1
|
Barzegar S, Kakies CFM, Ciupercӑ D, Wischnewski M. Transcranial alternating current stimulation for investigating complex oscillatory dynamics and interactions. Int J Psychophysiol 2025; 212:112579. [PMID: 40315997 DOI: 10.1016/j.ijpsycho.2025.112579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/04/2025] [Accepted: 04/28/2025] [Indexed: 05/04/2025]
Abstract
Neural oscillations play a fundamental role in human cognition and behavior. While electroencephalography (EEG) and related methods provide precise temporal recordings of these oscillations, they are limited in their ability to generate causal conclusions. Transcranial alternating current stimulation (tACS) has emerged as a promising non-invasive neurostimulation technique to modulate neural oscillations, which offers insights into their functional role and relation to human cognition and behavior. Originally, tACS is applied between two or more electrodes at a given frequency. However, recent advances have aimed to apply different current waveforms to target specific oscillatory dynamics. This systematic review evaluates the efficacy of non-standard tACS applications designed to investigate oscillatory patterns beyond simple sinusoidal stimulation. We categorized these approaches into three key domains: (1) phase synchronization techniques, including in-phase, anti-phase, and traveling wave stimulation; (2) non-sinusoidal tACS, which applies alternative waveforms such as composite, broadband or triangular oscillations; and (3) amplitude-modulated tACS and temporal interference stimulation, which allow for concurrent EEG recordings and deeper cortical targeting. While a number of studies provide evidence for the added value of these non-standard tACS procedures, other studies show opposing or null findings. Crucially, the number of studies for most applications is currently low, and as such, the goal of this review is to highlight both the promise and current limitations of these techniques, providing a foundation for future research in neurostimulation.
Collapse
Affiliation(s)
- Samira Barzegar
- Department of Psychology, University of Groningen, Groningen, the Netherlands
| | - Carolina F M Kakies
- Department of Psychology, University of Groningen, Groningen, the Netherlands
| | - Dorina Ciupercӑ
- Department of Psychology, University of Groningen, Groningen, the Netherlands
| | - Miles Wischnewski
- Department of Psychology, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
2
|
Elyamany O, Iffland J, Bak J, Classen C, Nolte G, Schneider TR, Leicht G, Mulert C. Predictive role of endogenous phase lags between target brain regions in dual-site transcranial alternating current stimulation. Brain Stimul 2025; 18:780-793. [PMID: 40222667 DOI: 10.1016/j.brs.2025.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND Dual-site transcranial alternating current stimulation (tACS) provides a promising tool for modulating interregional brain connectivity by entraining neural oscillations. However, prior studies have reported inconsistent effects on connectivity and behavioral outcomes. They often focused on individualized stimulation-frequency as a key entrainment factor, while typically not focusing on the role of endogenous phase lags. To address this gap, we explored the predictive value of endogenous phase lags in dual-site tACS to modulate interhemispheric connectivity during dichotic listening. METHODS Thirty healthy participants (16 females) completed a dichotic listening task while undergoing simultaneous electroencephalography and tACS, including four bitemporal verum conditions with varying phase lags (0°, 45°, 90°, and 180°), and a sham condition across five sessions. Each session involved 20 min of 40-Hz tACS at a 0.5 mA peak-to-baseline amplitude applied to the temporal regions, with phase lags differing across sessions. Endogenous phase lags between the auditory cortices were calculated to explain changes in the laterality index (LI) across stimulation conditions by defining optimal and disruptive stimulation conditions for each participant. RESULTS Consistent with our hypothesis, our personalized analysis based on the calculated endogenous phase lags showed a significantly lower LI during the closest (optimal) stimulation condition compared to both the sham and farthest (disruptive) conditions. Conversely, the farthest stimulation condition did not statistically increase the LI compared to sham. CONCLUSIONS These findings highlight the importance of incorporating endogenous phase dynamics into dual-site tACS protocols, paving the way for more consistent and individualized neuromodulatory interventions.
Collapse
Affiliation(s)
- Osama Elyamany
- Centre of Psychiatry, Justus-Liebig University, Klinikstrasse 36, Giessen, Hessen, 35392, Germany; Centre for Mind, Brain and Behaviour (CMBB), Hans-Meerwein-Strasse 6, Marburg, 35043, Hessen, Germany.
| | - Jona Iffland
- Centre of Psychiatry, Justus-Liebig University, Klinikstrasse 36, Giessen, Hessen, 35392, Germany
| | - Josef Bak
- Centre of Psychiatry, Justus-Liebig University, Klinikstrasse 36, Giessen, Hessen, 35392, Germany
| | - Cornelius Classen
- Centre of Psychiatry, Justus-Liebig University, Klinikstrasse 36, Giessen, Hessen, 35392, Germany
| | - Guido Nolte
- Department of Neurophysiology and Pathophysiology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany
| | - Till R Schneider
- Department of Neurophysiology and Pathophysiology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany
| | - Gregor Leicht
- Department of Psychiatry and Psychotherapy, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany
| | - Christoph Mulert
- Centre of Psychiatry, Justus-Liebig University, Klinikstrasse 36, Giessen, Hessen, 35392, Germany; Centre for Mind, Brain and Behaviour (CMBB), Hans-Meerwein-Strasse 6, Marburg, 35043, Hessen, Germany
| |
Collapse
|
3
|
Zhang S, Cui X, Yu S, Li X. Is transcranial alternating current stimulation effective for improving working memory? A three-level meta-analysis. Psychon Bull Rev 2025; 32:636-651. [PMID: 39438426 DOI: 10.3758/s13423-024-02595-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2024] [Indexed: 10/25/2024]
Abstract
Working memory, an essential component of cognitive function, can be improved through specific methods. This meta-analysis evaluates the effectiveness of transcranial alternating current stimulation (tACS), an emerging technique for enhancing working memory, and explores its efficacy, influencing factors, and underlying mechanisms. A PRISMA systematic search was conducted. Hedges's g was used to quantify effect sizes. We constructed a three-level meta-analytic model to account for all effect sizes and performed subgroup analyses to assess moderating factors. Recognizing the distinct neural underpinnings of various working memory processes, we separately assessed the effects on n-back tasks and traditional working memory tasks. A total of 39 studies with 405 effect sizes were included (170 from n-back tasks and 235 from other tasks). The overall analysis indicated a net benefit of g = 0.060 of tACS on working memory. Separate analyses showed that tACS had a small positive effect on n-back tasks (g = 0.102), but almost no effect on traditional working memory tasks (g = 0.045). Further analyses revealed mainly: A moderately positive effect of theta tACS (without anti-phase stimulation) on n-back tasks (g = 0.207); and a small effect of offline stimulation on working memory maintenance (g = 0.127). Overall, tACS has minimal impact on working memory improvement, but it shows potential under certain conditions. Specifically, both online and offline theta tACS can improve n-back task performance, while only offline stimulation enhances working memory maintenance. More research is needed to understand the mechanisms behind these effects to make tACS an effective method.
Collapse
Affiliation(s)
- Siyuan Zhang
- Institute of Psychology, Key Laboratory of Mental Health, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaobing Cui
- Institute of Psychology, Key Laboratory of Mental Health, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Shuting Yu
- Institute of Psychology, Key Laboratory of Mental Health, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xuebing Li
- Institute of Psychology, Key Laboratory of Mental Health, Chinese Academy of Sciences, Beijing, China.
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
4
|
Kapetaniou GE, Vural G, Soutschek A. Frontoparietal theta stimulation causally links working memory with impulsive decision making. Cortex 2025; 185:240-249. [PMID: 40090138 DOI: 10.1016/j.cortex.2025.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/19/2024] [Accepted: 02/25/2025] [Indexed: 03/18/2025]
Abstract
Delaying gratification in value-based decision making is canonically related to activation in the dorsolateral prefrontal cortex (dlPFC), but past research neglected that the dlPFC is part of a larger frontoparietal network. It is therefore unknown whether the dlPFC causally implements delay of gratification in concert with posterior parts of the frontoparietal network rather than in isolation. Here, we addressed this gap by testing the effects of frontoparietal theta synchronization and desynchronization on impulsive decision making using transcranial alternating current stimulation (tACS). Healthy participants performed an intertemporal choice task and a 3-back working memory task while left frontal and parietal cortices were stimulated with a 5 Hz theta frequency at in-phase (synchronization), anti-phase (desynchronization), or sham tACS. We found frontoparietal in-phase theta tACS to improve working memory performance, while in the decision task anti-phase tACS was associated with more impulsive choices and stronger hyperbolic discounting of future rewards. Overall, our findings suggest that future-oriented decision making might causally rely on synchronous activation in a frontoparietal network related to working memory.
Collapse
Affiliation(s)
| | - Gizem Vural
- Department of Psychology, Ludwig-Maximilians-Universität (LMU), Munich, Germany; Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany
| | - Alexander Soutschek
- Department of Psychology, Ludwig-Maximilians-Universität (LMU), Munich, Germany.
| |
Collapse
|
5
|
Kasanov D, Dorogina O, Mushtaq F, Pavlov YG. Theta Transcranial Alternating Current Stimulation Is Not Effective in Improving Working Memory Performance. J Cogn Neurosci 2025; 37:641-656. [PMID: 39485911 DOI: 10.1162/jocn_a_02269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
There is an extensive body of research showing a significant relationship between frontal midline theta activity in the 4- to 8-Hz range and working memory (WM) performance. Transcranial alternating current stimulation (tACS) is recognized for inducing lasting changes in brain oscillatory activity. Across two experiments, we tested whether WM could be improved through tACS of dorsomedial PFC and ACC, by affecting executive control networks associated with frontal midline theta. In Experiment 1, after either a 20-min verum or sham stimulation applied to Fpz-CPz at 1 mA and 6 Hz, 31 participants performed WM tasks, while EEG was recorded. The tasks required participants to either mentally manipulate memory items or retain them in memory as they were originally presented. No significant effects were observed in behavioral performance, and we found no change in theta activity during rest and task after stimulation. However, alpha activity during retention or manipulation of information in WM was less strongly enhanced during the delay period after verum stimulation as compared with sham. In Experiment 2 (n = 25), tACS was administered during the task in two separate sessions. Here, we changed the order of the stimulation blocks: A 25-min task block was either accompanied first by sham stimulation and then by verum stimulation, or vice versa. Again, we found no improvements in WM through either tACS after-effects or online stimulation. Taken together, our results demonstrate that theta frequency tACS applied at the midline is not an effective method for enhancing WM.
Collapse
Affiliation(s)
| | | | - Faisal Mushtaq
- University of Leeds
- NIHR Leeds Biomedical Research Centre, Leeds, West Yorkshire, United Kingdom
| | | |
Collapse
|
6
|
Pileckyte I, Soto-Faraco S. Sensory stimulation enhances visual working memory capacity. COMMUNICATIONS PSYCHOLOGY 2024; 2:109. [PMID: 39558084 PMCID: PMC11574275 DOI: 10.1038/s44271-024-00158-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 11/06/2024] [Indexed: 11/20/2024]
Abstract
Visual working memory (vWM) plays a crucial role in visual information processing and higher cognitive functions; however, it has a very limited capacity. Recently, several studies have successfully modulated vWM capacity in humans using entrainment with transcranial alternate current stimulation (tACS) by targeting parietal theta in a frequency-specific manner. In the current study, we aim to expand upon these findings by utilizing sensory instead of electrical stimulation. Across six behavioral experiments (combined N = 209), we applied rhythmic visual and auditory sensory stimulation at 4 Hz and 7 Hz, aiming to modulate vWM capacity. Collectively, the results showed an overall robust improvement with sensory stimulation at either frequency, compared to baseline. However, contrary to our prediction, 7 Hz stimulation tended to slightly outperform 4 Hz stimulation. Importantly, the observed facilitatory effect was mainly driven by the low-capacity sub-group of participants. Follow-up experiments using the Attention Network Test (ANT) and pupillometry measures did not find evidence that this effect could be directly attributed to modulation of phasic or tonic arousal. We speculate that our results differed from those obtained with tACS due to targeting functionally different theta oscillations, or the modulation of participants' temporal expectations.
Collapse
Affiliation(s)
- Indre Pileckyte
- Departament d'Enginyeria, Center for Brain & Cognition, Universitat Pompeu Fabra, Barcelona, Spain.
| | - Salvador Soto-Faraco
- Departament d'Enginyeria, Center for Brain & Cognition, Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
7
|
Xu X, Zhao H, Song Y, Cai H, Zhao W, Tang J, Zhu J, Yu Y. Molecular mechanisms underlying the neural correlates of working memory. BMC Biol 2024; 22:238. [PMID: 39428484 PMCID: PMC11492763 DOI: 10.1186/s12915-024-02039-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 10/11/2024] [Indexed: 10/22/2024] Open
Abstract
BACKGROUND Working memory (WM), a core component of executive functions, relies on a dedicated brain system that maintains and stores information in the short term. While extensive neuroimaging research has identified a distributed set of neural substrates relevant to WM, their underlying molecular mechanisms remain enigmatic. This study investigated the neural correlates of WM as well as their underlying molecular mechanisms. RESULTS Our voxel-wise analyses of resting-state functional MRI data from 502 healthy young adults showed that better WM performance (higher accuracy and shorter reaction time of the 3-back task) was associated with lower functional connectivity density (FCD) in the left inferior temporal gyrus and higher FCD in the left anterior cingulate cortex. A combination of transcriptome-neuroimaging spatial correlation and the ensemble-based gene category enrichment analysis revealed that the identified neural correlates of WM were associated with expression of diverse gene categories involving important cortical components and their biological processes as well as sodium channels. Cross-region spatial correlation analyses demonstrated significant associations between the neural correlates of WM and a range of neurotransmitters including dopamine, glutamate, serotonin, and acetylcholine. CONCLUSIONS These findings may help to shed light on the molecular mechanisms underlying the neural correlates of WM.
Collapse
Affiliation(s)
- Xiaotao Xu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei, 230032, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, 230032, China
| | - Han Zhao
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei, 230032, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, 230032, China
| | - Yu Song
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei, 230032, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, 230032, China
| | - Huanhuan Cai
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei, 230032, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, 230032, China
| | - Wenming Zhao
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei, 230032, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, 230032, China
| | - Jin Tang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230026, China.
| | - Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, 230032, China.
- Anhui Provincial Institute of Translational Medicine, Hefei, 230032, China.
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, 230032, China.
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, 230032, China.
- Anhui Provincial Institute of Translational Medicine, Hefei, 230032, China.
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, 230032, China.
| |
Collapse
|
8
|
Al Qasem W, Abubaker M, Pilátová K, Ježdík P, Kvašňák E. Improving working memory by electrical stimulation and cross-frequency coupling. Mol Brain 2024; 17:72. [PMID: 39354549 PMCID: PMC11446076 DOI: 10.1186/s13041-024-01142-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/12/2024] [Indexed: 10/03/2024] Open
Abstract
Working memory (WM) is essential for the temporary storage and processing of information required for complex cognitive tasks and relies on neuronal theta and gamma oscillations. Given the limited capacity of WM, researchers have investigated various methods to improve it, including transcranial alternating current stimulation (tACS), which modulates brain activity at specific frequencies. One particularly promising approach is theta-gamma peak-coupled-tACS (TGCp-tACS), which simulates the natural interaction between theta and gamma oscillations that occurs during cognitive control in the brain. The aim of this study was to improve WM in healthy young adults with TGCp-tACS, focusing on both behavioral and neurophysiological outcomes. Thirty-one participants completed five WM tasks under both sham and verum stimulation conditions. Electroencephalography (EEG) recordings before and after stimulation showed that TGCp-tACS increased power spectral density (PSD) in the high-gamma region at the stimulation site, while PSD decreased in the theta and delta regions throughout the cortex. From a behavioral perspective, although no significant changes were observed in most tasks, there was a significant improvement in accuracy in the 14-item Sternberg task, indicating an improvement in phonological WM. In conclusion, TGCp-tACS has the potential to promote and improve the phonological component of WM. To fully realize the cognitive benefits, further research is needed to refine the stimulation parameters and account for individual differences, such as baseline cognitive status and hormonal factors.
Collapse
Affiliation(s)
- Wiam Al Qasem
- Department of Medical Biophysics and Medical Informatics, Third Faculty of Medicine, Charles University in Prague, Prague, Czechia.
| | - Mohammed Abubaker
- Department of Medical Biophysics and Medical Informatics, Third Faculty of Medicine, Charles University in Prague, Prague, Czechia
| | - Kateřina Pilátová
- Department of Information and Communication Technology in Medicine, Faculty of Biomedical Engineering, Czech Technical University in Prague, Prague, Czechia
| | - Petr Ježdík
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czechia
| | - Eugen Kvašňák
- Department of Medical Biophysics and Medical Informatics, Third Faculty of Medicine, Charles University in Prague, Prague, Czechia
| |
Collapse
|
9
|
Paßmann S, Baselgia S, Kasten FH, Herrmann CS, Rasch B. Differential online and offline effects of theta-tACS on memory encoding and retrieval. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:894-911. [PMID: 39085585 PMCID: PMC11390785 DOI: 10.3758/s13415-024-01204-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/01/2024] [Indexed: 08/02/2024]
Abstract
Theta oscillations support memory formation, but their exact contribution to the communication between prefrontal cortex (PFC) and the hippocampus is unknown. We tested the functional relevance of theta oscillations as a communication link between both areas for memory formation using transcranial alternating current stimulation (tACS). Healthy, young participants learned two lists of Dutch-German word pairs and retrieved them immediately and with a 30-min delay. In the encoding group (N = 30), tACS was applied during the encoding of list 1. List 2 was used to test stimulation aftereffects. In the retrieval group (N = 23), we stimulated during the delayed recall. In both groups, we applied tACS bilaterally at prefrontal and tempo-parietal sites, using either individualized theta frequency or 15 Hz (as control), according to a within-subject design. Stimulation with theta-tACS did not alter overall learning performance. An exploratory analysis revealed that immediate recall improved when word-pairs were learned after theta-tACS (list 2). Applying theta-tACS during retrieval had detrimental effects on memory. No changes in the power of the respective frequency bands were observed. Our results do not support the notion that impacting the communication between PFC and the hippocampus during a task by bilateral tACS improves memory. However, we do find evidence that direct stimulation had a trend for negatively interfering effects during immediate and delayed recall. Hints for beneficial effects on memory only occurred with aftereffects of the stimulation. Future studies need to further examine the effects during and after stimulation on memory formation.
Collapse
Affiliation(s)
- Sven Paßmann
- Cognitive Biopsychology and Methods, Department of Psychology, Université Fribourg, Rue P.-A.-de-Faucigny 2, 1700, Fribourg, Switzerland.
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany.
| | - Sandrine Baselgia
- Cognitive Biopsychology and Methods, Department of Psychology, Université Fribourg, Rue P.-A.-de-Faucigny 2, 1700, Fribourg, Switzerland
| | - Florian H Kasten
- Centre de Recherche Cerveau & Cognition, CNRS, Toulouse, France
- Université Toulouse III Paul Sabatier, Toulouse, France
| | - Christoph S Herrmann
- Experimental Psychology Lab, Department of Psychology, Carl Von Ossietzky Universität, Oldenburg, Germany
| | - Björn Rasch
- Cognitive Biopsychology and Methods, Department of Psychology, Université Fribourg, Rue P.-A.-de-Faucigny 2, 1700, Fribourg, Switzerland
| |
Collapse
|
10
|
Chuderski A, Chinta SR. Transcranial alternating current stimulation barely enhances working memory in healthy adults: A meta-analysis. Brain Res 2024; 1839:149022. [PMID: 38801916 DOI: 10.1016/j.brainres.2024.149022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Working memory (WM) is a pivotal neural mechanism for cognitive function and ability. Transcranial alternating current stimulation (tACS) was used to improve WM by entraining key brain rhythms. We submitted to meta-analysis 143 effects of tACS on WM performance, found in 42 reports published between 2014 and 2023, encompassing a total of 1386 healthy adults stimulated. The overall effect size of 134 interventions intended to improve WM equaled Hedges' g = 0.076 [0.039, 0.113]. However, after correcting for a significant publication bias this effect size dropped to zero. By contrast, 9 interventions distorting the brain synchronization using antiphase tACS reliably decreased WM performance, with Hedges' g = -0.266, [-0.458, -0.074]. Individuating the targeted frequency band was the only reliable moderator. The disparity between our null outcome and moderately positive tACS effects estimated by previous meta-analyses resulted from our inclusion of the most recent studies mostly reporting negligible effects. Our results suggest that current tACS protocols barely enhance WM in healthy adults. More research is needed to develop effective methods for WM stimulation.
Collapse
|
11
|
Diedrich L, Kolhoff HI, Chakalov I, Vékony T, Németh D, Antal A. Prefrontal theta-gamma transcranial alternating current stimulation improves non-declarative visuomotor learning in older adults. Sci Rep 2024; 14:4955. [PMID: 38418511 PMCID: PMC10901881 DOI: 10.1038/s41598-024-55125-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/20/2024] [Indexed: 03/01/2024] Open
Abstract
The rise in the global population of older adults underscores the significance to investigate age-related cognitive disorders and develop early treatment modalities. Previous research suggests that non-invasive transcranial Alternating Current Stimulation (tACS) can moderately improve cognitive decline in older adults. However, non-declarative cognition has received relatively less attention. This study investigates whether repeated (16-day) bilateral theta-gamma cross-frequency tACS targeting the Dorsolateral Prefrontal Cortex (DLPFC) enhances non-declarative memory. Computerized cognitive training was applied alongside stimulation to control for the state-of-the-brain. The Alternating Serial Reaction Time (ASRT) task was employed to assess non-declarative functions such as visuomotor skill and probabilistic sequence learning. Results from 35 participants aged 55-82 indicated that active tACS led to more substantial improvements in visuomotor skills immediately after treatment, which persisted 3 months later, compared to sham tACS. Treatment benefit was more pronounced in older adults of younger age and those with pre-existing cognitive decline. However, neither intervention group exhibited modulation of probabilistic sequence learning. These results suggest that repeated theta-gamma tACS can selectively improve distinct non-declarative cognitive aspects when targeting the DLPFC. Our findings highlight the therapeutic potential of tACS in addressing deficits in learning and retaining general skills, which could have a positive impact on the quality of life for cognitively impaired older individuals by preserving independence in daily activities.
Collapse
Affiliation(s)
- Lukas Diedrich
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.
| | - Hannah I Kolhoff
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Ivan Chakalov
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
- Department of Anesthesiology, University Medical Center Göttingen, Göttingen, Germany
| | - Teodóra Vékony
- Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, INSERM, CNRS, Université Claude Bernard Lyon 1, Bron, France
- Department of Education and Psychology, Faculty of Social Sciences, University of Atlántico Medio, Las Palmas de Gran Canaria, Spain
| | - Dezső Németh
- Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, INSERM, CNRS, Université Claude Bernard Lyon 1, Bron, France
- BML-NAP Research Group, Institute of Psychology, Eötvös Loránd University and Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
- Department of Education and Psychology, Faculty of Social Sciences, University of Atlántico Medio, Las Palmas de Gran Canaria, Spain
| | - Andrea Antal
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
12
|
Ociepka M, Chinta SR, Basoń P, Chuderski A. No effects of the theta-frequency transcranial electrical stimulation for recall, attention control, and relation integration in working memory. Front Hum Neurosci 2024; 18:1354671. [PMID: 38439936 PMCID: PMC10910036 DOI: 10.3389/fnhum.2024.1354671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/05/2024] [Indexed: 03/06/2024] Open
Abstract
Introduction Recent studies have suggested that transcranial alternating current stimulation (tACS), and especially the theta-frequency tACS, can improve human performance on working memory tasks. However, evidence to date is mixed. Moreover, the two WM tasks applied most frequently, namely the n-back and change-detection tasks, might not constitute canonical measures of WM capacity. Method In a relatively large sample of young healthy participants (N = 62), we administered a more canonical WM task that required stimuli recall, as well as we applied two WM tasks tapping into other key WM functions: attention control (the antisaccade task) and relational integration (the graph mapping task). The participants performed these three tasks three times: during the left frontal 5.5-Hz and the left parietal 5.5-Hz tACS session as well as during the sham session, with a random order of sessions. Attentional vigilance and subjective experience were monitored. Results For each task administered, we observed significant gains in accuracy neither for the frontal tACS session nor for the parietal tACS session, as compared to the sham session. By contrast, the scores on each task positively inter-correlated across the three sessions. Discussion The results suggest that canonical measures of WM capacity are strongly stable in time and hardly affected by theta-frequency tACS. Either the tACS effects observed in the n-back and change detection tasks do not generalize onto other WM tasks, or the tACS method has limited effectiveness with regard to WM, and might require further methodological advancements.
Collapse
Affiliation(s)
- Michał Ociepka
- Department of Cognitive Science, Institute of Philosophy, Jagiellonian University, Kraków, Poland
| | | | - Paweł Basoń
- Department of Cognitive Science, Institute of Philosophy, Jagiellonian University, Kraków, Poland
| | | |
Collapse
|
13
|
Meng Q, Zhu Y, Yuan Y, Liu J, Ye L, Kong W, Yan C, Liang Z, Yang F, Wang K, Bu J. A novel approach to modulating response inhibition: Multi-channel beta transcranial alternating current stimulation. Asian J Psychiatr 2024; 91:103872. [PMID: 38159441 DOI: 10.1016/j.ajp.2023.103872] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Deficits in response inhibition are associated with numerous psychiatric disorders. Previous studies have revealed the crucial role of the right inferior frontal gyrus (rIFG), pre-supplementary motor area (preSMA), and beta activity in these brain regions in response inhibition. Multi-channel transcranial alternating current stimulation (tACS) has garnered significant attention for its ability to modulate neural oscillations in brain networks. In this study, we employed multi-channel tACS targeting rIFG-preSMA network to investigate its impact on response inhibition in healthy adults. METHODS In Experiment 1, 70 healthy participants were randomly assigned to receive 20 Hz in-phase, anti-phase, or sham stimulation over rIFG-preSMA network. Response inhibition was assessed using the stop-signal task during and after stimulation, and impulsiveness was measured via the Barratt Impulsiveness Scale. Additionally, 25 participants received stimulation at the left supraorbital area to account for potential effects of the "return" electrode. Experiment 2, consisting of 25 participants, was conducted to validate the primary findings of Experiment 1, including both in-phase and sham stimulation conditions, based on prior estimations derived from the results of Experiment 1. RESULTS In Experiment 1, we found that in-phase stimulation significantly improved response inhibition compared with sham stimulation, whereas anti-phase stimulation did not. These findings were consistently replicated in Experiment 2. We also conducted an exploratory analysis of the multi-channel tACS impact, revealing that its effects primarily emerged during the post-stimulation phase. Furthermore, individuals with higher baseline attentional impulsiveness showed greater improvements in the in-phase stimulation group. CONCLUSIONS These results demonstrate that in-phase beta-tACS over rIFG-preSMA network can effectively improve response inhibition in healthy adults and provides a new potential treatment for patients with deficits in response inhibition.
Collapse
Affiliation(s)
- Qiujian Meng
- School of Biomedical Engineering, Anhui Medical University, Hefei, China
| | - Ying Zhu
- School of Biomedical Engineering, Anhui Medical University, Hefei, China
| | - Ye Yuan
- School of Biomedical Engineering, Anhui Medical University, Hefei, China
| | - Jiafang Liu
- School of Biomedical Engineering, Anhui Medical University, Hefei, China
| | - Lin Ye
- Department of Psychology, Anhui University of Chinese Medicine, Hefei, China
| | - Weimin Kong
- People's Hospital of Lujiang County, Anhui Province, China
| | - Chenxi Yan
- School of Biomedical Engineering, Anhui Medical University, Hefei, China
| | - Zhen Liang
- School of Biomedical Engineering, Anhui Medical University, Hefei, China
| | - Fei Yang
- School of Biomedical Engineering, Anhui Medical University, Hefei, China
| | - Kai Wang
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
| | - Junjie Bu
- Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
14
|
Meng Q, Zhu Y, Yuan Y, Ni R, Yang L, Liu J, Bu J. Dual-site beta tACS over rIFG and M1 enhances response inhibition: A parallel multiple control and replication study. Int J Clin Health Psychol 2023; 23:100411. [PMID: 37731603 PMCID: PMC10507441 DOI: 10.1016/j.ijchp.2023.100411] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/05/2023] [Indexed: 09/22/2023] Open
Abstract
Response inhibition is a core component of cognitive control. Past electrophysiology and neuroimaging studies have identified beta oscillations and inhibitory control cortical regions correlated with response inhibition, including the right inferior frontal gyrus (rIFG) and primary motor cortex (M1). Hence, increasing beta activity in multiple brain regions is a potential way to enhance response inhibition. Here, a novel dual-site transcranial alternating current stimulation (tACS) method was used to modulate beta activity over the rIFG-M1 network in a sample of 115 (excluding 2 participants) with multiple control groups and a replicated experimental design. In Experiment 1, 70 healthy participants were randomly assigned to three dual-site beta-tACS groups, including in-phase, anti-phase or sham stimulation. During and after stimulation, participants were required to complete the stop-signal task, and electroencephalography (EEG) was collected before and after stimulation. The Barratt Impulsiveness Scale was completed before the experiment to evaluate participants' impulsiveness. In addition, we conducted an active control experiment with a sample size of 20 to exclude the potential effects of the dual-site tACS "return" electrode. To validate the behavioural findings of Experiment 1, 25 healthy participants took part in Experiment 2 and were randomized into two groups, including in-phase and sham stimulation groups. We found that compared to the sham group, in-phase but not anti-phase beta-tACS significantly improved both response inhibition performance and beta synchronization of the inhibitory control network in Experiment 1. Furthermore, the increased beta synchronization was correlated with enhanced response inhibition. In an independent sample of Experiment 2, the enhanced response inhibition performance observed in the in-phase group was replicated. After combining the data from the above two experiments, the time dynamics analysis revealed that the in-phase beta-tACS effect occurred in the post-stimulation period but not the stimulation period. The state-dependence analysis showed that individuals with poorer baseline response inhibition or higher attentional impulsiveness had greater improvement in response inhibition for the in-phase group. These findings strongly support that response inhibition in healthy adults can be improved by in-phase dual-site beta-tACS of the rIFG-M1 network, and provide a new potential treatment targets of synchronized cortical network activity for patients with clinically deficient response inhibition.
Collapse
Affiliation(s)
- Qiujian Meng
- Department of Intelligent Medical Engineering, School of Biomedical Engineering, Anhui Medical University, Hefei, China
| | - Ying Zhu
- Department of Intelligent Medical Engineering, School of Biomedical Engineering, Anhui Medical University, Hefei, China
| | - Ye Yuan
- Department of Intelligent Medical Engineering, School of Biomedical Engineering, Anhui Medical University, Hefei, China
| | - Rui Ni
- Department of Intelligent Medical Engineering, School of Biomedical Engineering, Anhui Medical University, Hefei, China
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Li Yang
- Department of Intelligent Medical Engineering, School of Biomedical Engineering, Anhui Medical University, Hefei, China
| | - Jiafang Liu
- Department of Intelligent Medical Engineering, School of Biomedical Engineering, Anhui Medical University, Hefei, China
| | - Junjie Bu
- Department of Intelligent Medical Engineering, School of Biomedical Engineering, Anhui Medical University, Hefei, China
| |
Collapse
|
15
|
Pan R, Ye S, Zhong Y, Chen Q, Cai Y. Transcranial alternating current stimulation for the treatment of major depressive disorder: from basic mechanisms toward clinical applications. Front Hum Neurosci 2023; 17:1197393. [PMID: 37731669 PMCID: PMC10507344 DOI: 10.3389/fnhum.2023.1197393] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/22/2023] [Indexed: 09/22/2023] Open
Abstract
Non-pharmacological treatment is essential for patients with major depressive disorder (MDD) that is medication resistant or who are unable to take medications. Transcranial alternating current stimulation (tACS) is a non-invasive brain stimulation method that manipulates neural oscillations. In recent years, tACS has attracted substantial attention for its potential as an MDD treatment. This review summarizes the latest advances in tACS treatment for MDD and outlines future directions for promoting its clinical application. We first introduce the neurophysiological mechanism of tACS and its novel developments. In particular, two well-validated tACS techniques have high application potential: high-definition tACS targeting local brain oscillations and bifocal tACS modulating interarea functional connectivity. Accordingly, we summarize the underlying mechanisms of tACS modulation for MDD. We sort out the local oscillation abnormalities within the reward network and the interarea oscillatory synchronizations among multiple MDD-related networks in MDD patients, which provide potential modulation targets of tACS interventions. Furthermore, we review the latest clinical studies on tACS treatment for MDD, which were based on different modulation mechanisms and reported alleviations in MDD symptoms. Finally, we discuss the main challenges of current tACS treatments for MDD and outline future directions to improve intervention target selection, tACS implementation, and clinical validations.
Collapse
Affiliation(s)
- Ruibo Pan
- Department of Psychiatry, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shengfeng Ye
- Department of Psychology and Behavioral Science, Zhejiang University, Hangzhou, China
| | - Yun Zhong
- Department of Psychology and Behavioral Science, Zhejiang University, Hangzhou, China
| | - Qiaozhen Chen
- Department of Psychiatry, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Ying Cai
- Department of Psychology and Behavioral Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
16
|
Sawai S, Murata S, Fujikawa S, Yamamoto R, Nakano H. Effects of θ High Definition-Transcranial Alternating Current Stimulation in the Anterior Cingulate Cortex on the Dominance of Attention Focus in Standing Postural Control. Behav Sci (Basel) 2023; 13:477. [PMID: 37366728 DOI: 10.3390/bs13060477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023] Open
Abstract
Attention focus affects performance in postural control while standing, and it is divided into internal focus (IF) and external focus (EF). Each individual has a predominant attention focus, and research has revealed that the dominance of attention focus may be an acquired trait. However, the impact of non-invasive brain stimulation on attention-focus dominance remains unexplored in the current literature. Here, we examined the effect of high-definition transcranial alternating current stimulation (HD-tACS) on θ waves in the anterior cingulate cortex (ACC) on standing postural control tasks in an EF condition for IF- and EF-dominant groups. The effect of θ HD-tACS on the ACC differed between IF- and EF-dominant groups, and θ HD-tACS in the IF-dominant group decreased the performance of standing postural control under the EF condition. The forced activation of the ACC with θ HD-tACS may have conversely reduced the activity of brain regions normally activated by the IF-dominant group. Additionally, the activation of ACC prioritized visual information processing and suppressed the superficial sensory processing that is normally potentially prioritized by the IF-dominant group. These results highlight the importance of changing the type of rehabilitation and sports training tasks to account for the individual's dominance of attention focus.
Collapse
Affiliation(s)
- Shun Sawai
- Graduate School of Health Sciences, Kyoto Tachibana University, Kyoto 607-8175, Japan
- Department of Rehabilitation, Kyoto Kuno Hospital, Kyoto 607-0981, Japan
| | - Shin Murata
- Graduate School of Health Sciences, Kyoto Tachibana University, Kyoto 607-8175, Japan
- Department of Physical Therapy, Faculty of Health Sciences, Kyoto Tachibana University, Kyoto 607-8175, Japan
| | - Shoya Fujikawa
- Graduate School of Health Sciences, Kyoto Tachibana University, Kyoto 607-8175, Japan
- Department of Rehabilitation, Kyoto Kuno Hospital, Kyoto 607-0981, Japan
| | - Ryosuke Yamamoto
- Graduate School of Health Sciences, Kyoto Tachibana University, Kyoto 607-8175, Japan
- Department of Rehabilitation, Tesseikai Neurosurgical Hospital, Osaka 575-8511, Japan
| | - Hideki Nakano
- Graduate School of Health Sciences, Kyoto Tachibana University, Kyoto 607-8175, Japan
- Department of Physical Therapy, Faculty of Health Sciences, Kyoto Tachibana University, Kyoto 607-8175, Japan
| |
Collapse
|