1
|
Costa-Leonardo AM, Janei V, Ignatti AC, da Silva IB. Termite queen physogastry and associated mechanisms shaping a high lifetime fecundity. JOURNAL OF INSECT PHYSIOLOGY 2025:104824. [PMID: 40409458 DOI: 10.1016/j.jinsphys.2025.104824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 05/17/2025] [Accepted: 05/20/2025] [Indexed: 05/25/2025]
Abstract
Termites are eusocial insects whose colonies are usually headed by a pair of reproductives (queen and king). During its lifespan, the royal couple faces an age-dependent increase in fecundity. In queens, it reflects on the disproportional development of the ovaries and enlargement of the abdominal cuticle, a phenomenon referred to as physogastry. Beyond the impact on the ovaries and egg production, physogastry requires the morphological and physiological reprogramming of other systems such as the digestive, tracheal, muscular, and circulatory, resulting in a process that takes years to happen. Given the sampling difficulty and the absence of physogastric queens in some model species, such a topic is overlooked, and a comprehensive review has not been provided to date. Here we aim to review the process of physogastry in termite queens, from the pioneer studies on the morphological changes accompanying this process to recent advances in the molecular mechanisms underlying fecundity and the remarkable longevity reached by mature queens (e.g., TI-J-LiFe framework). Intrinsic and extrinsic factors driving this phenomenon, its impact on colony growth, and the current knowledge gaps are also discussed. We expect that our approach paves the way for further studies of termite physogastry, especially given the advances of molecular tools and recent termite phylogenies, and comparative analyses with other eusocial insects and the mechanisms driving this phenomenon in the different groups. Physogastry is a rare process in adult insects and remarkable in termite queens, offering aunique opportunity to unravel the basis of a highly fecund life.
Collapse
Affiliation(s)
- Ana Maria Costa-Leonardo
- Laboratório de Cupins, Departamento de Biologia, Instituto de Biociências, Universidade Estadual Paulista - UNESP, Rio Claro, SP, Brazil.
| | - Vanelize Janei
- Laboratório de Cupins, Departamento de Biologia, Instituto de Biociências, Universidade Estadual Paulista - UNESP, Rio Claro, SP, Brazil
| | - Ana Cristina Ignatti
- Laboratório de Cupins, Departamento de Biologia, Instituto de Biociências, Universidade Estadual Paulista - UNESP, Rio Claro, SP, Brazil
| | - Iago Bueno da Silva
- Evolution, Genomes, Behavior, and Ecology (EGCE), Université Paris-Saclay, CNRS, IRD, Gif‑Sur‑Yvette, France
| |
Collapse
|
2
|
Shira CD, Malakar K, Das B. Unravelling the Role of Insulin-Like Peptide Genes in Bombyx mori: Potential Key Regulators of Insect Metabolism. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2025; 118:e70054. [PMID: 40235296 DOI: 10.1002/arch.70054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 04/17/2025]
Abstract
Understanding gene expression in specific tissues and their modulation under environmental stimuli, such as nutritional deficiency, reveals the key physiological regulatory mechanisms of an organism. This study examined the tissue-specific expression of insulin-like peptide (ILP) genes (BmX and BmZ) in Bombyx mori larvae and their responses to hyperglycaemia, food deprivation and hormonal (20-hydroxyecdysone and bovine insulin) treatments. mRNA expression levels of BmX and BmZ were analyzed in the brain, fat body, midgut and ovary. The results revealed that BmX was highly expressed in the fat body, while both genes were abundant in the ovary. Hyperglycaemia increased BmX mRNA expression level in the midgut (3.07-fold) and brain (7.53-fold), while BmZ mRNA expression level was increased in all tissues except the midgut. Nutrient deficiency upregulated BmX mRNA expression level (1.36-fold) in the fat body while reducing it (-0.53-fold) in the midgut. Food deprivation progressively increased (0.77-fold at 24 h and 2.34-fold at 72 h) BmX mRNA expression level in the fat body, while both BmX and BmZ transcripts declined in the midgut. Insulin suppressed BmX (-0.25-fold) and BmZ (-0.91-fold) mRNA expression levels in food-deprived larvae in the fat body, whereas 20E consistently downregulated BmX, BmZ, and BmInR (insulin receptor) mRNA expression levels in all the conditions. These findings revealed the complex interaction of gene expression, tissue specificity, and environmental factors in B. mori larvae and provided insights into adaptive responses to nutritional stress and hormonal regulation in the insect with potential applications in sericulture and agricultural biotechnology.
Collapse
Affiliation(s)
- Creaminar D Shira
- Department of Zoology, North-Eastern Hill University, Shillong, India
| | - Kanmoni Malakar
- Department of Zoology, North-Eastern Hill University, Shillong, India
| | - Bidyadhar Das
- Department of Zoology, North-Eastern Hill University, Shillong, India
| |
Collapse
|
3
|
Leyria J. Endocrine factors modulating vitellogenesis and oogenesis in insects: An update. Mol Cell Endocrinol 2024; 587:112211. [PMID: 38494046 DOI: 10.1016/j.mce.2024.112211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/26/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
The endocrine system plays a pivotal role in shaping the mechanisms that ensure successful reproduction. With over a million known insect species, understanding the endocrine control of reproduction has become increasingly complex. Some of the key players include the classic insect lipid hormones juvenile hormone (JH) and ecdysteroids, and neuropeptides such as insulin-like peptides (ILPs). Individual endocrine factors not only modulate their own target tissue but also play crucial roles in crosstalk among themselves, ensuring successful vitellogenesis and oogenesis. Recent advances in omics, gene silencing, and genome editing approaches have accelerated research, offering both fundamental insights and practical applications for studying in-depth endocrine signaling pathways. This review provides an updated and integrated view of endocrine factors modulating vitellogenesis and oogenesis in insect females.
Collapse
Affiliation(s)
- Jimena Leyria
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada.
| |
Collapse
|
4
|
Orchard I, Lange AB. The neuroendocrine and endocrine systems in insect - Historical perspective and overview. Mol Cell Endocrinol 2024; 580:112108. [PMID: 37956790 DOI: 10.1016/j.mce.2023.112108] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/15/2023]
Abstract
A complex cascade of events leads to the initiation and maintenance of a behavioral act in response to both internally and externally derived stimuli. These events are part of a transition of the animal into a new behavioral state, coordinated by chemicals that bias tissues and organs towards a new functional state of the animal. This form of integration is defined by the neuroendocrine (or neurosecretory) system and the endocrine system that release neurohormones or hormones, respectively. Here we describe the classical neuroendocrine and endocrine systems in insects to provide an historic perspective and overview of how neurohormones and hormones support plasticity in behavioral expression. Additionally, we describe peripheral tissues such as the midgut, epitracheal glands, and ovaries, which, whilst not necessarily being endocrine glands in the pure sense of the term, do produce and release hormones, thereby providing even more flexibility for inter-organ communication and regulation.
Collapse
Affiliation(s)
- Ian Orchard
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Rd., Mississauga, ON, L5L 1C6, Canada.
| | - Angela B Lange
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Rd., Mississauga, ON, L5L 1C6, Canada.
| |
Collapse
|
5
|
Finetti L, Orchard I, Lange AB. The octopamine receptor OAα1 influences oogenesis and reproductive performance in Rhodnius prolixus. PLoS One 2023; 18:e0296463. [PMID: 38157386 PMCID: PMC10756544 DOI: 10.1371/journal.pone.0296463] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024] Open
Abstract
The control of reproductive processes in Rhodnius prolixus involves a variety of neuroactive chemicals. Among these, several studies have suggested that the biogenic amine octopamine (OA), might play an active role in these processes. Here, we investigate the molecular profile of the R. prolixus α adrenergic-like OA receptor 1 (RpOAα1-R) and its role in egg production. Comparative molecular analyses confirm that the RpOAα1-R gene codes for a true OAα1 receptor. The RpOAα1-R transcript is highly expressed in tissues associated with egg production, and after a blood meal, which is the stimulus for full egg production in R. prolixus, the RpOAα1-R transcript is upregulated in the ovaries and spermatheca. After RNAi-mediated RpOAα1-R knockdown, an ovarian phenotype characterized by slow egg development is observed. Furthermore, an altered egg phenotype has been characterized with eggs that are deformed. Interestingly, there is no evidence of disruption in vitellogenin (Vg) synthesis by the fat body or uptake by the oocytes. On the other hand, RpOAα1-R downregulation is correlated with defective choriogenesis in the eggs. These results provide critical information concerning the role of OAα1-R in oogenesis in R. prolixus.
Collapse
Affiliation(s)
- Luca Finetti
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Ian Orchard
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Angela B. Lange
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| |
Collapse
|
6
|
Finetti L, Leyria J, Orchard I, Lange AB. Tyraminergic control of vitellogenin production and release in the blood-feeding insect, Rhodnius prolixus. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 156:103948. [PMID: 37075904 DOI: 10.1016/j.ibmb.2023.103948] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/16/2023] [Accepted: 04/16/2023] [Indexed: 05/03/2023]
Abstract
In insects, the biogenic amine tyramine (TA) has been shown to control several physiological processes. Recently, the involvement of the type 1 tyramine receptor (TAR1) in reproductive processes has been demonstrated in different insects. Here, we investigate the putative role of Rhodnius prolixus TAR1 (RpTAR1) in reproduction in female R. prolixus. RpTAR1 transcript was highly expressed in tissues associated with egg development. Moreover, after a blood meal, which is the stimulus for full egg development, RpTAR1 transcript was upregulated in the ovaries and in the fat body. After RNAi-mediated RpTAR1 knockdown, an ovarian phenotype characterized by the absence or reduction of egg production was observed. Furthermore, protein and Vg accumulation in the fat body was observed, suggesting an impairment in protein release from the fat body into the hemolymph. However, even though fewer eggs were produced and laid, there was no difference in hatching ratio of those laid, in comparison to the controls, indicating that the overall low protein uptake by the ovaries did not influence the viability of individual eggs produced. Interestingly, the eggs from dsTAR1-treated insects appeared more red, indicating a higher content of RHBP compared to the control. A higher colocalization between Vg and Rab11, a marker for the recycling endosome pathway, was observed after dsTAR1 injection, suggesting that a more active lysosome degradation pathway in response to the Vg accumulation may occur. In addition to the Vg accumulation in the fat body, dsTAR1 treatment altered JH pathway. However, it remains to be elucidated whether this event is either directly related to the RpTAR1 downregulation or for a consequence to the Vg accumulation. Lastly, the RpTAR1 action on Vg synthesis and release in the fat body was monitored in the presence or absence of yohimbine, the antagonist of TAR1, in an ex-vivo experiment. Yohimbine antagonises the TAR1 stimulated release of Vg. These results provide critical information concerning the role of TAR1 in Vg synthesis and release in R. prolixus. Furthermore, this work opens the way for further investigation into innovative methods for controlling R. prolixus.
Collapse
Affiliation(s)
- Luca Finetti
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada.
| | - Jimena Leyria
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Ian Orchard
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Angela B Lange
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| |
Collapse
|
7
|
Li H, Luo X, Li N, Liu T, Zhang J. Insulin-like peptide 8 (Ilp8) regulates female fecundity in flies. Front Cell Dev Biol 2023; 11:1103923. [PMID: 36743416 PMCID: PMC9890075 DOI: 10.3389/fcell.2023.1103923] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/04/2023] [Indexed: 01/19/2023] Open
Abstract
Introduction: Insulin-like peptides (Ilps) play crucial roles in nearly all life stages of insects. Ilp8 is involved in developmental stability, stress resistance and female fecundity in several insect species, but the underlying mechanisms are not fully understood. Here we report the functional characterization of Ilp8s in three fly species, including Bactrocera dorsalis, Drosophila mercatorum and Drosophila melanogaster. Methods: Phylogenetic analyses were performed to identify and characterize insect Ilp8s. The amino acid sequences of fly Ilp8s were aligned and the three-dimensional structures of fly Ilp8s were constructed and compared. The tissue specific expression pattern of fly Ilp8s were examined by qRT-PCR. In Bactrocera dorsalis and Drosophila mercatorum, dsRNAs were injected into virgin females to inhibit the expression of Ilp8 and the impacts on female fecundity were examined. In Drosophila melanogaster, the female fecundity of Ilp8 loss-of-function mutant was compared with wild type control flies. The mutant fruit fly strain was also used for sexual behavioral analysis and transcriptomic analysis. Results: Orthologs of Ilp8s are found in major groups of insects except for the lepidopterans and coleopterans, and Ilp8s are found to be well separated from other Ilps in three fly species. The key motif and the predicted three-dimensional structure of fly Ilp8s are well conserved. Ilp8 are specifically expressed in the ovary and are essential for female fecundity in three fly species. Behavior analysis demonstrates that Ilp8 mutation impairs female sexual attractiveness in fruit fly, which results in decreased mating success and is likely the cause of fecundity reduction. Further transcriptomic analysis indicates that Ilp8 might influence metabolism, immune activity, oocyte development as well as hormone homeostasis to collectively regulate female fecundity in the fruit fly. Discussion: Our findings support a universal role of insect Ilp8 in female fecundity, and also provide novel clues for understanding the modes of action of Ilp8.
Collapse
Affiliation(s)
- Haomiao Li
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xi Luo
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
| | - Na Li
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
| | - Tao Liu
- Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Junzheng Zhang
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China,*Correspondence: Junzheng Zhang,
| |
Collapse
|
8
|
Veenstra JA. Differential expression of some termite neuropeptides and insulin/IGF-related hormones and their plausible functions in growth, reproduction and caste determination. PeerJ 2023; 11:e15259. [PMID: 37128206 PMCID: PMC10148640 DOI: 10.7717/peerj.15259] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/28/2023] [Indexed: 05/03/2023] Open
Abstract
Background Insulin-like growth factor (IGF) and other insulin-like peptides (ilps) are important hormones regulating growth and development in animals. Whereas most animals have a single female and male adult phenotype, in some insect species the same genome may lead to different final forms. Perhaps the best known example is the honeybee where females can either develop into queens or workers. More extreme forms of such polyphenism occur in termites, where queens, kings, workers and soldiers coexist. Both juvenile hormone and insulin-like peptides are known to regulate growth and reproduction as well as polyphenism. In termites the role of juvenile hormone in reproduction and the induction of the soldier caste is well known, but the role of IGF and other ilps in these processes remains largely unknown. Here the various termite ilps are identified and hypotheses regarding their functions suggested. Methods Genome assemblies and transcriptome short read archives (SRAs) were used to identify insulin-like peptides and neuropeptides in termites and to determine their expression in different species, tissues and castes. Results and Discussion Termites have seven different ilps, i.e. gonadulin, IGF and an ortholog of Drosophila insulin-like peptide 7 (dilp7), which are commonly present in insects, and four smaller peptides, that have collectively been called short IGF-related peptides (sirps) and individually atirpin, birpin, cirpin and brovirpin. Gonadulin is lost from the higher termites which have however amplified the brovirpin gene, of which they often have two or three paralogs. Based on differential expression of these genes it seems likely that IGF is a growth hormone and atirpin an autocrine tissue factor that is released when a tissue faces metabolic stress. Birpin seems to be responsible for growth and in the absence of juvenile hormone this may lead to reproductive adults or, when juvenile hormone is present, to soldiers. Brovirpin is expressed both by the brain and the ovary and likely stimulates vitellogenesis, while the function of cirpin is less clear.
Collapse
|
9
|
Crosstalk between Nutrition, Insulin, Juvenile Hormone, and Ecdysteroid Signaling in the Classical Insect Model, Rhodnius prolixus. Int J Mol Sci 2022; 24:ijms24010007. [PMID: 36613451 PMCID: PMC9819625 DOI: 10.3390/ijms24010007] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The rigorous balance of endocrine signals that control insect reproductive physiology is crucial for the success of egg production. Rhodnius prolixus, a blood-feeding insect and main vector of Chagas disease, has been used over the last century as a model to unravel aspects of insect metabolism and physiology. Our recent work has shown that nutrition, insulin signaling, and two main types of insect lipophilic hormones, juvenile hormone (JH) and ecdysteroids, are essential for successful reproduction in R. prolixus; however, the interplay behind these endocrine signals has not been established. We used a combination of hormone treatments, gene expression analyses, hormone measurements, and ex vivo experiments using the corpus allatum or the ovary, to investigate how the interaction of these endocrine signals might define the hormone environment for egg production. The results show that after a blood meal, circulating JH levels increase, a process mainly driven through insulin and allatoregulatory neuropeptides. In turn, JH feeds back to provide some control over its own biosynthesis by regulating the expression of critical biosynthetic enzymes in the corpus allatum. Interestingly, insulin also stimulates the synthesis and release of ecdysteroids from the ovary. This study highlights the complex network of endocrine signals that, together, coordinate a successful reproductive cycle.
Collapse
|