1
|
Zhuang L, Gao W, Chen Y, Fang W, Lo H, Dai X, Zhang J, Chen W, Ye Q, Chen X, Zhang J. LHPP in Glutamatergic Neurons of the Ventral Hippocampus Mediates Depression-like Behavior by Dephosphorylating CaMKIIα and ERK. Biol Psychiatry 2024; 95:389-402. [PMID: 37678540 DOI: 10.1016/j.biopsych.2023.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/09/2023] [Accepted: 08/31/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND LHPP was recently shown to be a risk gene for major depressive disorder. LHPP has been proven to dephosphorylate the residues of histidine, serine, threonine, and tyrosine. However, much remains unknown about how LHPP contributes to depression. METHODS In the current study, we addressed this issue by integrating approaches of genetics, molecular biology, behavioral testing, and electrophysiology. RESULTS We found that levels of LHPP were upregulated in glutamatergic neurons of the ventral hippocampus in mice that displayed stress-induced depression-like behaviors. Knockout of LHPP in glutamatergic neurons of the brain improved the spontaneous activity of LHPPflox/flox·CaMKIIαCre+ (conditional knockout) mice. Adeno-associated virus-mediated LHPP knockdown in the ventral hippocampus enhanced resistance against chronic social defeat stress in mice. Manipulations of LHPP levels impacted the density of dendritic spines and excitability of CA1 pyramidal neurons by mediating the expressions of BDNF (brain-derived neurotrophic factor) and PSD95 via the modulation of the dephosphorylation of CaMKIIα and ERK. Notably, compared with wild-type LHPP, human mutant LHPP (E56K, S57L) significantly increased the activity of the CaMKIIα/ERK-BDNF/PSD95 signaling pathway. Finally, esketamine, not fluoxetine, markedly alleviated the LHPP upregulation-induced depression-like behaviors. CONCLUSIONS These findings provide evidence that LHPP contributes to the pathogenesis of depression via threonine and serine hydrolases, thereby identifying LHPP as a potential therapeutic target in treating patients with major depressive disorder.
Collapse
Affiliation(s)
- Lvping Zhuang
- Department of Neurology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| | - Weijie Gao
- Department of Neurology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou, China; School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yanbing Chen
- Institute of Neurosciences, Xiamen University Medical College, Xiamen, China
| | - Wenting Fang
- Department of Neurology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| | - Hsuan Lo
- Department of Neurology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| | - Xiaoman Dai
- Department of Neurology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| | - Jie Zhang
- Department of Neurology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou, China; Institute of Neurosciences, Xiamen University Medical College, Xiamen, China
| | - Wanjing Chen
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Qinyong Ye
- Department of Neurology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| | - Xiaochun Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou, China.
| | - Jing Zhang
- Department of Neurology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
2
|
Zernov N, Popugaeva E. Role of Neuronal TRPC6 Channels in Synapse Development, Memory Formation and Animal Behavior. Int J Mol Sci 2023; 24:15415. [PMID: 37895105 PMCID: PMC10607207 DOI: 10.3390/ijms242015415] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
The transient receptor potential cation channel, subfamily C, member 6 (TRPC6), has been believed to adjust the formation of an excitatory synapse. The positive regulation of TRPC6 engenders synapse enlargement and improved learning and memory in animal models. TRPC6 is involved in different synaptoprotective signaling pathways, including antagonism of N-methyl-D-aspartate receptor (NMDAR), activation of brain-derived neurotrophic factor (BDNF) and postsynaptic store-operated calcium entry. Positive regulation of TRPC6 channels has been repeatedly shown to be good for memory formation and storage. TRPC6 is mainly expressed in the hippocampus, particularly in the dentate granule cells, cornu Ammonis 3 (CA3) pyramidal cells and gamma-aminobutyric acid (GABA)ergic interneurons. It has been observed that TRPC6 agonists have a great influence on animal behavior including memory formation and storage The purpose of this review is to collect the available information on the role of TRPC6 in memory formation in various parts of the brain to understand how TRPC6-specific pharmaceutical agents will affect memory in distinct parts of the central nervous system (CNS).
Collapse
Affiliation(s)
| | - Elena Popugaeva
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| |
Collapse
|
3
|
Webber EK, Fivaz M, Stutzmann GE, Griffioen G. Cytosolic calcium: Judge, jury and executioner of neurodegeneration in Alzheimer's disease and beyond. Alzheimers Dement 2023; 19:3701-3717. [PMID: 37132525 PMCID: PMC10490830 DOI: 10.1002/alz.13065] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 05/04/2023]
Abstract
This review discusses the driving principles that may underlie neurodegeneration in dementia, represented most dominantly by Alzheimer's disease (AD). While a myriad of different disease risk factors contribute to AD, these ultimately converge to a common disease outcome. Based on decades of research, a picture emerges where upstream risk factors combine in a feedforward pathophysiological cycle, culminating in a rise of cytosolic calcium concentration ([Ca2+ ]c ) that triggers neurodegeneration. In this framework, positive AD risk factors entail conditions, characteristics, or lifestyles that initiate or accelerate self-reinforcing cycles of pathophysiology, whereas negative risk factors or therapeutic interventions, particularly those mitigating elevated [Ca2+ ]c , oppose these effects and therefore have neuroprotective potential.
Collapse
Affiliation(s)
- Elise K. Webber
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
| | - Marc Fivaz
- reMYND, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Grace E. Stutzmann
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
| | | |
Collapse
|
4
|
Gerasimov E, Bezprozvanny I, Vlasova OL. Activation of Gq-Coupled Receptors in Astrocytes Restores Cognitive Function in Alzheimer's Disease Mice Model. Int J Mol Sci 2023; 24:9969. [PMID: 37373117 PMCID: PMC10298315 DOI: 10.3390/ijms24129969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Alzheimer's disease (AD) is one of the most widespread neurodegenerative diseases. Most of the current AD therapeutic developments are directed towards improving neuronal cell function or facilitating Aβ amyloid clearance from the brain. However, some recent evidence suggests that astrocytes may play a significant role in the pathogenesis of AD. In this paper, we evaluated the effects of the optogenetic activation of Gq-coupled exogenous receptors expressed in astrocytes as a possible way of restoring brain function in the AD mouse model. We evaluated the effects of the optogenetic activation of astrocytes on long-term potentiation, spinal morphology and behavioral readouts in 5xFAD mouse model of AD. We determined that in vivo chronic activation of astrocytes resulted in the preservation of spine density, increased mushroom spine survival, and improved performance in cognitive behavioral tests. Furthermore, chronic optogenetic stimulation of astrocytes resulted in the elevation of EAAT-2 glutamate uptake transporter expression, which could be a possible explanation for the observed in vivo neuroprotective effects. The obtained results suggest that the persistent activation of astrocytes may be considered a potential therapeutic approach for the treatment of AD and possibly other neurodegenerative disorders.
Collapse
Affiliation(s)
- Evgenii Gerasimov
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Khlopina St. 11, 194021 St. Petersburg, Russia; (E.G.); (I.B.)
| | - Ilya Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Khlopina St. 11, 194021 St. Petersburg, Russia; (E.G.); (I.B.)
- Department of Physiology, UT Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Olga L. Vlasova
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Khlopina St. 11, 194021 St. Petersburg, Russia; (E.G.); (I.B.)
| |
Collapse
|
5
|
Bouron A. Neuronal Store-Operated Calcium Channels. Mol Neurobiol 2023:10.1007/s12035-023-03352-5. [PMID: 37118324 DOI: 10.1007/s12035-023-03352-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/13/2023] [Indexed: 04/30/2023]
Abstract
The endoplasmic reticulum (ER) is the major intracellular calcium (Ca2+) storage compartment in eukaryotic cells. In most instances, the mobilization of Ca2+ from this store is followed by a delayed and sustained uptake of Ca2+ through Ca2+-permeable channels of the cell surface named store-operated Ca2+ channels (SOCCs). This gives rise to a store-operated Ca2+ entry (SOCE) that has been thoroughly investigated in electrically non-excitable cells where it is the principal regulated Ca2+ entry pathway. The existence of this Ca2+ route in neurons has long been a matter of debate. However, a growing body of experimental evidence indicates that the recruitment of Ca2+ from neuronal ER Ca2+ stores generates a SOCE. The present review summarizes the main studies supporting the presence of a depletion-dependent Ca2+ entry in neurons. It also addresses the question of the molecular composition of neuronal SOCCs, their expression, pharmacological properties, as well as their physiological relevance.
Collapse
Affiliation(s)
- Alexandre Bouron
- Université Grenoble Alpes, CNRS, CEA, Inserm UA13 BGE, 38000, Grenoble, France.
| |
Collapse
|
6
|
Zernov N, Veselovsky AV, Poroikov VV, Melentieva D, Bolshakova A, Popugaeva E. New Positive TRPC6 Modulator Penetrates Blood-Brain Barrier, Eliminates Synaptic Deficiency and Restores Memory Deficit in 5xFAD Mice. Int J Mol Sci 2022; 23:13552. [PMID: 36362339 PMCID: PMC9653995 DOI: 10.3390/ijms232113552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/01/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
Abstract
Synapse loss in the brain of Alzheimer's disease patients correlates with cognitive dysfunctions. Drugs that limit synaptic loss are promising pharmacological agents. The transient receptor potential cation channel, subfamily C, member 6 (TRPC6) regulates the formation of an excitatory synapse. Positive regulation of TRPC6 results in increased synapse formation and enhances learning and memory in animal models. The novel selective TRPC6 agonist, 3-(3-,4-Dihydro-6,7-dimethoxy-3,3-dimethyl-1-isoquinolinyl)-2H-1-benzopyran-2-one, has recently been identified. Here we present in silico, in vitro, ex vivo, pharmacokinetic and in vivo studies of this compound. We demonstrate that it binds to the extracellular agonist binding site of the human TRPC6, protects hippocampal mushroom spines from amyloid toxicity in vitro, efficiently recovers synaptic plasticity in 5xFAD brain slices, penetrates the blood-brain barrier and recovers cognitive deficits in 5xFAD mice. We suggest that C20 might be recognized as the novel TRPC6-selective drug suitable to treat synaptic deficiency in Alzheimer's disease-affected hippocampal neurons.
Collapse
Affiliation(s)
- Nikita Zernov
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg, Russia
| | - Alexander V. Veselovsky
- Department of Bioinformatics, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia
| | - Vladimir V. Poroikov
- Department of Bioinformatics, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia
| | - Daria Melentieva
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg, Russia
| | - Anastasia Bolshakova
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg, Russia
| | - Elena Popugaeva
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg, Russia
| |
Collapse
|
7
|
Leblhuber F, Geisler S, Ehrlich D, Steiner K, Kurz K, Fuchs D. High Frequency Repetitive Transcranial Magnetic Stimulation Improves Cognitive Performance Parameters in Patients with Alzheimer's Disease - An Exploratory Pilot Study. Curr Alzheimer Res 2022; 19:681-688. [PMID: 36125835 DOI: 10.2174/1567205019666220920090919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/20/2022] [Accepted: 08/01/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Currently available medication for Alzheimer's disease (AD) slows cognitive decline only temporarily but has failed to bring about long term positive effects. For this slowly progressive neurodegenerative disease, so far, no disease modifying therapy exists. OBJECTIVE The study aims to find out if non-pharmacologic non-invasive neuromodulatory repetitive transcranial magnetic stimulation (rTMS) may offer a new alternative or an add on therapeutic strategy against loss of cognitive functions. METHODS In this exploratory intervention study, safety and symptom development before and after frontopolar cortex stimulation (FPC) using intermittent theta burst stimulation (iTBS) at 10 subsequent working days was monitored as add-on treatment in 28 consecutive patients with AD. Out of these, 10 randomly selected patients received sham stimulation as a control. Serum concentrations of neurotransmitter precursor amino acids, immune activation and inflammation markers, brain-derived neurotrophic factor (BDNF), and nitrite were measured. RESULTS Treatment was well tolerated, and no serious adverse effects were observed. Improvement of cognition was detected by an increase in Mini Mental State Examination score (MMSE; p<0.01, paired rank test) and also by an increase in a modified repeat address phrase test, part of the 6-item cognitive impairment test (p<0.01). A trend to increase the clock drawing test (CDT; p = 0.08) was also found in the verum treated group. Furtheron, in 10 of the AD patients with additional symptoms of depression treated with iTBS, a significant decrease in the HAMD-7 scale (p<0.01) and a trend to lower serum phenylalanine concentrations (p = 0.08) was seen. No changes in the parameters tested were found in the sham treated patients. CONCLUSION Our preliminary results may indicate that iTBS is effective in the treatment of AD. Also a slight influence of iTBS on the metabolism of phenylalanine was found after 10 iTBS sessions. An impact of iTBS to influence the enzyme phenylalanine hydroxylase (PAH), as found in the previous series of treatment resistant depression, could not be seen in our first observational trial in 10 AD patients with comorbidity of depression. Longer treatment periods for several weeks in a higher number of AD patients with depression could cause more intense and disease modifying effects visible in different neurotransmitter concentrations important in the pathogenesis of AD.
Collapse
Affiliation(s)
| | - Simon Geisler
- Institute of Biological Chemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Daniela Ehrlich
- Department of Gerontology, Kepler University Clinic, Linz, Austria
| | - Kostja Steiner
- Department of Gerontology, Kepler University Clinic, Linz, Austria
| | - Katharina Kurz
- Department of Internal Medicine, Innsbruck Medical University, Innsbruck, Austria
| | - Dietmar Fuchs
- Institute of Biological Chemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|