1
|
Almaguer-Melian W, Mercerón-Martínez D, Alacán-Ricardo L, Piña AEV, Hsieh C, Bergado-Rosado JA, Sacktor TC. Amygdala stimulation transforms short-term memory into remote memory by persistent activation of atypical protein kinase C in the anterior cingulate cortex. Neuroscience 2025; 569:288-297. [PMID: 39900220 DOI: 10.1016/j.neuroscience.2025.01.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/16/2024] [Accepted: 01/31/2025] [Indexed: 02/05/2025]
Abstract
Although many studies have addressed the role of the amygdala in modulating long-term memory, it is not known whether weak training plus amygdala stimulation can transform a short-term memory into a remote memory. Object place recognition (OPR) memory after strong training remains hippocampus-dependent through the persistent action of protein kinase Mzeta (PKMζ) for at least 6 days, but it is unknown whether weak training plus amygdala stimulation can transform short-term memory into an even longer memory, and whether such memory is stored through more persistent action of PKMζ in hippocampus. We trained male rats (150 total in our study) to acquire OPR and 15 min or 5 h later induced a brief pattern of electrical stimulation in basolateral amygdala (BLA). Our results reveal that a short-term memory lasting < 4h can be converted into remote memory lasting at least 3 weeks if the BLA is activated 15 min, but not 5 h after learning. To examine how this remote memory is maintained, we injected ZIP, an inhibitor of atypical protein kinase Cs (aPKCs), PKMζ and PKCι/λ, into either hippocampal CA1, dentate gyrus (DG), or anterior cingulate cortex (ACC). Our data reveal amygdala stimulation produces consolidation into remote memory, not by persistent aPKC activation in the hippocampal formation, but in ACC. Our data establish a powerful modulating role of the BLA in forming remote memory and open a path in the search for neurological restoration of memory, based on enhancing synaptic plasticity in aging or neurodegenerative disorders such as Alzheimer's disease.
Collapse
Affiliation(s)
- William Almaguer-Melian
- Laboratorio de Electrofisiología Experimental del Centro Internacional de Restauración Neurológica CIREN La Habana Cuba
| | - Daymara Mercerón-Martínez
- Laboratorio de Electrofisiología Experimental del Centro Internacional de Restauración Neurológica CIREN La Habana Cuba
| | - Laura Alacán-Ricardo
- Facultad de Medicina Victoria de Girón Universidad Médica de La Habana La Habana Cuba
| | | | - Changchi Hsieh
- Department of Physiology and Pharmacology, State University of New York Downstate Health Sciences University NY USA
| | | | - Todd Charlton Sacktor
- Department of Physiology and Pharmacology, State University of New York Downstate Health Sciences University NY USA; Departments of Neurology and Anesthesiology, State University of New York Downstate Health Sciences University NY USA.
| |
Collapse
|
2
|
Aloi J, Crum KI, Blair KS, Zhang R, Bashford-Largo J, Bajaj S, Hwang S, Averbeck BB, Tottenham N, Dobbertin M, Blair RJR. Childhood neglect is associated with alterations in neural prediction error signaling and the response to novelty. Psychol Med 2024; 54:1-9. [PMID: 39445510 PMCID: PMC11578899 DOI: 10.1017/s0033291724002411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/17/2024] [Accepted: 07/25/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND One in eight children experience early life stress (ELS), which increases risk for psychopathology. ELS, particularly neglect, has been associated with reduced responsivity to reward. However, little work has investigated the computational specifics of this disrupted reward response - particularly with respect to the neural response to Reward Prediction Errors (RPE) - a critical signal for successful instrumental learning - and the extent to which they are augmented to novel stimuli. The goal of the current study was to investigate the associations of abuse and neglect, and neural representation of RPE to novel and non-novel stimuli. METHODS One hundred and seventy-eight participants (aged 10-18, M = 14.9, s.d. = 2.38) engaged in the Novelty task while undergoing functional magnetic resonance imaging. In this task, participants learn to choose novel or non-novel stimuli to win monetary rewards varying from $0 to $0.30 per trial. Levels of abuse and neglect were measured using the Childhood Trauma Questionnaire. RESULTS Adolescents exposed to high levels of neglect showed reduced RPE-modulated blood oxygenation level dependent response within medial and lateral frontal cortices particularly when exploring novel stimuli (p < 0.05, corrected for multiple comparisons) relative to adolescents exposed to lower levels of neglect. CONCLUSIONS These data expand on previous work by indicating that neglect, but not abuse, is associated with impairments in neural RPE representation within medial and lateral frontal cortices. However, there was no association between neglect and behavioral impairments on the Novelty task, suggesting that these neural differences do not necessarily translate into behavioral differences within the context of the Novelty task.
Collapse
Affiliation(s)
- Joseph Aloi
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
- Adolescent Behavioral Health Research Program, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kathleen I. Crum
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
- Adolescent Behavioral Health Research Program, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Karina S. Blair
- Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Ru Zhang
- Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Johannah Bashford-Largo
- Child and Family Translational Research Center, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Sahil Bajaj
- Department of Cancer Systems Imaging, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Soonjo Hwang
- Department of Psychiatry, University of Nebraska Medical Center, Omaha, NE, USA
| | - Bruno B. Averbeck
- Section on Learning and Decision Making, Laboratory of Neuropsychology, National Institute of Mental Health, Bethesda, MD, USA
| | - Nim Tottenham
- Department of Psychology, Columbia University, New York, NY, USA
| | - Matthew Dobbertin
- Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, NE, USA
| | - R. James R. Blair
- Child and Adolescent Mental Health Centre, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark, USA
| |
Collapse
|
3
|
Zhang Y, Wang S, Hei M. Maternal separation as early-life stress: Mechanisms of neuropsychiatric disorders and inspiration for neonatal care. Brain Res Bull 2024; 217:111058. [PMID: 39197670 DOI: 10.1016/j.brainresbull.2024.111058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/01/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
The establishment of positive early parent-infant relationships provide essential nourishment and social stimulation for newborns. During the early stages of postnatal brain development, events such as synaptogenesis, neuronal maturation and glial differentiation occur in a highly coordinated manner. Maternal separation, as an early-life stress introducer, can disrupt the formation of parent-child bonds and exert long-term adverse effects throughout life. When offspring are exposed to maternal separation, the body regulates the stress of maternal separation through multiple mechanisms, including neuroinflammatory responses, neuroendocrinology, and neuronal electrical activity. In adulthood, early maternal separation has long-term effects, such as the induction of neuropsychiatric disorders such as anxiety, depression, and cognitive dysfunction. This review summarized the application of maternal separation models and the mechanisms of stress system response in neuropsychiatric disorders, serving as both a reminder and inspiration for approaches to improve neonatal care, "from bench to bedside".
Collapse
Affiliation(s)
- Yuan Zhang
- Neonatal Center, Beijing Children's Hospital Capital Medical University, National Center of Children's Health, Beijing 100045, China
| | - Shu Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Mingyan Hei
- Neonatal Center, Beijing Children's Hospital Capital Medical University, National Center of Children's Health, Beijing 100045, China.
| |
Collapse
|
4
|
Alves J, Dos Santos APB, Vieira ADS, Martini APR, de Lima RMS, Smaniotto TÂ, de Moraes RO, Gomes RF, Acerbi GCDA, de Assis EZB, Lampert C, Dalmaz C, Couto Pereira NDS. Coping with the experience of frustration throughout life: Sex- and age-specific effects of early life stress on the susceptibility to reward devaluation. Neuroscience 2024; 553:160-171. [PMID: 38960089 DOI: 10.1016/j.neuroscience.2024.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/05/2024]
Abstract
Early life stress may lead to lifelong impairments in psychophysiological functions, including emotional and reward systems. Unpredicted decrease in reward magnitude generates a negative emotional state (frustration) that may be involved with susceptibility to psychiatric disorders. We evaluated, in adolescents and adult rats of both sexes, whether maternal separation (MS) alters the ability to cope with an unexpected reduction of reward later in life. Litters of Wistar rats were divided into controls (non handled - NH) or subjected to MS. Animals were trained to find sugary cereal pellets; later the amount was reduced. Increased latency to reach the reward-associated area indicates higher inability to regulate frustration. The dorsal hippocampus (dHC) and basolateral amygdala (BLA) were evaluated for protein levels of NMDA receptor subunits (GluN2A/GluN2B), synaptophysin, PSD95, SNAP-25 and CRF1. We found that adult MS males had greater vulnerability to reward reduction, together with decreased GluN2A and increased GluN2B immunocontent in the dHC. MS females and adolescents did not differ from controls. We concluded that MS enhances the response to frustration in adult males. The change in the ratio of GluN2A and GluN2B subunits in dHC could be related to a stronger, more difficult to update memory of the aversive experience.
Collapse
Affiliation(s)
- Joelma Alves
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Programa de Pós-Graduação em Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Ana Paula Bosquetti Dos Santos
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Programa de Pós-Graduação em Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Aline Dos Santos Vieira
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Ana Paula Rodrigues Martini
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Randriely Merscher Sobreira de Lima
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Thiago Ângelo Smaniotto
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Programa de Pós-Graduação em Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Rafael Oliveira de Moraes
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Roger Ferreira Gomes
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Giulia Conde de Albite Acerbi
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Eduardo Z B de Assis
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Carine Lampert
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Programa de Pós-Graduação em Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Carla Dalmaz
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Programa de Pós-Graduação em Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Natividade de Sá Couto Pereira
- Psychological Neuroscience Laboratory, Psychology Research Centre (CIPsi), School of Psychology, University of Minho, Braga, Portugal.
| |
Collapse
|
5
|
Oginga FO, Mpofana T. Understanding the role of early life stress and schizophrenia on anxiety and depressive like outcomes: An experimental study. Behav Brain Res 2024; 470:115053. [PMID: 38768688 DOI: 10.1016/j.bbr.2024.115053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND Adverse experiences due to early life stress (ELS) or parental psychopathology such as schizophrenia (SZ) have a significant implication on individual susceptibility to psychiatric disorders in the future. However, it is not fully understood how ELS affects social-associated behaviors as well as the developing prefrontal cortex (PFC). OBJECTIVE The aim of this study was to investigate the impact of ELS and ketamine induced schizophrenia like symptoms (KSZ) on anhedonia, social behavior and anxiety-like behavior. METHODS Male and female Sprague-Dawley rat pups were allocated randomly into eight experimental groups, namely control, gestational stress (GS), GS+KSZ, maternal separation (MS), MS+KSZ pups, KSZ parents, KSZ parents and Pups and KSZ pups only. ELS was induced by subjecting the pups to GS and MS, while schizophrenia like symptoms was induced through subcutaneous administration of ketamine. Behavioral assessment included sucrose preference test (SPT) and elevated plus maze (EPM), followed by dopamine testing and analysis of astrocyte density. Statistical analysis involved ANOVA and post hoc Tukey tests, revealing significant group differences and yielding insights into behavioral and neurodevelopmental impacts. RESULTS GS, MS, and KSZ (dams) significantly reduced hedonic response and increased anxiety-like responses (p < 0.05). Notably, the presence of normal parental mental health demonstrated a reversal of the observed decline in Glial Fibrillary Acidic Protein-positive astrocytes (GFAP+ astrocytes) (p < 0.05) and a reduction in anxiety levels, implying its potential protective influence on depressive-like symptoms and PFC astrocyte functionality. CONCLUSION The present study provides empirical evidence supporting the hypothesis that exposure to ELS and KSZ on dams have a significant impact on the on development of anxiety and depressive like symptoms in Sprague Dawley rats, while positive parenting has a reversal effect.
Collapse
Affiliation(s)
- Fredrick Otieno Oginga
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, University of Kwa-Zulu Natal, Durban 4001, South Africa; Department of Clinical Medicine, School of Medicine and Health Science, Kabarak University, Nakuru 20157, Kenya.
| | - Thabisile Mpofana
- Department of Human Physiology, Faculty of Health Sciences North West University, Potchefstroom campus, 11 Hoffman St., Potchefstroom 2531, South Africa
| |
Collapse
|
6
|
Lee SH, Jung EM. Adverse effects of early-life stress: focus on the rodent neuroendocrine system. Neural Regen Res 2024; 19:336-341. [PMID: 37488887 PMCID: PMC10503627 DOI: 10.4103/1673-5374.377587] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/28/2023] [Accepted: 04/24/2023] [Indexed: 07/26/2023] Open
Abstract
Early-life stress is associated with a high prevalence of mental illnesses such as post-traumatic stress disorders, attention-deficit/hyperactivity disorder, schizophrenia, and anxiety or depressive behavior, which constitute major public health problems. In the early stages of brain development after birth, events such as synaptogenesis, neuron maturation, and glial differentiation occur in a highly orchestrated manner, and external stress can cause adverse long-term effects throughout life. Our body utilizes multifaceted mechanisms, including neuroendocrine and neurotransmitter signaling pathways, to appropriately process external stress. Newborn individuals first exposed to early-life stress deploy neurogenesis as a stress-defense mechanism; however, in adulthood, early-life stress induces apoptosis of mature neurons, activation of immune responses, and reduction of neurotrophic factors, leading to anxiety, depression, and cognitive and memory dysfunction. This process involves the hypothalamus-pituitary-adrenal axis and neurotransmitters secreted by the central nervous system, including norepinephrine, dopamine, and serotonin. The rodent early-life stress model is generally used to experimentally assess the effects of stress during neurodevelopment. This paper reviews the use of the early-life stress model and stress response mechanisms of the body and discusses the experimental results regarding how early-life stress mediates stress-related pathways at a high vulnerability of psychiatric disorder in adulthood.
Collapse
Affiliation(s)
- Seung Hyun Lee
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan, Republic of Korea
| | - Eui-Man Jung
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
7
|
Shahyad S, Sahraei H, Mousallo K, Pirzad Jahromi G, Mohammadi MT. Effect of Papaver rhoeas hydroalcoholic extract on blood corticosterone and psychosocial behaviors in the mice model of predator exposure-induced post-traumatic stress disorder. Heliyon 2023; 9:e18084. [PMID: 37483762 PMCID: PMC10362233 DOI: 10.1016/j.heliyon.2023.e18084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/16/2023] [Accepted: 07/06/2023] [Indexed: 07/25/2023] Open
Abstract
The function of hypothalamic-pituitary-adrenal (HPA) axis and psychosocial behaviors are affected in post-traumatic stress disorder (PTSD). Based on presence of several beneficial alkaloids in Papaver rhoeas (PR) plant, we assessed the effects of PR hydroalcoholic extract on blood corticosterone and psychosocial behaviors in the mice model of predator exposure-induced PTSD. Male NMARI mice were assigned into two main groups (control or PTSD) according to stress exposure (presence or absent of the predator). Each main group was divided into four subgroups according to treatment with the different doses of PR extract. Mice were treated intraperitoneally by PR extract at three different doses (1,5&10 mg/kg) 30 min before the beginning of test on days 1, 2&3. Corticosterone concentration determined in the blood samples on days 1, 3&21, and mice examined for the psychosocial behaviors on the third day. PTSD induction in mice by exposing to hungry predator increased blood corticosterone and changed the psychosocial and physiological behaviors. PR extract decreased blood corticosterone in PTSD mice on the third day as well as 21st day. Also, PR extract improved the psychosocial and physiological behaviors in PTSD mice. Moreover, PR extract increased blood corticosterone in control mice at a dose-response manner. PR extract is able to decrease blood corticosterone in PTSD condition and probably prevent the HPA hyperactivity in PTSD mice when exposed to the stress stimuli. Accordingly, decreased blood corticosterone by PR extract might be involved in improvement of the physiological and psychosocial behaviors in PTSD mice.
Collapse
Affiliation(s)
- Shima Shahyad
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hedayat Sahraei
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Kamal Mousallo
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Gila Pirzad Jahromi
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghi Mohammadi
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Department of Physiology and Medical Physics, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Ehlting A, Zweyer M, Maes E, Schleehuber Y, Doshi H, Sabir H, Bernis ME. Impact of Hypoxia-Ischemia on Neurogenesis and Structural and Functional Outcomes in a Mild-Moderate Neonatal Hypoxia-Ischemia Brain Injury Model. Life (Basel) 2022; 12:life12081164. [PMID: 36013343 PMCID: PMC9410039 DOI: 10.3390/life12081164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) is a common type of brain injury caused by a lack of oxygen and blood flow to the brain during the perinatal period. The incidence of HIE is approximately 2−3 cases per 1000 live births in high-income settings; while in low- and middle-income countries, the incidence is 3−10-fold higher. Therapeutic hypothermia (TH) is the current standard treatment for neonates affected by moderate−severe HIE. However, more than 50% of all infants with suspected HIE have mild encephalopathy, and these infants are not treated with TH because of their lower risk of adverse outcomes. Despite this, several analyses of pooled data provide increasing evidence that infants who initially have mild encephalopathy may present signs of more significant brain injury later in life. The purpose of this study was to expand our knowledge about the effect of mild−moderate hypoxia-ischemia (HI) at the cellular, structural, and functional levels. An established rat model of mild−moderate HI was used, where postnatal day (P) 7 rats were exposed to unilateral permanent occlusion of the left carotid artery and 90 min of 8% hypoxia, followed by TH or normothermia (NT) treatment. The extent of injury was assessed using histology (P14 and P42) and MRI (P11 and P32), as well as with short-term and long-term behavioral tests. Neurogenesis was assessed by BrdU staining. We showed that mild−moderate HI leads to a progressive loss of brain tissue, pathological changes in MRI scans, as well as an impairment of long-term motor function. At P14, the median area loss assessed by histology for HI animals was 20% (p < 0.05), corresponding to mild−moderate brain injury, increasing to 55% (p < 0.05) at P42. The data assessed by MRI corroborated our results. HI led to a decrease in neurogenesis, especially in the hippocampus and the lateral ventricle at early time points, with a delayed partial recovery. TH was not neuroprotective at early time points following mild−moderate HI, but prevented the increase in brain damage over time. Additionally, rats treated with TH showed better long-term motor function. Altogether, our results bring more light to the understanding of pathophysiology following mild-moderate HI. We showed that, in the context of mild-moderate HI, TH failed to be significantly neuroprotective. However, animals treated with TH showed a significant improvement in motor, but not cognitive long-term function. These results are in line with what is observed in some cases where neonates with mild HIE are at risk of neurodevelopmental deficits in infancy or childhood. Whether TH should be used as a preventive treatment to reduce adverse outcomes in mild-HIE remains of active interest, and more research has to be carried out in order to address this question.
Collapse
Affiliation(s)
- Anne Ehlting
- Department of Neonatology and Pediatric Intensive Care, Children’s Hospital, University of Bonn, 53127 Bonn, Germany; (A.E.); (M.Z.); (E.M.); (Y.S.); (M.E.B.)
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 53127 Bonn, Germany;
| | - Margit Zweyer
- Department of Neonatology and Pediatric Intensive Care, Children’s Hospital, University of Bonn, 53127 Bonn, Germany; (A.E.); (M.Z.); (E.M.); (Y.S.); (M.E.B.)
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 53127 Bonn, Germany;
| | - Elke Maes
- Department of Neonatology and Pediatric Intensive Care, Children’s Hospital, University of Bonn, 53127 Bonn, Germany; (A.E.); (M.Z.); (E.M.); (Y.S.); (M.E.B.)
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 53127 Bonn, Germany;
| | - Yvonne Schleehuber
- Department of Neonatology and Pediatric Intensive Care, Children’s Hospital, University of Bonn, 53127 Bonn, Germany; (A.E.); (M.Z.); (E.M.); (Y.S.); (M.E.B.)
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 53127 Bonn, Germany;
| | - Hardik Doshi
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 53127 Bonn, Germany;
| | - Hemmen Sabir
- Department of Neonatology and Pediatric Intensive Care, Children’s Hospital, University of Bonn, 53127 Bonn, Germany; (A.E.); (M.Z.); (E.M.); (Y.S.); (M.E.B.)
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 53127 Bonn, Germany;
- Correspondence:
| | - Maria Eugenia Bernis
- Department of Neonatology and Pediatric Intensive Care, Children’s Hospital, University of Bonn, 53127 Bonn, Germany; (A.E.); (M.Z.); (E.M.); (Y.S.); (M.E.B.)
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 53127 Bonn, Germany;
| |
Collapse
|
9
|
Zhang Y, Sun X, Dou C, Li X, Zhang L, Qin C. Distinct neuronal excitability alterations of medial prefrontal cortex in early-life neglect model of rats. Animal Model Exp Med 2022; 5:274-280. [PMID: 35748035 PMCID: PMC9240726 DOI: 10.1002/ame2.12252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 01/12/2023] Open
Abstract
OBJECT Early-life neglect has irreversible emotional effects on the central nervous system. In this work, we aimed to elucidate distinct functional neural changes in medial prefrontal cortex (mPFC) of model rats. METHODS Maternal separation with early weaning was used as a rat model of early-life neglect. The excitation of glutamatergic and GABAergic neurons in rat mPFC was recorded and analyzed by whole-cell patch clamp. RESULTS Glutamatergic and GABAergic neurons of mPFC were distinguished by typical electrophysiological properties. The excitation of mPFC glutamatergic neurons was significantly increased in male groups, while the excitation of mPFC GABAergic neurons was significant in both female and male groups, but mainly in terms of rest membrane potential and amplitude, respectively. CONCLUSIONS Glutamatergic and GABAergic neurons in medial prefrontal cortex showed different excitability changes in a rat model of early-life neglect, which can contribute to distinct mechanisms for emotional and cognitive manifestations.
Collapse
Affiliation(s)
- Yu Zhang
- NHC Key Laboratory of Human Disease Comparative MedicineInstitute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS); Comparative Medicine CenterPeking Union Medical College (PUMC)BeijingChina
- National Human Diseases Animal Model Resource CenterBeijingChina
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
- International Center for Technology and Innovation of animal modelBeijingChina
- Changping National laboratory (CPNL)BeijingChina
| | - Xiuping Sun
- NHC Key Laboratory of Human Disease Comparative MedicineInstitute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS); Comparative Medicine CenterPeking Union Medical College (PUMC)BeijingChina
- National Human Diseases Animal Model Resource CenterBeijingChina
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
- International Center for Technology and Innovation of animal modelBeijingChina
- Changping National laboratory (CPNL)BeijingChina
| | - Changsong Dou
- NHC Key Laboratory of Human Disease Comparative MedicineInstitute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS); Comparative Medicine CenterPeking Union Medical College (PUMC)BeijingChina
- National Human Diseases Animal Model Resource CenterBeijingChina
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
- International Center for Technology and Innovation of animal modelBeijingChina
- Changping National laboratory (CPNL)BeijingChina
| | - Xianglei Li
- NHC Key Laboratory of Human Disease Comparative MedicineInstitute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS); Comparative Medicine CenterPeking Union Medical College (PUMC)BeijingChina
- National Human Diseases Animal Model Resource CenterBeijingChina
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
- International Center for Technology and Innovation of animal modelBeijingChina
- Changping National laboratory (CPNL)BeijingChina
| | - Ling Zhang
- NHC Key Laboratory of Human Disease Comparative MedicineInstitute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS); Comparative Medicine CenterPeking Union Medical College (PUMC)BeijingChina
- National Human Diseases Animal Model Resource CenterBeijingChina
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
- International Center for Technology and Innovation of animal modelBeijingChina
- Changping National laboratory (CPNL)BeijingChina
| | - Chuan Qin
- NHC Key Laboratory of Human Disease Comparative MedicineInstitute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS); Comparative Medicine CenterPeking Union Medical College (PUMC)BeijingChina
- National Human Diseases Animal Model Resource CenterBeijingChina
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
- International Center for Technology and Innovation of animal modelBeijingChina
- Changping National laboratory (CPNL)BeijingChina
| |
Collapse
|