8
|
Two odorant receptors regulate 1-octen-3-ol induced oviposition behavior in the oriental fruit fly. Commun Biol 2023; 6:176. [PMID: 36792777 PMCID: PMC9932091 DOI: 10.1038/s42003-023-04551-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 02/03/2023] [Indexed: 02/17/2023] Open
Abstract
The oriental fruit fly Bactrocera dorsalis (Hendel) is a notorious pest of fruit crops. Gravid females locate suitable oviposition sites by detecting host plant volatiles. Here, we demonstrate that 1-octen-3-ol, a volatile from mango, guides the oviposition behavior of female flies. Two odorant receptors (BdorOR7a-6 and BdorOR13a) are identified as key receptors for 1-octen-3-ol perception by qPCR analysis, heterologous expression in Xenopus laevis oocytes and HEK 293 cells followed by in vitro binding assays, as well as CRISPR/Cas9 genome editing in B. dorsalis. Molecular docking and site-directed mutagenesis are used to determine major binding sites for 1-octen-3-ol. Our results demonstrate the potential of 1-octen-3-ol to attract gravid females and molecular mechanism of its perception in B. dorsalis. BdorOR7a-6 and BdorOR13a can therefore be used as molecular targets for the development of female attractants. Furthermore, our site-directed mutagenesis data will facilitate the chemical engineering of 1-octen-3-ol to generate more efficient attractants.
Collapse
|
9
|
Ha TS, Smith DP. Recent Insights into Insect Olfactory Receptors and Odorant-Binding Proteins. INSECTS 2022; 13:insects13100926. [PMID: 36292874 PMCID: PMC9604063 DOI: 10.3390/insects13100926] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 05/20/2023]
Abstract
Human and insect olfaction share many general features, but insects differ from mammalian systems in important ways. Mammalian olfactory neurons share the same overlying fluid layer in the nose, and neuronal tuning entirely depends upon receptor specificity. In insects, the olfactory neurons are anatomically segregated into sensilla, and small clusters of olfactory neurons dendrites share extracellular fluid that can be independently regulated in different sensilla. Small extracellular proteins called odorant-binding proteins are differentially secreted into this sensillum lymph fluid where they have been shown to confer sensitivity to specific odorants, and they can also affect the kinetics of the olfactory neuron responses. Insect olfactory receptors are not G-protein-coupled receptors, such as vertebrate olfactory receptors, but are ligand-gated ion channels opened by direct interactions with odorant molecules. Recently, several examples of insect olfactory neurons expressing multiple receptors have been identified, indicating that the mechanisms for neuronal tuning may be broader in insects than mammals. Finally, recent advances in genome editing are finding applications in many species, including agricultural pests and human disease vectors.
Collapse
Affiliation(s)
- Tal Soo Ha
- Department of Biomedical Science, College of Natural Science, Daegu University, Gyeongsan 38453, Gyeongsangbuk-do, Korea
| | - Dean P. Smith
- Departments of Pharmacology and Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Correspondence:
| |
Collapse
|
10
|
Wu SX, Chen Y, Lei Q, Peng YY, Jiang HB. Sublethal Dose of β-Cypermethrin Impairs the Olfaction of Bactrocera dorsalis by Suppressing the Expression of Chemosensory Genes. INSECTS 2022; 13:721. [PMID: 36005346 PMCID: PMC9409297 DOI: 10.3390/insects13080721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
The oriental fruit fly, Bactrocera dorsalis, is one of the most destructive fruit insect pests. β-cypermethrin has been widely used in the orchard to control this major insect. Based on the resistance monitoring in 2011, B. dorsalis developed significant resistance against β-cypermethrin in fields. This indicated that the B. dorsalis has been exposed to sublethal concentrations of β-cypermethrin in the field for a long time. Thus, it is urgent to understand the sublethal effects of β-cypermethrin on this fly to guide the rational use of an insecticide. According to the olfactory preference assays and electroantennogram (EAG) recording, the B. dorsalis after β-cypermethrin exposure (LD30 = 10 ng/fly) severely decreased the ability to perceive the tested odorants. Moreover, we then performed quantitative real-time PCR and found the chemosensory genes including odorant receptor co-receptor (BdorORco) and ionotropic receptor co-receptors (BdorIRcos) were obviously suppressed. Our results demonstrated that the sublethal dose of β-cypermethrin impairs the olfaction of the pest insects by suppressing the expression of chemosensory genes (BdorORco and BdorIRcos), which expanded our knowledge of the sublethal effects of the pesticide on insects.
Collapse
Affiliation(s)
- Shuang-Xiong Wu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Yang Chen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Quan Lei
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Yuan-Yuan Peng
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Hong-Bo Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|