1
|
Yoshitome Queiroz L, Nunes Mariot L, Sousa Soares E, Urach Stahler C, Griebner G, de Moraes Machado G, M Gissoni J, Betta Canever J, Sordi R, Cimarosti H. Cecal slurry-induced sepsis in mice impairs cognition and decreases SUMO-2/3 conjugation. Behav Brain Res 2025; 485:115544. [PMID: 40118347 DOI: 10.1016/j.bbr.2025.115544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/07/2025] [Accepted: 03/15/2025] [Indexed: 03/23/2025]
Abstract
Sepsis is characterized by multiple organ dysfunction, dysregulation of the response to the infection process, and a high mortality rate in intensive care units. In addition, individuals who overcome sepsis often manifest cognitive deficits associated with neuroinflammation resulting from the entry of pro-inflammatory cytokines into the brain. Post-translational protein modifications, such as SUMOylation, can regulate the expression of pro-inflammatory genes during sepsis. Since SUMO-2/3 can play a role in pathological conditions, our aim was to investigate a potential link between sepsis-induced cognitive decline and SUMOylation by this isoform. Firstly, the cecal slurry model was induced by intraperitoneally injecting male Swiss mice with different volumes of a cecal solution. Following assessment of body temperature, mass and septic scores, the groups that received 300 μL and 350 μL of the cecal solution were selected for the behavioural tests, as they presented signs of sepsis without excessive mortality. Surviving animals were evaluated for cognition/memory and anxious/depressive-like behaviours through the open-field, object recognition, Y-maze, and tail suspension tests. Subsequently, SUMO-2/3 conjugation was determined in samples from the hippocampus and prefrontal cortex by Western blotting. Mice in the septic groups showed decreased locomotor activity, anxious-and depressive-like behaviours, as well as impaired memory. These deficits were accompanied by a decrease in SUMO-2/3 conjugation in the hippocampus and prefrontal cortex at 24 h and 10 days after the induction of the cecal slurry model. Taken together, our findings suggest that SUMOylation is impaired in septic animals and this could be related to the behavioural deficits seen in the surviving mice.
Collapse
Affiliation(s)
- Letícia Yoshitome Queiroz
- Postgraduate Program of Pharmacology Center of Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil; Postgraduate Program of Neuroscience, Center of Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Luana Nunes Mariot
- Postgraduate Program of Pharmacology Center of Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Ericks Sousa Soares
- Postgraduate Program of Pharmacology Center of Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Carolina Urach Stahler
- Postgraduate Program of Pharmacology Center of Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Gustavo Griebner
- Postgraduate Program of Pharmacology Center of Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil; Postgraduate Program of Neuroscience, Center of Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Gustavo de Moraes Machado
- Postgraduate Program of Neuroscience, Center of Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - João M Gissoni
- Postgraduate Program of Pharmacology Center of Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Jaquelini Betta Canever
- Postgraduate Program of Neuroscience, Center of Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Regina Sordi
- Postgraduate Program of Pharmacology Center of Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Helena Cimarosti
- Postgraduate Program of Pharmacology Center of Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil; Postgraduate Program of Neuroscience, Center of Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
2
|
Soares ES, Queiroz LY, Canever JB, Griebner G, Stahler CU, Mansur DS, Prediger RDS, Cimarosti HI. SENP3 knockdown improves motor and cognitive impairments in the intranasal MPTP rodent model of Parkinson's disease. Physiol Behav 2025; 288:114725. [PMID: 39488250 DOI: 10.1016/j.physbeh.2024.114725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/04/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Several mechanisms underlying Parkinson's disease (PD) remain unclear, and effective treatments are still lacking. The conjugation of the small ubiquitin-like modifier (SUMO), known as SUMOylation, to key proteins in PD has shown potential beneficial effects. Considering that this process is reversed by SUMO-specific proteases (SENPs), this study addressed the effects of increased SUMO-2/3 conjugation, mediated by SENP3 knockdown, in the intranasal 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) rodent model of PD. Two weeks after infusion of the shRNA-containing lentiviral vector into the dorsolateral striatum and one week following intranasal MPTP administration, male Wistar rats were evaluated using cognitive and motor behavioural tests. Infection efficiency was confirmed by detecting GFP expression in the dorsolateral striatum. SENP3 knockdown, verified by Western blotting, resulted in increased SUMO-2/3 conjugation. MPTP-administered rats displayed impairments in both recognition and spatial memories, while SENP3 knockdown prevented these deficits. Rats exposed to MPTP also exhibited motor dysfunction, which was ameliorated by SENP3 knockdown. These findings underscore the involvement of SUMO-2/3 conjugation in PD and its potential as a novel therapeutic target to counteract cognitive and motor impairments induced by neurodegeneration.
Collapse
Affiliation(s)
- Ericks S Soares
- Department of Pharmacology, Postgraduate Program in Pharmacology, Centre for Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Leticia Y Queiroz
- Department of Pharmacology, Postgraduate Program in Pharmacology, Centre for Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil; Postgraduate Program in Neuroscience, Centre for Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Jaquelini B Canever
- Postgraduate Program in Neuroscience, Centre for Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Gustavo Griebner
- Department of Pharmacology, Postgraduate Program in Pharmacology, Centre for Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Carolina U Stahler
- Department of Pharmacology, Postgraduate Program in Pharmacology, Centre for Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Daniel S Mansur
- Department of Microbiology, Immunology, and Parasitology, Centre for Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Rui Daniel S Prediger
- Department of Pharmacology, Postgraduate Program in Pharmacology, Centre for Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil; Postgraduate Program in Neuroscience, Centre for Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Helena I Cimarosti
- Department of Pharmacology, Postgraduate Program in Pharmacology, Centre for Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil; Postgraduate Program in Neuroscience, Centre for Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil.
| |
Collapse
|
3
|
Jiao Y, Zhang X, Yang Z. SUMO-specific proteases: SENPs in oxidative stress-related signaling and diseases. Biofactors 2024; 50:910-921. [PMID: 38551331 DOI: 10.1002/biof.2055] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 03/17/2024] [Indexed: 10/04/2024]
Abstract
Oxidative stress is employed to depict a series of responses detrimental to normal cellular functions resulting from an imbalance between intracellular oxidants, mainly reactive oxygen species and antioxidant defenses. Oxidative stress often contributes to the development of various diseases, including cancer, cardiovascular diseases, and neurodegenerative diseases. In this process, the relationship between small ubiquitin-like modifier (SUMO) and oxidative stress has garnered significant attention, with its posttranslational modification (PTM) frequently serving as a marker of oxidative stress status. Sentrin/SUMO-specific proteases (SENPs), affected by alternative splicing, PTMs such as phosphorylation and ubiquitination, and various protein interactions, are crucial molecules in the SUMO process. The human SENP family has six members (SENP1-3, SENP5-7), which are classified into two categories based on sequence similarity, substrate specificity, and subcellular location. They have two core functions in the human body: first, by cleaving the precursor SUMO and exposing the C-terminal glycine, they initiate the SUMO process; second, they can specifically recognize and dissociate SUMO proteins bound to substrates, a process known as deSUMOylation. However, the connection between deSUMOylation and oxidative stress remains a relatively unexplored area despite their strong association with oxidative diseases such as cancer and cardiovascular disease. This article aims to illustrate the significant contribution of SENPs to the oxidative stress pathway through deSUMOylation by reviewing their structure and classification, their roles in oxidative stress, and the changes in their expression and activity in several typical oxidative stress-related diseases.
Collapse
Affiliation(s)
- Yaqi Jiao
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xiaojuan Zhang
- Department of Cell Biochemistry, University of Groningen, Groningen, The Netherlands
| | - Zhenshan Yang
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| |
Collapse
|
4
|
Queiroz LY, Kageyama R, Cimarosti HI. SUMOylation effects on neural stem cells self-renewal, differentiation, and survival. Neurosci Res 2024; 199:1-11. [PMID: 37742800 DOI: 10.1016/j.neures.2023.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 09/26/2023]
Abstract
SUMO (small ubiquitin-like modifier) conjugation or SUMOylation, a post-translational modification, is a crucial regulator of protein function and cellular processes. In the context of neural stem cells (NSCs), SUMOylation has emerged as a key player, affecting their proliferation, differentiation, and survival. By modifying transcription factors, such as SOX1, SOX2, SOX3, SOX6, Bmi1, and Nanog, SUMOylation can either enhance or impair their transcriptional activity, thus impacting on NSCs self-renewal. Moreover, SUMOylation regulates neurogenesis and neuronal differentiation by modulating key proteins, such as Foxp1, Mecp2, MEF2A, and SOX10. SUMOylation is also crucial for the survival and proliferation of NSCs in both developing and adult brains. By regulating the activity of transcription factors, coactivators, and corepressors, SUMOylation acts as a molecular switch, inducing cofactor recruitment and function during development. Importantly, dysregulation of NSCs SUMOylation has been implicated in various disorders, including embryonic defects, ischemic cerebrovascular disease, glioma, and the harmful effects of benzophenone-3 exposure. Here we review the main findings on SUMOylation-mediated regulation of NSCs self-renewal, differentiation and survival. Better understanding NSCs SUMOylation mechanisms and its functional consequences might provide new strategies to promote neuronal differentiation that could contribute for the development of novel therapies targeting neurodegenerative diseases.
Collapse
Affiliation(s)
- Letícia Yoshitome Queiroz
- Postgraduate Program in Pharmacology, Federal University of Santa Catarina (UFSC), Florianopolis, Brazil
| | - Ryoichiro Kageyama
- Graduate School of Medicine, Kyoto University, Kyoto, Japan; RIKEN Center for Brain Science, Wako, Japan
| | - Helena I Cimarosti
- Postgraduate Program in Pharmacology, Federal University of Santa Catarina (UFSC), Florianopolis, Brazil; Postgraduate Program in Neuroscience, UFSC, Florianopolis, Brazil.
| |
Collapse
|
5
|
Mandel N, Agarwal N. Role of SUMOylation in Neurodegenerative Diseases. Cells 2022; 11:3395. [PMID: 36359791 PMCID: PMC9654019 DOI: 10.3390/cells11213395] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 09/26/2023] Open
Abstract
Neurodegenerative diseases (NDDs) are irreversible, progressive diseases with no effective treatment. The hallmark of NDDs is the aggregation of misfolded, modified proteins, which impair neuronal vulnerability and cause brain damage. The loss of synaptic connection and the progressive loss of neurons result in cognitive defects. Several dysregulated proteins and overlapping molecular mechanisms contribute to the pathophysiology of NDDs. Post-translational modifications (PTMs) are essential regulators of protein function, trafficking, and maintaining neuronal hemostasis. The conjugation of a small ubiquitin-like modifier (SUMO) is a reversible, dynamic PTM required for synaptic and cognitive function. The onset and progression of neurodegenerative diseases are associated with aberrant SUMOylation. In this review, we have summarized the role of SUMOylation in regulating critical proteins involved in the onset and progression of several NDDs.
Collapse
Affiliation(s)
| | - Nitin Agarwal
- Institute of Pharmacology, Medical Faculty Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|