1
|
Dinda R, Garribba E, Sanna D, Crans DC, Costa Pessoa J. Hydrolysis, Ligand Exchange, and Redox Properties of Vanadium Compounds: Implications of Solution Transformation on Biological, Therapeutic, and Environmental Applications. Chem Rev 2025; 125:1468-1603. [PMID: 39818783 DOI: 10.1021/acs.chemrev.4c00475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Vanadium is a transition metal with important industrial, technological, biological, and biomedical applications widespread in the environment and in living beings. The different reactions that vanadium compounds (VCs) undergo in the presence of proteins, nucleic acids, lipids and metabolites under mild physiological conditions are reviewed. In the environment vanadium is present naturally or through anthropogenic sources, the latter having an environmental impact caused by the dispersion of VCs in the atmosphere and aquifers. Vanadium has a versatile chemistry with interconvertible oxidation states, variable coordination number and geometry, and ability to form polyoxidovanadates with various nuclearity and structures. If a VC is added to a water-containing environment it can undergo hydrolysis, ligand-exchange, redox, and other types of changes, determined by the conditions and speciation chemistry of vanadium. Importantly, the solution is likely to differ from the VC introduced into the system and varies with concentration. Here, vanadium redox, hydrolytic and ligand-exchange chemical reactions, the influence of pH, concentration, salt, specific solutes, biomolecules, and VCs on the speciation are described. One of our goals with this work is highlight the need for assessment of the VC speciation, so that beneficial or toxic species might be identified and mechanisms of action be elucidated.
Collapse
Affiliation(s)
- Rupam Dinda
- Department of Chemistry, National Institute of Technology, Rourkela, 769008 Odisha, India
| | - Eugenio Garribba
- Dipartimento di Medicina, Chirurgia e Farmacia, Università di Sassari, Viale San Pietro, I-07100 Sassari, Italy
| | - Daniele Sanna
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Trav. La Crucca 3, I-07040 Sassari, Italy
| | - Debbie C Crans
- Department Chemistry and Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - João Costa Pessoa
- Centro de Química Estrutural and Departamento de Engenharia Química, Institute of Molecular Sciences, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
2
|
Maurya S, Verma T, Aggarwal A, Kumar Singh M, Dutt Tripathi A, Trivedi A. Metabolomics and microscopic profiling of flaxseed meal- incorporated Peda. FOOD CHEMISTRY. MOLECULAR SCIENCES 2024; 9:100217. [PMID: 39308762 PMCID: PMC11416507 DOI: 10.1016/j.fochms.2024.100217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/20/2024] [Accepted: 08/17/2024] [Indexed: 09/25/2024]
Abstract
Functional dairy foods are in high demand due to their convenience, enhanced nutrition, intriguing flavors, and natural ingredients. The valorization of flaxseed by-products can potentially boost the functionality of these foods. This work involves the optimization of flaxseed meal powder (2%, 2.5%, 3%) during Peda preparation based on sensory and textural attributes. The optimized Peda (2%) exhibited significantly reduction in moisture (39.6%) and water activity (18.9%), while significantly increasing crude fiber (1.88%), protein (26.4%), fat (8%) and DPPH inhibition (274.5%) as compared to control Peda. Scanning electron microscopy of the optimized Peda revealed the surface displayed a dense, uneven texture, heavily coated with fat, and intergranular spaces filled with milk serum. Twenty-three primary compounds were recognized in high-resolution mass spectrometry (HR-MS), including 6 organic acids, 6 amino acids, 3 fatty acids, 3 other metabolite derivatives, 2 lipids, 2 bioactive components, and 1 sugar. Besides gas chromatography mass spectrometry (GC-MS) found six separate types of fatty acids. These compounds have been proven to possess various bioactivities, such as promoting brain activity, antioxidant, anti-diabetic, anti-inflammatory, cardiovascular-protective effects, etc. Flaxseed meal, as a plant-based substitute for dairy ingredients, offers a sustainable and healthy alternative, making flaxseed-incorporated Peda a functional food.
Collapse
Affiliation(s)
- Sachin Maurya
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Tarun Verma
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ankur Aggarwal
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Manish Kumar Singh
- Department of Food Technology, School of Engineering and Technology, Mizoram University, Aizawl, Mizoram, India
| | - Abhishek Dutt Tripathi
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ankur Trivedi
- Department of Dairy Technology, National Dairy Research Institute, Karnal, Haryana, India
| |
Collapse
|
3
|
Paolillo M, Ferraro G, Pisanu F, Maréchal JD, Sciortino G, Garribba E, Merlino A. Protein-Protein Stabilization in V IVO/8-Hydroxyquinoline-Lysozyme Adducts. Chemistry 2024; 30:e202401712. [PMID: 38923243 DOI: 10.1002/chem.202401712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/07/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
The binding of the potential drug [VIVO(8-HQ)2], where 8-HQ is 8-hydroxyquinolinato, with hen egg white lysozyme (HEWL) was evaluated through spectroscopic (electron paramagnetic resonance, EPR, and UV-visible), spectrometric (electrospray ionization-mass spectrometry, ESI-MS), crystallographic (X-ray diffraction, XRD), and computational (DFT and docking) studies. ESI-MS indicates the interaction of [VIVO(8-HQ)(H2O)]+ and [VIVO(8-HQ)2(H2O)] species with HEWL. Room temperature EPR spectra suggest both covalent and non-covalent binding of the two different V-containing fragments. XRD analyses confirm these findings, showing that [VIVO(8-HQ)(H2O)]+ interacts covalently with the solvent exposed Asp119, while cis-[VIVO(8-HQ)2(H2O)] non-covalently with Arg128 and Lys96 from a symmetry mate. The covalent binding of [VIVO(8-HQ)(H2O)]+ to Asp119 is favored by a π-π contact with Trp62 and a H-bond with Asn103 of a symmetry-related molecule. Additionally, the covalent binding of VVO2 + to Asp48 and non-covalent binding of other V-containing fragments to Arg5, Cys6, and Glu7 are revealed. Molecular docking indicates that, in the absence of the interactions occurring at the protein-protein interface close to Asp119, the covalent binding to Glu35 or Asp52 should be preferred. Such a protein-protein stabilization could be more common than what believed up today, at least in the solid state, and should be considered in the characterization of metal-protein adducts.
Collapse
Affiliation(s)
- Maddalena Paolillo
- Department of Chemical Sciences, University of Naples 'Federico II', Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126, Napoli, Italy
| | - Giarita Ferraro
- Department of Chemical Sciences, University of Naples 'Federico II', Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126, Napoli, Italy
| | - Federico Pisanu
- Dipartimento di Medicina, Chirurgia e Farmacia, Università di Sassari, Viale San Pietro, I-07100, Sassari, Italy
| | - Jean-Didier Maréchal
- Departament de Química, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallés, Barcelona, Spain
| | - Giuseppe Sciortino
- Departament de Química, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallés, Barcelona, Spain
| | - Eugenio Garribba
- Dipartimento di Medicina, Chirurgia e Farmacia, Università di Sassari, Viale San Pietro, I-07100, Sassari, Italy
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples 'Federico II', Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126, Napoli, Italy
| |
Collapse
|
4
|
Gonzalez-Cano SI, Flores G, Guevara J, Morales-Medina JC, Treviño S, Diaz A. Polyoxidovanadates a new therapeutic alternative for neurodegenerative and aging diseases. Neural Regen Res 2024; 19:571-577. [PMID: 37721286 PMCID: PMC10581577 DOI: 10.4103/1673-5374.380877] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/18/2023] [Accepted: 06/22/2023] [Indexed: 09/19/2023] Open
Abstract
Aging is a natural phenomenon characterized by a progressive decline in physiological integrity, leading to a deterioration of cognitive function and increasing the risk of suffering from chronic-degenerative diseases, including cardiovascular diseases, osteoporosis, cancer, diabetes, and neurodegeneration. Aging is considered the major risk factor for Parkinson's and Alzheimer's disease develops. Likewise, diabetes and insulin resistance constitute additional risk factors for developing neurodegenerative disorders. Currently, no treatment can effectively reverse these neurodegenerative pathologies. However, some antidiabetic drugs have opened the possibility of being used against neurodegenerative processes. In the previous framework, Vanadium species have demonstrated a notable antidiabetic effect. Our research group evaluated polyoxidovanadates such as decavanadate and metforminium-decavanadate with preventive and corrective activity on neurodegeneration in brain-specific areas from rats with metabolic syndrome. The results suggest that these polyoxidovanadates induce neuronal and cognitive restoration mechanisms. This review aims to describe the therapeutic potential of polyoxidovanadates as insulin-enhancer agents in the brain, constituting a therapeutic alternative for aging and neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Gonzalo Flores
- Institute of Physiology, Benemerita Autonomous University of Puebla, Puebla, Mexico
| | - Jorge Guevara
- Department of Biochemistry, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | | | - Samuel Treviño
- Faculty of Chemical Sciences, Benemerita Autonomous University of Puebla, Puebla, Mexico
| | - Alfonso Diaz
- Faculty of Chemical Sciences, Benemerita Autonomous University of Puebla, Puebla, Mexico
| |
Collapse
|
5
|
Lima LMA, da Silva AKJPF, Batista EK, Postal K, Kostenkova K, Fenton A, Crans DC, Silva WE, Belian MF, Lira EC. The antihyperglycemic and hypolipidemic activities of a sulfur-oxidovanadium(IV) complex. J Inorg Biochem 2023; 241:112127. [PMID: 36822888 DOI: 10.1016/j.jinorgbio.2023.112127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 01/02/2023] [Accepted: 01/11/2023] [Indexed: 01/30/2023]
Abstract
This study describes the synthesis, characterization, and biological activity of a new class of antidiabetic oxidovanadium(IV)-complexes with S2O2 coordination mode. The target complex 3,6-dithio-1,8-octanediolatooxidovanadium(IV), abbreviated as ([VIVO(octd)]), where octd = 3,6-dithio-1,8-octanediol, is formed from the reaction between the 3,6-dithio-1,8-octanediol and vanadyl sulfate (VIVOSO4). The effects of treatment with ([VIVO(octd)] on blood glucose, lipidic profile, body weight, food intake, water intake, urinary volume, glycogen levels, and biomarkers for liver toxicity were investigated using a streptozotocin (STZ)-induced diabetic Wistar rats model. The results have shown that the [VIVO(octd)] complex caused a significant decrease in blood glucose (247.6 ± 19.3 mg/dL vs 430.1 ± 37.6 mg/dL diabetic group, p < 0.05), triglycerides (TG, 50%) and very low-density cholesterol (VLDL-C, 50%) levels in STZ-diabetic rats after 3 weeks of treatment. The [VIVO(octd)] has shown antihyperglycemic activity in diabetic rats as well as a reduction in elevated lipid levels. Time-dependent studies using EPR and 51V NMR spectroscopy of [VIVO(octd)] were done in aqueous solutions to determine the complex stability and species present in the oral gavage solution used for complex administration. The spectroscopic studies have shown that the antidiabetic/hypolipidemic activity could be attributed to [VIVO(octd)], vanadium species resulting from redox processes, the hydrolysis of [VIVO(octd)] and its decomposition products, or some combination of these factors. In summary, the oxidovanadium(IV) complex containing the S2O2 donor ligand has desirable antidiabetic properties eliminating the symptoms of Diabetes mellitus and its comorbidities.
Collapse
Affiliation(s)
- Lidiane M A Lima
- Departamento de Química, Universidade Federal Rural de Pernambuco, 52171-900 Recife, PE, Brazil
| | - Amanda K J P F da Silva
- Departamento de Química, Universidade Federal Rural de Pernambuco, 52171-900 Recife, PE, Brazil
| | - Eucilene K Batista
- Departamento de Fisiologia e Farmacologia, Centro de Biociências, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil
| | - Kahoana Postal
- Departamento de Química, Universidade Federal do Paraná, 81531-980 Curitiba, PR, Brazil; Department of Chemistry, Colorado State University, Fort Collins, CO 80513, USA
| | - Kateryna Kostenkova
- Department of Chemistry, Colorado State University, Fort Collins, CO 80513, USA
| | - Alex Fenton
- Department of Chemistry, Colorado State University, Fort Collins, CO 80513, USA
| | - Debbie C Crans
- Department of Chemistry, Colorado State University, Fort Collins, CO 80513, USA; Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80513, USA
| | - Wagner E Silva
- Departamento de Química, Universidade Federal Rural de Pernambuco, 52171-900 Recife, PE, Brazil
| | - Mônica F Belian
- Departamento de Química, Universidade Federal Rural de Pernambuco, 52171-900 Recife, PE, Brazil.
| | - Eduardo C Lira
- Departamento de Fisiologia e Farmacologia, Centro de Biociências, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil
| |
Collapse
|
6
|
Ugone V, Pisanu F, Garribba E. Interaction of pharmacologically active pyrone and pyridinone vanadium(IV,V) complexes with cytochrome c. J Inorg Biochem 2022; 234:111876. [DOI: 10.1016/j.jinorgbio.2022.111876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/05/2022] [Accepted: 05/21/2022] [Indexed: 01/11/2023]
|
7
|
Interaction of V(V) complexes formed by picolinic and pyrazinecarboxylic acid derivatives with red blood cells. Polyhedron 2022. [DOI: 10.1016/j.poly.2021.115590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
8
|
Ferraro G, Demitri N, Vitale L, Sciortino G, Sanna D, Ugone V, Garribba E, Merlino A. Spectroscopic/Computational Characterization and the X-ray Structure of the Adduct of the V IVO-Picolinato Complex with RNase A. Inorg Chem 2021; 60:19098-19109. [PMID: 34847328 PMCID: PMC8693189 DOI: 10.1021/acs.inorgchem.1c02912] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Indexed: 12/12/2022]
Abstract
The structure, stability, and enzymatic activity of the adduct formed upon the reaction of the V-picolinato (pic) complex [VIVO(pic)2(H2O)], with an octahedral geometry and the water ligand in cis to the V═O group, with the bovine pancreatic ribonuclease (RNase A) were studied. While electrospray ionization-mass spectrometry, circular dichroism, and ultraviolet-visible absorption spectroscopy substantiate the interaction between the metal moiety and RNase A, electron paramagnetic resonance (EPR) allows us to determine that a carboxylate group, stemming from Asp or Glu residues, and imidazole nitrogen from His residues are involved in the V binding at acidic and physiological pH, respectively. Crystallographic data demonstrate that the VIVO(pic)2 moiety coordinates the side chain of Glu111 of RNase A, by substituting the equatorial water molecule at acidic pH. Computational methods confirm that Glu111 is the most affine residue and interacts favorably with the OC-6-23-Δ enantiomer establishing an extended network of hydrogen bonds and van der Waals stabilizations. By increasing the pH around neutrality, with the deprotonation of histidine side chains, the binding of the V complex to His105 and His119 could occur, with that to His105 which should be preferred when compared to that to the catalytically important His119. The binding of the V compound affects the enzymatic activity of RNase A, but it does not alter its overall structure and stability.
Collapse
Affiliation(s)
- Giarita Ferraro
- Department
of Chemical Sciences, University of Naples
Federico II, I-80126 Napoli, Italy
| | - Nicola Demitri
- Elettra−Sincrotrone
Trieste, S.S. 14 km 163.5
in Area Science Park, 34149 Trieste, Italy
| | - Luigi Vitale
- Department
of Chemical Sciences, University of Naples
Federico II, I-80126 Napoli, Italy
| | - Giuseppe Sciortino
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute
of Science and Technology, 43007 Tarragona, Spain
| | - Daniele Sanna
- Istituto
di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Trav. La Crucca 3, I-07100 Sassari, Italy
| | - Valeria Ugone
- Istituto
di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Trav. La Crucca 3, I-07100 Sassari, Italy
| | - Eugenio Garribba
- Dipartimento
di Scienze Mediche, Chirurgiche e Sperimentali, Università di Sassari, Viale San Pietro, I-07100 Sassari, Italy
| | - Antonello Merlino
- Department
of Chemical Sciences, University of Naples
Federico II, I-80126 Napoli, Italy
| |
Collapse
|
9
|
Pessoa JC, Santos MF, Correia I, Sanna D, Sciortino G, Garribba E. Binding of vanadium ions and complexes to proteins and enzymes in aqueous solution. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214192] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
Ścibior A, Pietrzyk Ł, Plewa Z, Skiba A. Vanadium: Risks and possible benefits in the light of a comprehensive overview of its pharmacotoxicological mechanisms and multi-applications with a summary of further research trends. J Trace Elem Med Biol 2020; 61:126508. [PMID: 32305626 PMCID: PMC7152879 DOI: 10.1016/j.jtemb.2020.126508] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/25/2020] [Accepted: 03/19/2020] [Indexed: 01/21/2023]
Abstract
BACKGROUND Vanadium (V) is an element with a wide range of effects on the mammalian organism. The ability of this metal to form organometallic compounds has contributed to the increase in the number of studies on the multidirectional biological activity of its various organic complexes in view of their application in medicine. OBJECTIVE This review aims at summarizing the current state of knowledge of the pharmacological potential of V and the mechanisms underlying its anti-viral, anti-bacterial, anti-parasitic, anti-fungal, anti-cancer, anti-diabetic, anti-hypercholesterolemic, cardioprotective, and neuroprotective activity as well as the mechanisms of appetite regulation related to the possibility of using this element in the treatment of obesity. The toxicological potential of V and the mechanisms of its toxic action, which have not been sufficiently recognized yet, as well as key information about the essentiality of this metal, its physiological role, and metabolism with certain aspects on the timeline is collected as well. The report also aims to review the use of V in the implantology and industrial sectors emphasizing the human health hazard as well as collect data on the directions of further research on V and its interactions with Mg along with their character. RESULTS AND CONCLUSIONS Multidirectional studies on V have shown that further analyses are still required for this element to be used as a metallodrug in the fight against certain life-threatening diseases. Studies on interactions of V with Mg, which showed that both elements are able to modulate the response in an interactive manner are needed as well, as the results of such investigations may help not only in recognizing new markers of V toxicity and clarify the underlying interactive mechanism between them, thus improving the medical application of the metals against modern-age diseases, but also they may help in development of principles of effective protection of humans against environmental/occupational V exposure.
Collapse
Key Words
- 3-HMG-CoA, 3-hydroxy-3-methyl-glutaryl-CoA
- AIDS, acquired immune deficiency syndrome
- ALB, albumin
- ALP, alkaline phosphatase
- AS, antioxidant status
- Akt, protein kinase B (PKB)
- AmD, Assoc American Dietetic Association
- Anti-B, anti-bacterial
- Anti-C, anti-cancer
- Anti-D, anti-diabetic
- Anti-F, anti-fungal
- Anti-O, anti-obesity
- Anti-P, anti-parasitic
- Anti-V, anti-viral
- Anti−HC, anti-hypercholesterolemic
- ApoA-I, apolipoprotein A
- ApoB, apolipoprotein B
- B, bone
- BCOV, bis(curcumino)oxavanadyl
- BEOV, bis(ethylmaltolato)oxovanadium
- BMOV, bis(maltolato)oxavanadium(IV)
- Bim, Blc-2 interacting mediator of cell death
- Biological role
- BrOP, bromoperoxidase
- C, cholesterol
- C/EBPα, CCAAT-enhancer-binding protein α
- CD4, CD4 receptor
- CH, cerebral hemisphere
- CHO-K1, Chinese hamster ovary cells
- CXCR-4, CXCR-4 chemokine co-receptor
- Cardio-P, cardioprotective
- Citrate-T, citrate transporter
- CoA, coenzyme A
- Cyt c, cytochrome c
- DM, diabetes mellitus
- ELI, extra low interstitial
- ERK, extracellular regulated kinase
- FHR, fructose hypertensive rats
- FKHR/FKHR1/AFX, class O members of the forkhead transcription factor family
- FLIP, FLICE-inhibitory protein
- FOXOs, forkhead box class O family member proteins
- FPP, farnesyl-pyrophosphate
- FasL, Fas ligand, FER: ferritin
- GI, gastrointestinal
- GLU, glucose
- GLUT-4, glucose transporter type 4
- GPP, geranyl-pyrophosphate
- GPT, glutamate-pyruvate transaminase
- GR, glutathione reductase
- GSH, reduced glutathione
- GSSG, disulfide glutathione
- HDL, high-density lipoproteins
- HDL-C, HDL cholesterol
- HIV, human immunodeficiency virus
- HMMF, high molecular mass fraction
- HOMA-IR, insulin resistance index
- Hb, hemoglobin
- HbF, hemoglobin fraction
- Hyper-LEP, hyperleptynemia
- IDDM, insulin-dependent diabetes mellitus
- IGF-IR, insulin-like growth factor receptor
- IL, interleukin
- INS, insulin
- INS-R, insulin resistance
- INS-S, insulin sensitivity
- IPP, isopentenyl-5-pyrophosphate
- IRS, insulin receptor tyrosine kinase substrate
- IgG, immunoglobulin G
- Industrial importance
- Interactions
- JAK2, Janus kinase 2
- K, kidney
- L, liver
- L-AA, L-ascorbic acid
- LDL, low-density lipoproteins
- LDL-C, LDL cholesterol
- LEP, leptin
- LEP-R, leptin resistance
- LEP-S, leptin sensitivity
- LEPS, the concentration of leptin in the serum
- LMMF, low molecular mass fraction
- LPL, lipoprotein lipase
- LPO, lipid peroxidation
- Lactate-T, lactate transporter
- M, mitochondrion
- MEK, ERK kinase activator
- MRC, mitochondrial respiratory chain
- NAC, N-acetylcysteine
- NEP, neutral endopeptidase
- NIDDM, noninsulin-dependent diabetes mellitus
- NO, nitric oxide
- NPY, neuropeptide Y
- NaVO3, sodium metavanadate
- Neuro-P, neuroprotective
- OXPHOS, oxidative phosphorylation
- Organic-AT, organic anion transporter
- Over-W, over-weight
- P, plasma
- PANC-1, pancreatic ductal adenocarcinoma cells
- PARP, poly (ADP-ribose) polymerase
- PLGA, (Poly)Lactide-co-Glycolide copolymer
- PO43−, phosphate ion
- PPARγ, peroxisome-activated receptor γ
- PTK, tyrosine protein kinase
- PTP, protein tyrosine phosphatase
- PTP-1B, protein tyrosine phosphatase 1B
- Pharmacological activity
- Pi3K, phosphoinositide 3-kinase (phosphatidylinositol 3-kinase)
- RBC, erythrocytes
- ROS, reactive oxygen species
- RT, reverse transcriptase
- SARS, severe acute respiratory syndrome
- SAcP, acid phosphatase secreted by Leshmania
- SC-Ti-6Al-4V, surface-coated Ti-6Al-4V
- SHR, spontaneously hypertensive rats
- SOD, superoxide dismutase
- STAT3, signal transducer/activator of transcription 3
- Sa, mean roughness
- Sq, root mean square roughness
- Sz, ten-point height
- TC, total cholesterol
- TG, triglycerides
- TS, transferrin saturation
- Tf, transferrin
- TfF, transferrin fraction
- TiO2, nHA:Ag-Ti-6Al-4V: titanium oxide-based coating containing hydroxyapatite nanoparticle and silver particles
- Top-IB, IB type topoisomerase
- Toxicological potential
- V, vanadium
- V-BrPO, vanadium bromoperoxidase
- V-DLC, diamond-like layer with vanadium
- V5+/V4+, pentavalent/tetravalent vanadium
- VO2+, vanadyl cation
- VO2+-FER, vanadyl-ferritin complex
- VO4-/VO3-, vanadate anion
- VO43-, vanadate ion
- VS, vanadyl sulfate
- Vanadium
- WB, whole blood
- ZDF rats, Zucker diabetic fatty rats
- ZF rats, Zucker fatty rats
- breakD, breakdown
- eNOS, endothelial nitric oxide synthase
- mo, months
- n-HA, nano-hydroxyapatite
- pRb, retinoblastoma protein
- wk, weeks
Collapse
Affiliation(s)
- Agnieszka Ścibior
- Laboratory of Oxidative Stress, Centre for Interdisciplinary Research, The John Paull II Catholic University of Lublin, Poland
| | - Łukasz Pietrzyk
- Laboratory of Oxidative Stress, Centre for Interdisciplinary Research, The John Paull II Catholic University of Lublin, Poland
- Department of Didactics and Medical Simulation, Chair of Anatomy, Medical University of Lublin, Poland
| | - Zbigniew Plewa
- Department of General, Oncological, and Minimally Invasive Surgery, 1 Military Clinical Hospital with the Outpatient Clinic in Lublin, Poland
| | - Andrzej Skiba
- Military Clinical Hospital with the Outpatient Clinic in Lublin, Poland
| |
Collapse
|
11
|
Ugone V, Sanna D, Sciortino G, Crans DC, Garribba E. ESI-MS Study of the Interaction of Potential Oxidovanadium(IV) Drugs and Amavadin with Model Proteins. Inorg Chem 2020; 59:9739-9755. [PMID: 32585093 PMCID: PMC8008395 DOI: 10.1021/acs.inorgchem.0c00969] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Indexed: 01/13/2023]
Abstract
In this study, the binding to lysozyme (Lyz) of four important VIV compounds with antidiabetic and/or anticancer activity, [VIVO(pic)2(H2O)], [VIVO(ma)2], [VIVO(dhp)2], and [VIVO(acac)2], where pic-, ma-, dhp-, and acac- are picolinate, maltolate, 1,2-dimethyl-3-hydroxy-4(1H)-pyridinonate, and acetylacetonate anions, and of the vanadium-containing natural product amavadin ([VIV(hidpa)2]2-, with hidpa3- N-hydroxyimino-2,2'-diisopropionate) was investigated by ElectroSpray Ionization-Mass Spectrometry (ESI-MS). Moreover, the interaction of [VIVO(pic)2(H2O)], chosen as a representative VIVO2+ complex, was examined with two additional proteins, myoglobin (Mb) and ubiquitin (Ub), to compare the data. The examined vanadium concentration was in the range 15-150 μM, i.e., very close to that found under physiological conditions. With pic-, dhp-, and hidpa3-, the formation of adducts n[VIVOL2]-Lyz or n[VIVL2]-Lyz is favored, while with ma- and acac- the species n[VIVOL]-Lyz are detected, with n dependent on the experimental VIV/protein ratio. The behavior of the systems with [VIVO(pic)2(H2O)] and Mb or Ub is very similar to that of Lyz. The results suggested that under physiological conditions, the moiety cis-VIVOL2 (L = pic-, dhp-) is bound by only one accessible side-chain protein residue that can be Asp, Glu, or His, while VIVOL+ (L = ma-, acac-) can interact with the two equatorial and axial sites. If the VIV complex is thermodynamically stable and does not have available coordination positions, such as amavadin, the protein cannot interact with it through the formation of coordination bonds and, in such cases, noncovalent interactions are predicted. The formation of the adducts is dependent on the thermodynamic stability and geometry in aqueous solution of the VIVO2+ complex and affects the transport, uptake, and mechanism of action of potential V drugs.
Collapse
Affiliation(s)
- Valeria Ugone
- Dipartimento
di Chimica e Farmacia, Università
di Sassari, Via Vienna 2, I-07100 Sassari, Italy
| | - Daniele Sanna
- Istituto
CNR di Chimica Biomolecolare, Trav. La Crucca 3, I-07040 Sassari, Italy
| | - Giuseppe Sciortino
- Dipartimento
di Chimica e Farmacia, Università
di Sassari, Via Vienna 2, I-07100 Sassari, Italy
- Departament
de Química, Universitat Autònoma
de Barcelona, 08193 Cerdanyola del Vallés, Barcelona, Spain
| | - Debbie C. Crans
- Department
of Chemistry, Colorado State University, 1301 Center Avenue, Fort Collins, Colorado, United States
| | - Eugenio Garribba
- Dipartimento
di Chimica e Farmacia, Università
di Sassari, Via Vienna 2, I-07100 Sassari, Italy
| |
Collapse
|
12
|
Banerjee A, Dash SP, Mohanty M, Sanna D, Sciortino G, Ugone V, Garribba E, Reuter H, Kaminsky W, Dinda R. Chemistry of mixed-ligand oxidovanadium(IV) complexes of aroylhydrazones incorporating quinoline derivatives: Study of solution behavior, theoretical evaluation and protein/DNA interaction. J Inorg Biochem 2019; 199:110786. [PMID: 31377474 DOI: 10.1016/j.jinorgbio.2019.110786] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 01/15/2023]
Abstract
A series of eight hexacoordinated mixed-ligand oxidovanadium(IV) complexes [VO(Lx)(LN-N)] (1-8), where Lx = L1 - L4 are four differently substituted ONO donor aroylhydrazone ligands and LN-N are N,N-donor bases like 2,2'-bipyridine (bipy) (1, 3, 5 and 7) and 1,10-phenanthroline (phen) (2, 4, 6 and 8), have been reported. All synthesized complexes have been characterized by various physicochemical techniques and molecular structures of 1 and 6 were determined by X-ray crystallography. With a view to evaluate the biological activity of the VIVO species, the behavior of the systems VIVO2+/Lx, VIVO2+/Lx/bipy and VIVO2+/Lx/phen was studied as a function of pH in a mixture of H2O/DMSO 50/50 (v/v). DFT calculations allowed finding out the relative stability of the tautomeric forms of the ligands, and predicting the structure of vanadium complexes and their EPR parameters. To study their interaction with proteins, firstly the ternary systems VIVO2+/L1,2 with 1-methylimidazole, which is a good model for histidine binding, were examined. Subsequently the interaction of the complexes with lysozyme (Lyz), cytochrome c (Cyt) and bovine serum albumin (BSA) was studied. The results indicate that the complexes showed moderate binding affinity towards BSA, while no interaction takes place with lysozyme and cytochrome c. This could be explained with the higher number of accessible coordinating and polar residues for BSA than for Lyz and Cyt. Further, the complexes were also evaluated for their DNA binding propensity through UV-vis absorption titration and fluorescence spectral studies. These results were consistent with BSA binding affinity and showed moderate binding affinity towards CT-DNA.
Collapse
Affiliation(s)
- Atanu Banerjee
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Subhashree P Dash
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India; Department of Basic Sciences, Parala Maharaja Engineering College, Sitalapalli, Brahmapur, Odisha 761003, India
| | - Monalisa Mohanty
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Daniele Sanna
- Istituto CNR di Chimica Biomolecolare, Trav. La Crucca 3, I-07040 Sassari, Italy
| | - Giuseppe Sciortino
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Barcelona, Spain; Dipartimento di Chimica e Farmacia, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy
| | - Valeria Ugone
- Dipartimento di Chimica e Farmacia, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy
| | - Eugenio Garribba
- Dipartimento di Chimica e Farmacia, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy.
| | - Hans Reuter
- Institute of Chemistry of New Materials, University of Osnabrück, Barbarastraße 6, 49069 Osnabruck, Germany
| | - Werner Kaminsky
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Rupam Dinda
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India.
| |
Collapse
|
13
|
Treviño S, Díaz A, Sánchez-Lara E, Sanchez-Gaytan BL, Perez-Aguilar JM, González-Vergara E. Vanadium in Biological Action: Chemical, Pharmacological Aspects, and Metabolic Implications in Diabetes Mellitus. Biol Trace Elem Res 2019; 188:68-98. [PMID: 30350272 PMCID: PMC6373340 DOI: 10.1007/s12011-018-1540-6] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/01/2018] [Indexed: 12/12/2022]
Abstract
Vanadium compounds have been primarily investigated as potential therapeutic agents for the treatment of various major health issues, including cancer, atherosclerosis, and diabetes. The translation of vanadium-based compounds into clinical trials and ultimately into disease treatments remains hampered by the absence of a basic pharmacological and metabolic comprehension of such compounds. In this review, we examine the development of vanadium-containing compounds in biological systems regarding the role of the physiological environment, dosage, intracellular interactions, metabolic transformations, modulation of signaling pathways, toxicology, and transport and tissue distribution as well as therapeutic implications. From our point of view, the toxicological and pharmacological aspects in animal models and humans are not understood completely, and thus, we introduced them in a physiological environment and dosage context. Different transport proteins in blood plasma and mechanistic transport determinants are discussed. Furthermore, an overview of different vanadium species and the role of physiological factors (i.e., pH, redox conditions, concentration, and so on) are considered. Mechanistic specifications about different signaling pathways are discussed, particularly the phosphatases and kinases that are modulated dynamically by vanadium compounds because until now, the focus only has been on protein tyrosine phosphatase 1B as a vanadium target. Particular emphasis is laid on the therapeutic ability of vanadium-based compounds and their role for the treatment of diabetes mellitus, specifically on that of vanadate- and polioxovanadate-containing compounds. We aim at shedding light on the prevailing gaps between primary scientific data and information from animal models and human studies.
Collapse
Affiliation(s)
- Samuel Treviño
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Alfonso Díaz
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Eduardo Sánchez-Lara
- Centro de Química, ICUAP, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Brenda L. Sanchez-Gaytan
- Centro de Química, ICUAP, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Jose Manuel Perez-Aguilar
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Enrique González-Vergara
- Centro de Química, ICUAP, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| |
Collapse
|
14
|
Sciortino G, Sanna D, Ugone V, Maréchal JD, Garribba E. Integrated ESI-MS/EPR/computational characterization of the binding of metal species to proteins: vanadium drug–myoglobin application. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00179d] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
An integrated strategy based on ESI-MS spectrometry, EPR spectroscopy and docking/QM computational methods is applied to the systems formed by VIVO2+ ions and four potential VIVOL2 drugs and myoglobin. This approach is generizable to other metals and proteins.
Collapse
Affiliation(s)
- Giuseppe Sciortino
- Dipartimento di Chimica e Farmacia
- Università di Sassari
- I-07100 Sassari
- Italy
- Departament de Química
| | - Daniele Sanna
- Istituto CNR di Chimica Biomolecolare
- I-07040 Sassari
- Italy
| | - Valeria Ugone
- Dipartimento di Chimica e Farmacia
- Università di Sassari
- I-07100 Sassari
- Italy
| | | | - Eugenio Garribba
- Dipartimento di Chimica e Farmacia
- Università di Sassari
- I-07100 Sassari
- Italy
| |
Collapse
|
15
|
Sciortino G, Sanna D, Ugone V, Maréchal JD, Alemany-Chavarria M, Garribba E. Effect of secondary interactions, steric hindrance and electric charge on the interaction of VIVO species with proteins. NEW J CHEM 2019. [DOI: 10.1039/c9nj01956a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The effect of secondary interactions (hydrogen bonds and van der Waals contacts), steric hindrance and electric charge, on the binding of VIV complexes formed by pipemidic and 8-hydroxyquinoline-5-sulphonic acids with ubiquitin and lysozyme is studied.
Collapse
Affiliation(s)
- Giuseppe Sciortino
- Departament de Química
- Universitat Autònoma de Barcelona
- Barcelona
- Spain
- Dipartimento di Chimica e Farmacia
| | - Daniele Sanna
- Istituto CNR di Chimica Biomolecolare
- I-07040 Sassari
- Italy
| | - Valeria Ugone
- Dipartimento di Chimica e Farmacia
- Università di Sassari
- I-07100 Sassari
- Italy
| | | | | | - Eugenio Garribba
- Dipartimento di Chimica e Farmacia
- Università di Sassari
- I-07100 Sassari
- Italy
| |
Collapse
|
16
|
Sanna D, Palomba J, Lubinu G, Buglyó P, Nagy S, Perdih F, Garribba E. Role of Ligands in the Uptake and Reduction of V(V) Complexes in Red Blood Cells. J Med Chem 2018; 62:654-664. [PMID: 30576137 DOI: 10.1021/acs.jmedchem.8b01330] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The interaction with erythrocytes of four [VVO2L2]- complexes, with L = picolinate (pic), 5-cyanopicolinate (picCN), 3-aminopyrazine-2-carboxylate (przNH2), and 1,2-dimethyl-3-hydroxy-4(1 H)-pyridinonate (dhp), was studied. The thermodynamic stability at physiological pH is: [VVO2(dhp)2]- > [VVO2(przNH2)2]- > [VVO2(pic)2]- > [VVO2(picCN)2]-. With picCN and pic, V exists at physiological pH as H2VVO4-, with przNH2 as a mixture of H2VVO4- and [VVO2(przNH2)2]- and with dhp as [VVO2(dhp)2]-. In the systems with pic and picCN, H2VVO4- and the ligands cross the erythrocyte membrane independently, with dhp the uptake occurs by diffusion, whereas with przNH2 both the mechanisms are active. Inside erythrocytes stable VIVOL2 complexes are formed, indicating that there is no relationship with the stability and redox state of the administered compounds and that, if the metal ion changes its oxidation state in the cytosol as V does, unstable complexes in the extracellular medium could become stable inside the cells and contribute to the pharmacological action.
Collapse
Affiliation(s)
- Daniele Sanna
- Istituto CNR di Chimica Biomolecolare , Trav. La Crucca 3, I-07040 Sassari , Italy
| | - Jessica Palomba
- Dipartimento di Chimica e Farmacia , Università di Sassari , Via Vienna 2 , I-07100 Sassari , Italy
| | - Giuseppe Lubinu
- Dipartimento di Chimica e Farmacia , Università di Sassari , Via Vienna 2 , I-07100 Sassari , Italy
| | - Péter Buglyó
- Department of Inorganic and Analytical Chemistry , University of Debrecen , Egyetem tér 1 , H-4032 Debrecen , Hungary
| | - Sándor Nagy
- Department of Inorganic and Analytical Chemistry , University of Debrecen , Egyetem tér 1 , H-4032 Debrecen , Hungary
| | - Franc Perdih
- Faculty of Chemistry and Chemical Technology , University of Ljubljana , Večna pot 113 , SI-1000 Ljubljana , Slovenia
| | - Eugenio Garribba
- Dipartimento di Chimica e Farmacia , Università di Sassari , Via Vienna 2 , I-07100 Sassari , Italy
| |
Collapse
|
17
|
|
18
|
Azam A, Raza MA, Sumrra SH. Therapeutic Application of Zinc and Vanadium Complexes against Diabetes Mellitus a Coronary Disease: A review. OPEN CHEM 2018. [DOI: 10.1515/chem-2018-0118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
AbstractDuring the last two decades, number of peoples suffering from diabetes has increased from 30-230 million globally. Today, seven out of the ten top countries are suffering from diabetes, are emergent countries. Due to alarming situations of diabetes, chemists and pharmacist are continuously searching and synthesizing new potent therapeutics to treat this disease. Now a days, considerable attention is being paid to the chemistry of the metal-drug interactions. Metals and their organic based complexes are being used clinically for various ailments. In this review, a comprehensive discussion about synthesis and diabetic evaluation of zinc and vanadium complex is summarized.
Collapse
Affiliation(s)
- Aisha Azam
- Department of Chemistry, Hafiz Hayat Campus, University of Gujrat, Gujrat, Pakistan
| | - Muhammad Asam Raza
- Department of Chemistry, Hafiz Hayat Campus, University of Gujrat, Gujrat, Pakistan
| | | |
Collapse
|
19
|
Sanna D, Ugone V, Sciortino G, Buglyó P, Bihari Z, Parajdi-Losonczi PL, Garribba E. V IVO complexes with antibacterial quinolone ligands and their interaction with serum proteins. Dalton Trans 2018; 47:2164-2182. [PMID: 29327005 DOI: 10.1039/c7dt04216g] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Quinolone derivatives are among the most commonly prescribed antibacterials in the world and could also attract interest as organic ligands in the design of metal complexes with potential pharmacological activity. In this study, five compounds, belonging to the first (nalidixic acid or Hnal), second (ciprofloxacin or Hcip, and norfloxacin or Hnor) and third generation (levofloxacin or Hlev, and sparfloxacin or Hspar) of quinolones, were used as ligands to bind the VIVO2+ ion. In aqueous solution, mono- and bis-chelated species were formed as a function of pH, with cis-[VOHxL2(H2O)]x+ and [VOHxL2]x+, x = 0-2, being the major complexes at pH 7.4. DFT calculations indicate that the most stable isomers are the octahedral OC-6-32 and the square pyramidal SPY-5-12, in equilibrium with each other. To the best of our knowledge, this is the first case that an equilibrium between a penta-coordinated square pyramidal complex and a hexa-coordinated octahedral complex is observed in solution for ligands forming six-membered chelated rings. Nalidixic acid forms the solid compound [VO(nal)2(H2O)], to which a cis-octahedral geometry was assigned. The interaction with 1-methylimidazole (MeIm) causes a shift of the equilibrium SPY-5 + H2O ⇄ OC-6 toward the right after the formation of cis-[VOHxL2(MeIm)]x+, where MeIm replaces an equatorial water ligand. The study of the systems containing [VO(nal)2(H2O)] and the serum proteins - albumin (HSA), apo-transferrin (apo-hTf) and holo-transferrin (holo-hTf) - indicates that HSA and holo-hTf form the mixed species {VO(nal)2}y(HSA) and {VO(nal)2}y(holo-hTf), where y = 1-3 denotes the number of VO(nal)2 moieties bound to accessible histidines (His105, His367, His510 for HSA, and His25, His349, His606 for holo-hTf), whereas apo-hTf yields VO(nal)2(apo-hTf) with the coordination of the His289 residue only. Docking calculations suggest that the specific conformation of apo-hTf and the steric hindrance of the cis-VO(nal)2 moiety interfere with its interaction with all the surface His residues and the formation of a hydrogen bond network which could stabilize the binding sites.
Collapse
Affiliation(s)
- Daniele Sanna
- Istituto CNR di Chimica Biomolecolare, Trav. La Crucca 3, I-07040 Sassari, Italy.
| | | | | | | | | | | | | |
Collapse
|
20
|
Sanna D, Ugone V, Micera G, Buglyó P, Bíró L, Garribba E. Speciation in human blood of Metvan, a vanadium based potential anti-tumor drug. Dalton Trans 2018. [PMID: 28640312 DOI: 10.1039/c7dt00943g] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The first report on the anti-cancer activity of the compound Metvan, [VIVO(Me2phen)2(SO4)], where Me2phen is 4,7-dimethyl-1,10-phenanthroline, dates back to 2001. Although it was immediately identified as one of the most promising multitargeted anti-cancer V compounds, no development on the medical experimentation was carried out. One of the possible reasons is the lack of information on its speciation in aqueous solution and its thermodynamic stability, factors which influence the transport in the blood and the final form which reaches the target organs. To fill this gap, in this work the speciation of Metvan in aqueous solution and human blood was studied by instrumental (EPR, electronic absorption spectroscopy, ESI-MS and ESI-MS/MS), analytical (pH-potentiometry) and computational (DFT) methods. The results suggested that Metvan transforms at physiological pH into the hydrolytic species cis-[VO(Me2phen)2(OH)]+ and that both citrate and proteins (transferrin and albumin in the blood serum, and hemoglobin in the erythrocytes) form mixed complexes, denoted [VO(Me2phen)(citrH-1)]2- and VO-Me2phen-Protein with the probable binding of His-N donors. The measurements with erythrocytes suggest that Metvan is able to cross their membrane forming mixed species VO-Me2phen-Hb. The redox stability in cell culture medium was also examined, showing that ca. 60% is oxidized to VV after 5 h. Overall, the speciation of Metvan in the blood mainly depends on the V concentration: when it is larger than 50 μM, [VO(Me2phen)(citrH-1)]2- and VO-Me2phen-Protein are the major species, while for concentrations lower than 10 μM, (VO)(hTf) is formed and Me2phen is lost. Therefore, it is plausible that the pharmacological activity of Metvan could be due to the synergic action of free Me2phen, and VIVO and VVO/VVO2 species.
Collapse
Affiliation(s)
- Daniele Sanna
- Istituto CNR di Chimica Biomolecolare, Trav. La Crucca 3, I-07040 Sassari, Italy
| | | | | | | | | | | |
Collapse
|
21
|
Sciortino G, Sanna D, Ugone V, Lledós A, Maréchal JD, Garribba E. Decoding Surface Interaction of VIVO Metallodrug Candidates with Lysozyme. Inorg Chem 2018; 57:4456-4469. [DOI: 10.1021/acs.inorgchem.8b00134] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Giuseppe Sciortino
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Barcelona, Spain
- Dipartimento di Chimica e Farmacia, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy
| | - Daniele Sanna
- Istituto CNR di Chimica Biomolecolare, Trav. La Crucca 3, I-07040 Sassari, Italy
| | - Valeria Ugone
- Dipartimento di Chimica e Farmacia, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy
| | - Agustí Lledós
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Barcelona, Spain
| | - Jean-Didier Maréchal
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Barcelona, Spain
| | - Eugenio Garribba
- Dipartimento di Chimica e Farmacia, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy
| |
Collapse
|
22
|
Sanna D, Ugone V, Buglyó P, Nagy S, Kacsir I, Garribba E. Speciation in aqueous solution and interaction with low and high molecular mass blood bioligands of [V IV O(oda)(H 2 O) 2 ], a V compound with in vitro anticancer activity. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2017.07.064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Ferreira S, Leite A, Moniz T, Andrade M, Amaral L, de Castro B, Rangel M. EPR and 51V NMR studies of prospective anti-diabetic bis(3-hydroxy-4-pyridinonato)oxidovanadium(iv) complexes in aqueous solution and liposome suspensions. NEW J CHEM 2018. [DOI: 10.1039/c7nj04678b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
EPR/51V-NMR parallel studies of [VO(3,4-HPO)2] complexes in MOPS buffer and POPC liposome suspensions provide information regarding solvents for oral administration.
Collapse
Affiliation(s)
- S. Ferreira
- REQUIMTE-LAQV
- Instituto de Ciências Biomédicas de Abel Salazar
- Universidade do Porto
- 4050-313 Porto
- Portugal
| | - A. Leite
- REQUIMTE-LAQV
- Departamento de Química e Bioquímica
- Faculdade de Ciências
- Universidade do Porto
- 40169-007 Porto
| | - T. Moniz
- REQUIMTE-LAQV
- Departamento de Química e Bioquímica
- Faculdade de Ciências
- Universidade do Porto
- 40169-007 Porto
| | - M. Andrade
- CEMUP
- Centro de Materiais da Universidade do Porto
- 4169-007 Porto
- Portugal
| | - L. Amaral
- REQUIMTE-UCIBIO
- Departamento de Química e Bioquímica
- Faculdade de Ciências
- Universidade do Porto
- 40169-007 Porto
| | - B. de Castro
- REQUIMTE-LAQV
- Departamento de Química e Bioquímica
- Faculdade de Ciências
- Universidade do Porto
- 40169-007 Porto
| | - M. Rangel
- REQUIMTE-LAQV
- Instituto de Ciências Biomédicas de Abel Salazar
- Universidade do Porto
- 4050-313 Porto
- Portugal
| |
Collapse
|
24
|
Sanna D, Serra M, Ugone V, Manca L, Pirastru M, Buglyó P, Bíró L, Micera G, Garribba E. Biorelevant reactions of the potential anti-tumor agent vanadocene dichloride. Metallomics 2017; 8:532-41. [PMID: 27121101 DOI: 10.1039/c6mt00002a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The interaction of the potential anti-tumor agent vanadocene dichloride ([Cp2VCl2] or VDC) with some relevant bioligands of the cytosol such as proteins (Hb), amino acids (glycine and histidine), NADH derivatives (NADH, NADPH, NAD(+) and NADP(+)), reductants (GSH and ascorbic acid), phosphates (HPO4(2-), P2O7(4-), cAMP, AMP, ADP and ATP) and carboxylate derivatives (lactate) and its uptake by red blood cells were studied. The results indicated that [Cp2VCl2] transforms at physiological pH into [Cp2V(OH)2] and that only HPO4(2-), P2O7(4-), lactate, ATP and ADP form mixed species with the [Cp2V](2+) moiety replacing the two hydroxide ions. EPR and electronic absorption spectroscopy, agarose gel electrophoresis and spin trapping measurements allow excluding any direct interaction and/or intercalation with DNA and the formation of reactive oxygen species (ROS) in Fenton-like reactions. Uptake experiments by erythrocytes suggested that VDC crosses the membrane and enters inside the cells, whereas 'bare' V(IV) transforms into V(IV)O species with loss of the two cyclopentadienyl rings. This transformation in the cellular environment could be related to the mechanism of action of VDC.
Collapse
Affiliation(s)
- Daniele Sanna
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, UOS di Sassari, Trav. La Crucca 3, I-07040 Sassari, Italy
| | - Maria Serra
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, UOS di Sassari, Trav. La Crucca 3, I-07040 Sassari, Italy
| | - Valeria Ugone
- Dipartimento di Chimica e Farmacia, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy.
| | - Laura Manca
- Dipartimento di Scienze Biomediche, Università di Sassari, Via Muroni 25, I-07100 Sassari, Italy
| | - Monica Pirastru
- Dipartimento di Scienze Biomediche, Università di Sassari, Via Muroni 25, I-07100 Sassari, Italy
| | - Péter Buglyó
- Department of Inorganic and Analytical Chemistry, University of Debrecen, P.O. Box 21, H-4010 Debrecen, Hungary
| | - Linda Bíró
- Department of Inorganic and Analytical Chemistry, University of Debrecen, P.O. Box 21, H-4010 Debrecen, Hungary
| | - Giovanni Micera
- Dipartimento di Chimica e Farmacia, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy.
| | - Eugenio Garribba
- Dipartimento di Chimica e Farmacia, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy.
| |
Collapse
|
25
|
Sciortino G, Sanna D, Ugone V, Micera G, Lledós A, Maréchal JD, Garribba E. Elucidation of Binding Site and Chiral Specificity of Oxidovanadium Drugs with Lysozyme through Theoretical Calculations. Inorg Chem 2017; 56:12938-12951. [PMID: 28985059 DOI: 10.1021/acs.inorgchem.7b01732] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This study presents an implementation of the protein-ligand docking program GOLD and a generalizable method to predict the binding site and orientation of potential vanadium drugs. Particularly, theoretical methods were applied to the study of the interaction of two VIVO complexes with antidiabetic activity, [VIVO(pic)2(H2O)] and [VIVO(ma)2(H2O)], where pic is picolinate and ma is maltolate, with lysozyme (Lyz) for which electron paramagnetic resonance spectroscopy suggests the binding of the moieties VO(pic)2 and VO(ma)2 through a carboxylate group of an amino acid residue (Asp or Glu). The work is divided in three parts: (1) the generation of a new series of parameters in GOLD program for vanadium compounds and the validation of the method on five X-ray structures of VIVO and VV species bound to proteins; (2) the prediction of the binding site and enantiomeric preference of [VO(pic)2(H2O)] to lysozyme, for which the X-ray diffraction analysis displays the interaction of a unique isomer (i.e., OC-6-23-Δ) through Asp52 residue, and the subsequent refinement of the results with quantum mechanics/molecular mechanics methods; (3) the application of the same approach to the interaction of [VO(ma)2(H2O)] with lysozyme. The results show that convenient implementation of protein-ligand docking programs allows for satisfactorily reproducing X-ray structures of metal complexes that interact with only one coordination site with proteins and predicting with blind procedures relevant low-energy binding modes. The results also demonstrate that the combination of docking methods with spectroscopic data could represent a new tool to predict (metal complex)-protein interactions and have a general applicability in this field, including for paramagnetic species.
Collapse
Affiliation(s)
- Giuseppe Sciortino
- Departament de Química, Universitat Autònoma de Barcelona , Cerdanyola del Vallés, 08193 Barcelona, Spain.,Dipartimento di Chimica e Farmacia, Università di Sassari , Via Vienna 2, I-07100 Sassari, Italy
| | - Daniele Sanna
- Istituto CNR di Chimica Biomolecolare , Trav. La Crucca 3, Baldinca-Li Punti, I-07040 Sassari, Italy
| | - Valeria Ugone
- Dipartimento di Chimica e Farmacia, Università di Sassari , Via Vienna 2, I-07100 Sassari, Italy
| | - Giovanni Micera
- Dipartimento di Chimica e Farmacia, Università di Sassari , Via Vienna 2, I-07100 Sassari, Italy
| | - Agustí Lledós
- Departament de Química, Universitat Autònoma de Barcelona , Cerdanyola del Vallés, 08193 Barcelona, Spain
| | - Jean-Didier Maréchal
- Departament de Química, Universitat Autònoma de Barcelona , Cerdanyola del Vallés, 08193 Barcelona, Spain
| | - Eugenio Garribba
- Dipartimento di Chimica e Farmacia, Università di Sassari , Via Vienna 2, I-07100 Sassari, Italy
| |
Collapse
|
26
|
Rozzo C, Sanna D, Garribba E, Serra M, Cantara A, Palmieri G, Pisano M. Antitumoral effect of vanadium compounds in malignant melanoma cell lines. J Inorg Biochem 2017; 174:14-24. [PMID: 28558258 DOI: 10.1016/j.jinorgbio.2017.05.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/12/2017] [Accepted: 05/22/2017] [Indexed: 01/19/2023]
Abstract
In this study we evaluated the anticancer activity against malignant melanoma (MM) of four different vanadium species: the inorganic anion vanadate(V) (indicated with VN), and three oxidovanadium(IV) complexes, [VIVO(dhp)2] where dhp- is the anion 1,2-dimethyl-3-hydroxy-4(1H)-pyridinonate (indicated with VS2), [VIVO(mpp)2] where mpp- is 1-methyl-3-hydroxy-4(1H)-pyridinonate (indicated with VS3), and [VIVO(ppp)2] where ppp- is 1-phenyl-2-methyl-3-hydroxy-4(1H)-pyridinonate (indicated with VS4). The antitumor effects of these compounds were studied against two different MM cell lines (A375 and CN-mel) and a fibroblast cell line (BJ) as normal control. All tested V compounds exert antiproliferative activity on MM cells in a dose dependent manner (IC50 ranges from 2.4μM up to 14μM) being A375 the most sensitive cell line. VN and VS2 were the two most active compounds against A375 (IC50 of 4.7 and 2.6μM, respectively), causing apoptosis and cell cycle block. The experimental data indicate that the cell cycle arrest occurs at different phases for the two V species analyzed (G2 checkpoint for VN and G0/G1 for VS2), showing the importance of the chemical form in determining their mechanism of action. These results add more insights into the landscape of vanadium versatility in biological systems and into its role as a potential cancer therapeutic agent.
Collapse
Affiliation(s)
- Carla Rozzo
- Istituto CNR di Chimica Biomolecolare, Trav. La Crucca 3, I-07100 Sassari, Italy
| | - Daniele Sanna
- Istituto CNR di Chimica Biomolecolare, Trav. La Crucca 3, I-07100 Sassari, Italy
| | - Eugenio Garribba
- Dipartimento di Chimica e Farmacia, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy
| | - Maria Serra
- Istituto CNR di Chimica Biomolecolare, Trav. La Crucca 3, I-07100 Sassari, Italy
| | - Alessio Cantara
- Istituto CNR di Chimica Biomolecolare, Trav. La Crucca 3, I-07100 Sassari, Italy
| | - Giuseppe Palmieri
- Istituto CNR di Chimica Biomolecolare, Trav. La Crucca 3, I-07100 Sassari, Italy
| | - Marina Pisano
- Istituto CNR di Chimica Biomolecolare, Trav. La Crucca 3, I-07100 Sassari, Italy.
| |
Collapse
|
27
|
Sanna D, Ugone V, Serra M, Garribba E. Speciation of potential anti-diabetic vanadium complexes in real serum samples. J Inorg Biochem 2017; 173:52-65. [PMID: 28499214 DOI: 10.1016/j.jinorgbio.2017.04.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/28/2017] [Accepted: 04/23/2017] [Indexed: 10/19/2022]
Abstract
In this work the speciation in real serum samples of five VIVO complexes with potential application in the therapy of diabetes was studied through EPR spectroscopy as a function of V concentration (45.4, 90.9 and 454.5μM) and time (0-180min). [VO(dhp)2], [VO(ma)2], [VO(acac)2], [VO(pic)2(H2O)], and [VO(mepic)2], where Hdhp indicates 1,2-dimethyl-3-hydroxy-4(1H)-pyridinone, Hma maltol, Hacac acetylacetone, Hpic picolinic acid, and Hmepic 6-methylpicolinic acid, were examined. The distribution of VIVO2+ among the serum bioligands was calculated from the thermodynamic stability constants in the literature and compared with the experimental results. EPR results, which confirm the prediction, depend on the strength of the ligand L and geometry assumed by the bis-chelated species at physiological pH, cis-octahedral or square pyramidal. With dhp, the strongest chelator, the system is dominated by [VO(dhp)2] and/or cis-VO(dhp)2(Protein); with intermediate strength chelators, i.e. maltolate, acetylacetonate and picolinate, by cis-VO(ma)2(Protein), [VO(acac)2] or [VO(pic)(citrH-1)]3-/[VO(pic)(lactH-1)]- (citr=citrate and lact=lactate) when the V concentration overcomes 100-200μM and by (VO)(hTf)/(VO)2(hTf) when concentration is lower than 100μM; with the weakest chelator, 6-methylpicolinate, (VO)(hTf)/(VO)2(hTf), (VO)(HSA) (hTf = human serum transferrin and HSA = human serum albumin), and VO(mepic)(Protein)(OH) are the major species at concentration higher than 100-200μM, whereas hydrolytic processes are observed for lower concentrations. For [VO(dhp)2], [VO(ma)2], [VO(acac)2] and [VO(pic)2(H2O)], the EPR spectra remain unaltered with elapsing time, while for mepic they change significantly because the hydrolyzed VIVO species are complexed by the serum bioligands, in particular by lactate. The rate of oxidation in the serum is [VO(dhp)2]>[VO(ma)2]>[VO(acac)2] and reflects the order of E1/2 values.
Collapse
Affiliation(s)
- Daniele Sanna
- Istituto CNR di Chimica Biomolecolare, Trav. La Crucca 3, I-07040 Sassari, Italy.
| | - Valeria Ugone
- Dipartimento di Chimica e Farmacia, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy
| | - Maria Serra
- Istituto CNR di Chimica Biomolecolare, Trav. La Crucca 3, I-07040 Sassari, Italy
| | - Eugenio Garribba
- Dipartimento di Chimica e Farmacia, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy.
| |
Collapse
|
28
|
Sanna D, Sciortino G, Ugone V, Micera G, Garribba E. Nonoxido V(IV) Complexes: Prediction of the EPR Spectrum and Electronic Structure of Simple Coordination Compounds and Amavadin. Inorg Chem 2016; 55:7373-87. [PMID: 27399275 DOI: 10.1021/acs.inorgchem.6b00409] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Density functional theory (DFT) calculations of the (51)V hyperfine coupling (HFC) tensor A have been completed for 20 "bare" V(IV) complexes with different donor sets, electric charges, and coordination geometries. Calculations were performed with ORCA and Gaussian software, using functionals BP86, TPSS0, B1LYP, PBE0, B3LYP, B3P, B3PW, O3LYP, BHandHLYP, BHandH, and B2PLYP. Among the basis sets, 6-311g(d,p), 6-311++g(d,p), VTZ, cc-pVTZ, def2-TZVPP, and the "core properties" CP(PPP) were tested. The experimental Aiso and Ai (where i = x or z, depending on the geometry and electronic structure of V(IV) complex) were compared with the values calculated by DFT methods. The results indicated that, based on the mean absolute percentage deviation (MAPD), the best functional to predict Aiso or Ai is the double hybrid B2PLYP. With this functional and the basis set VTZ, it is possible to predict the Aiso and Az of the EPR spectrum of amavadin with deviations of -1.1% and -2.0% from the experimental values. The results allowed us to divide the spectra of nonoxido V(IV) compounds in three types-called "type 1", "type 2", and "type 3", characterized by different composition of the singly occupied molecular orbital (SOMO) and relationship between the values of Ax, Ay, and Az. For "type 1" spectra, Az ≫ Ax ≈ Ay and Az is in the range of (135-155) × 10(-4) cm(-1); for "type 2" spectra, Ax ≈ Ay ≫ Az and Ax ≈ Ay are in the range of (90-120) × 10(-4) cm(-1); and for the intermediate spectra of "type 3", Az > Ay > Ax or Ax > Ay > Az, with Az or Ax values in the range of (120-135) × 10(-4) cm(-1). The electronic structure of the V(IV) species was also discussed, and the results showed that the values of Ax or Az are correlated with the percent contribution of V-dxy orbital in the SOMO. Similarly to V(IV)O species, for amavadin the SOMO is based mainly on the V-dxy orbital, and this accounts for the large experimental value of Az (153 × 10(-4) cm(-1)).
Collapse
Affiliation(s)
- Daniele Sanna
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, UOS di Sassari, Trav. La Crucca 3, I-07040 Sassari, Italy
| | - Giuseppe Sciortino
- Dipartimento di Chimica e Farmacia, Università di Sassari , Via Vienna 2, I-07100 Sassari, Italy
| | - Valeria Ugone
- Dipartimento di Chimica e Farmacia, Università di Sassari , Via Vienna 2, I-07100 Sassari, Italy
| | - Giovanni Micera
- Dipartimento di Chimica e Farmacia, Università di Sassari , Via Vienna 2, I-07100 Sassari, Italy
| | - Eugenio Garribba
- Dipartimento di Chimica e Farmacia, Università di Sassari , Via Vienna 2, I-07100 Sassari, Italy
| |
Collapse
|
29
|
Behavior of the potential antitumor V(IV)O complexes formed by flavonoid ligands. 3. Antioxidant properties and radical production capability. J Inorg Biochem 2016; 161:18-26. [PMID: 27184413 DOI: 10.1016/j.jinorgbio.2016.04.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 04/12/2016] [Accepted: 04/18/2016] [Indexed: 11/22/2022]
Abstract
The radical production capability and the antioxidant properties of some V(IV)O complexes formed by flavonoid ligands were examined. In particular, the bis-chelated species of quercetin (que), [VO(que)2](2-), and morin (mor), [VO(mor)2], were evaluated for their capability to reduce the stable radical 1,1-diphenyl-2-picrylhydrazyl (DPPH) and produce the hydroxyl radical (•)OH by Fenton-like reactions, where the reducing agent is V(IV)O(2+). The results were compared with those displayed by other V(IV)O complexes, such as [VO(H2O)5](2+), [VO(acac)2] (acac=acetylacetonate) and [VO(cat)2](2-) (cat=catecholate). The capability of the V(IV)O flavonoids complexes to reduce DPPH is much larger than that of the V(IV)O species formed by non-antioxidant ligands and it is due mainly to the flavonoid molecule. Through the 5,5-dimethyl-1-pyrroline N-oxide (DMPO) spin trapping assay of the hydroxyl radical it was possible to demonstrate that in acidic solution V(IV)O(2+) has an effectiveness in producing (•)OH radicals comparable to that of Fe(2+). When V(IV)O complexes of flavonoids were taken into account, the amount of hydroxyl radicals produced in Fenton-like reactions depends on the specific structure of the ligand and on their capability to reduce H2O2 to give (•)OH. Both the formation of reactive oxygen species (ROS) under physiological conditions by V(IV)O complexes of flavonoid ligands and their radical scavenging capability can be put in relationship with their antitumor effectiveness and it could be possible to modulate these actions by changing the features of the flavonoid coordinated to the V(IV)O(2+) ion, such as the entity, nature and position of the substituents and the number of phenolic groups.
Collapse
|
30
|
Abstract
Vanadium is omnipresent in trace amounts in the environment, in food and also in the human body, where it might serve as a regulator for phosphate-dependent proteins. Potential vanadium-based formulations--inorganic and coordination compounds with organic ligands--commonly underlie speciation in the body, that is, they are converted to vanadate(V), oxidovanadium(IV) and to complexes with the body's own ligand systems. Vanadium compounds have been shown to be potentially effective against diabetes Type 2, malign tumors including cancer, endemic tropical diseases (such as trypanosomiasis, leishmaniasis and amoebiasis), bacterial infections (tuberculosis and pneumonia) and HIV infections. Furthermore, vanadium drugs can be operative in cardio- and neuro-protection. So far, vanadium compounds have not yet been approved as pharmaceuticals for clinical use.
Collapse
|
31
|
Shit M, Bera S, Maity S, Maji S, Weyhermüller T, Ghosh P. Oxidovanadium Complexes of 2,2′‐Bipyridine, 1,10 Phenanthroline, and
p
‐Nitro‐
o
‐aminophenol – Radical versus Nonradical States. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201501246] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Madhusudan Shit
- Department of Chemistry, R. K. Mission Residential College, Narendrapur, Kolkata 700103, India, http://www.pghosh.in
| | - Sachinath Bera
- Department of Chemistry, R. K. Mission Residential College, Narendrapur, Kolkata 700103, India, http://www.pghosh.in
| | - Suvendu Maity
- Department of Chemistry, R. K. Mission Residential College, Narendrapur, Kolkata 700103, India, http://www.pghosh.in
| | - Subrata Maji
- Department of Chemistry, Bangabasi College, No.19, Rajkumar Chakraborty Sarani, Baithakkhana, Kolkata 700009, India
| | - Thomas Weyhermüller
- Max‐Planck‐Institut für Chemische Energiekonversion, Stiftstrasse 34–36, 45470 Mülheim an der Ruhr, Germany
| | - Prasanta Ghosh
- Department of Chemistry, R. K. Mission Residential College, Narendrapur, Kolkata 700103, India, http://www.pghosh.in
| |
Collapse
|
32
|
Costa Pessoa J, Garribba E, Santos MF, Santos-Silva T. Vanadium and proteins: Uptake, transport, structure, activity and function. Coord Chem Rev 2015. [DOI: 10.1016/j.ccr.2015.03.016] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
33
|
Sanna D, Ugone V, Micera G, Pivetta T, Valletta E, Garribba E. Speciation of the Potential Antitumor Agent Vanadocene Dichloride in the Blood Plasma and Model Systems. Inorg Chem 2015; 54:8237-50. [DOI: 10.1021/acs.inorgchem.5b01277] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Daniele Sanna
- Istituto CNR di Chimica Biomolecolare, Trav. La Crucca 3, I-07040 Sassari, Italy
| | - Valeria Ugone
- Dipartimento di Chimica
e Farmacia and Centro Interdisciplinare per lo Sviluppo della Ricerca
Biotecnologica e per lo Studio della Biodiversità della Sardegna, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy
| | - Giovanni Micera
- Dipartimento di Chimica
e Farmacia and Centro Interdisciplinare per lo Sviluppo della Ricerca
Biotecnologica e per lo Studio della Biodiversità della Sardegna, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy
| | - Tiziana Pivetta
- Dipartimento di Scienze
Chimiche e Geologiche, Università di Cagliari, Cittadella Universitaria, I-09042 Monserrato, Cagliari, Italy
| | - Elisa Valletta
- Dipartimento di Scienze
Chimiche e Geologiche, Università di Cagliari, Cittadella Universitaria, I-09042 Monserrato, Cagliari, Italy
| | - Eugenio Garribba
- Dipartimento di Chimica
e Farmacia and Centro Interdisciplinare per lo Sviluppo della Ricerca
Biotecnologica e per lo Studio della Biodiversità della Sardegna, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy
| |
Collapse
|
34
|
Levina A, McLeod AI, Gasparini SJ, Nguyen A, De Silva WGM, Aitken JB, Harris HH, Glover C, Johannessen B, Lay PA. Reactivity and Speciation of Anti-Diabetic Vanadium Complexes in Whole Blood and Its Components: The Important Role of Red Blood Cells. Inorg Chem 2015; 54:7753-66. [PMID: 26230577 DOI: 10.1021/acs.inorgchem.5b00665] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Reactions with blood components are crucial for controlling the antidiabetic, anticancer, and other biological activities of V(V) and V(IV) complexes. Despite extensive studies of V(V) and V(IV) reactions with the major blood proteins (albumin and transferrin), reactions with whole blood and red blood cells (RBC) have been studied rarely. A detailed speciation study of Na3[V(V)O4] (A), K4[V(IV)2O2(citr)2]·6H2O (B; citr = citrato(4-)); [V(IV)O(ma)2] (C; ma = maltolato(-)), and (NH4)[V(V)(O)2(dipic)] (D; dipic = pyridine-2,6-dicarboxylato(2-)) in whole rat blood, freshly isolated rat plasma, and commercial bovine serum using X-ray absorption near-edge structure (XANES) spectroscopy is reported. The latter two compounds are potential oral antidiabetic drugs, and the former two are likely to represent their typical decomposition products in gastrointestinal media. XANES spectral speciation was performed by principal component analysis and multiple linear regression techniques, and the distribution of V between RBC and plasma fractions was measured by electrothermal atomic absorption spectroscopy. Reactions of A, C, or D with whole blood (1.0 mM V, 1-6 h at 310 K) led to accumulation of ∼50% of total V in the RBC fraction (∼10% in the case of B), which indicated that RBC act as V carriers to peripheral organs. The spectra of V products in RBC were independent of the initial V complex, and were best fitted by a combination of V(IV)-carbohydrate (2-hydroxyacid moieties) and/or citrate (65-85%) and V(V)-protein (15-35%) models. The presence of RBC created a more reducing environment in the plasma fraction of whole blood compared with those in isolated plasma or serum, as shown by the differences in distribution of V(IV) and V(V) species in the reaction products of A-D in these media. At physiologically relevant V concentrations (<50 μM), this role of RBC may promote the formation of V(III)-transferrin as a major V carrier in the blood plasma. The results reported herein have broad implications for the roles of RBC in the transport and speciation of metal pro-drugs that have broad applications across medicine.
Collapse
Affiliation(s)
- Aviva Levina
- †School of Chemistry, The University of Sydney, Sydney NSW 2006, Australia
| | - Andrew I McLeod
- †School of Chemistry, The University of Sydney, Sydney NSW 2006, Australia
| | - Sylvia J Gasparini
- †School of Chemistry, The University of Sydney, Sydney NSW 2006, Australia
| | - Annie Nguyen
- †School of Chemistry, The University of Sydney, Sydney NSW 2006, Australia
| | | | - Jade B Aitken
- †School of Chemistry, The University of Sydney, Sydney NSW 2006, Australia.,‡Australian Synchrotron, 800 Blackburn Rd., Clayton VIC 3168, Australia
| | - Hugh H Harris
- †School of Chemistry, The University of Sydney, Sydney NSW 2006, Australia
| | - Chris Glover
- ‡Australian Synchrotron, 800 Blackburn Rd., Clayton VIC 3168, Australia
| | - Bernt Johannessen
- ‡Australian Synchrotron, 800 Blackburn Rd., Clayton VIC 3168, Australia
| | - Peter A Lay
- †School of Chemistry, The University of Sydney, Sydney NSW 2006, Australia
| |
Collapse
|
35
|
Sanna D, Ugone V, Pisano L, Serra M, Micera G, Garribba E. Behavior of the potential antitumor V(IV)O complexes formed by flavonoid ligands. 2. Characterization of sulfonate derivatives of quercetin and morin, interaction with the bioligands of the plasma and preliminary biotransformation studies. J Inorg Biochem 2015; 153:167-177. [PMID: 26281973 DOI: 10.1016/j.jinorgbio.2015.07.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 07/15/2015] [Accepted: 07/27/2015] [Indexed: 01/12/2023]
Abstract
The biotransformation in the plasma and red blood cells of two potential antitumor V(IV)O complexes formed by flavonoid ligands (quercetin or que and morin or mor) and their sulfonic derivatives (quercetin-5'-sulfonic acid or que(S) and morin-5'-sulfonic acid or mor(S)) was studied by spectroscopic (EPR, Electron Paramagnetic Resonance) and computational (DFT, Density Functional Theory) methods. Que and que(S) form with V(IV)O stable complexes, and in the systems with apo-transferrin (apo-hTf) and albumin (HSA) VO(que)2 and VO(que(S))2 remain unchanged. VO(mor)2 and VO(mor(S))2 undergo displacement reactions to give the partial formation of (VO)x(HSA) and (VO)(apo-hTf)/(VO)2(apo-hTf); moreover, mor(S) forms with apo-transferrin and albumin mixed species VO-mor(S)-apo-hTf and VO-mor(S)-HSA. In the systems with apo-hTf and HSA anisotropic EPR spectra at room temperature are detected in which the protein is not directly coordinated to V(IV)O(2+) ion. This is explained assuming that the bis-chelated complexes interact strongly with the proteins through a network of hydrogen bonds with the polar groups present on the protein surface. It is suggested that this "indirect" transport of V(IV)O species could be common to all the species containing ligands which can interact with the blood proteins. Uptake experiments by red blood cells were also carried out, using vanadium concentration of 5.0×10(-4)M and incubation time in the range 0-160min. VO(que)2/VO(que(S))2 and VO(mor)2/VO(mor(S))2 cross the erythrocytes membrane and in the cytosol VO(que)2/VO(que(S))2 do not transform, whereas VO(mor)2/VO(mor(S))2 give the partial formation of mixed species with hemoglobin (Hb) and other V(IV)O complexes.
Collapse
Affiliation(s)
- Daniele Sanna
- Istituto CNR di Chimica Biomolecolare, Trav. La Crucca 3, I-07040 Sassari, Italy.
| | - Valeria Ugone
- Dipartimento di Chimica e Farmacia, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy
| | - Luisa Pisano
- Dipartimento di Chimica e Farmacia, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy
| | - Maria Serra
- Istituto CNR di Chimica Biomolecolare, Trav. La Crucca 3, I-07040 Sassari, Italy
| | - Giovanni Micera
- Dipartimento di Chimica e Farmacia, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy; Centro Interdisciplinare per lo Sviluppo della Ricerca Biotecnologica e per lo Studio della Biodiversità della Sardegna, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy
| | - Eugenio Garribba
- Dipartimento di Chimica e Farmacia, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy; Centro Interdisciplinare per lo Sviluppo della Ricerca Biotecnologica e per lo Studio della Biodiversità della Sardegna, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy.
| |
Collapse
|
36
|
Kundu S, Mondal D, Bhattacharya K, Endo A, Sanna D, Garribba E, Chaudhury M. Nonoxido Vanadium(IV) Compounds Involving Dithiocarbazate-Based Tridentate ONS Ligands: Synthesis, Electronic and Molecular Structure, Spectroscopic and Redox Properties. Inorg Chem 2015; 54:6203-15. [DOI: 10.1021/acs.inorgchem.5b00359] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sanchita Kundu
- Department
of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Dhrubajyoti Mondal
- Department
of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Kisholoy Bhattacharya
- Department
of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Akira Endo
- Department
of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Daniele Sanna
- Istituto CNR di
Chimica
Biomolecolare, Trav. La Crucca 3, I-07040 Sassari, Italy
| | - Eugenio Garribba
- Dipartimento
di Chimica e Farmacia and Centro Interdisciplinare per lo Sviluppo
della Ricerca Biotecnologica e per lo Studio della Biodiversità
della Sardegna, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy
| | - Muktimoy Chaudhury
- Department
of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
37
|
Levina A, McLeod AI, Pulte A, Aitken JB, Lay PA. Biotransformations of Antidiabetic Vanadium Prodrugs in Mammalian Cells and Cell Culture Media: A XANES Spectroscopic Study. Inorg Chem 2015; 54:6707-18. [PMID: 25906315 PMCID: PMC4511291 DOI: 10.1021/ic5028948] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
The antidiabetic activities of vanadium(V)
and -(IV) prodrugs are determined by their ability to release active
species upon interactions with components of biological media. The
first X-ray absorption spectroscopic study of the reactivity of typical
vanadium (V) antidiabetics, vanadate ([VVO4]3–, A) and a vanadium(IV) bis(maltolato)
complex (B), with mammalian cell cultures has been performed
using HepG2 (human hepatoma), A549 (human lung carcinoma), and 3T3-L1
(mouse adipocytes and preadipocytes) cell lines, as well as the corresponding
cell culture media. X-ray absorption near-edge structure data were
analyzed using empirical correlations with a library of model vanadium(V),
-(IV), and -(III) complexes. Both A and B ([V] = 1.0 mM) gradually converged into similar mixtures of predominantly
five- and six-coordinate VV species (∼75% total
V) in a cell culture medium within 24 h at 310 K. Speciation of V
in intact HepG2 cells also changed with the incubation time (from
∼20% to ∼70% VIV of total V), but it was
largely independent of the prodrug used (A or B) or of the predominant V oxidation state in the medium. Subcellular
fractionation of A549 cells suggested that VV reduction
to VIV occurred predominantly in the cytoplasm, while accumulation
of VV in the nucleus was likely to have been facilitated
by noncovalent bonding to histone proteins. The nuclear VV is likely to modulate the transcription process and to be ultimately
related to cell death at high concentrations of V, which may be important
in anticancer activities. Mature 3T3-L1 adipocytes (unlike for preadipocytes)
showed a higher propensity to form VIV species, despite
the prevalence of VV in the medium. The distinct V biochemistry
in these cells is consistent with their crucial role in insulin-dependent
glucose and fat metabolism and may also point to an endogenous role
of V in adipocytes. The first detailed
speciation study of typical antidiabetic vanadium(V/IV) complexes
in mammalian cell culture systems showed that the complexes decomposed
rapidly in cell culture media and were further metabolized by the
cells, which included interconversions of VV and VIV species.
Collapse
Affiliation(s)
- Aviva Levina
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Andrew I McLeod
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Anna Pulte
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Jade B Aitken
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Peter A Lay
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
38
|
Sanna D, Fabbri D, Serra M, Buglyó P, Bíró L, Ugone V, Micera G, Garribba E. Characterization and biotransformation in the plasma and red blood cells of V(IV)O(2+) complexes formed by ceftriaxone. J Inorg Biochem 2014; 147:71-84. [PMID: 25601642 DOI: 10.1016/j.jinorgbio.2014.12.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/19/2014] [Accepted: 12/19/2014] [Indexed: 11/29/2022]
Abstract
The coordination mode and geometry in aqueous solution of oxidovanadium(IV) complexes formed by a third-generation cephalosporin, ceftriaxone (H3cef), were studied by spectroscopic (EPR, electron paramagnetic resonance), pH-potentiometric and computational (DFT, density functional theory) methods. The behavior of the model systems containing 6-hydroxy-2-methyl-3-thioxo-3,4-dihydro-1,2,4-triazine-5(2H)-one (H2hmtdt) and 3-benzylthio-6-hydroxy-2-methyl-1,2,4-triazine-5(2H)-one (Hbhmt) was examined for comparison. The stability of the tautomers of ceftriaxone and 6-hydroxy-2-methyl-3-thioxo-3,4-dihydro-1,2,4-triazine-5(2H)-one in the neutral, mono- and bi-anionic form was calculated by DFT methods, both in the gas phase and in aqueous solution, and the electron density on the oxygen atoms of the hydroxytriazinone ring was related to the pKa of the ligands. The data demonstrate that ceftriaxone coordinates V(IV)O(2+) forming mono- and bis-chelated complexes with (Oket, O(-)) donor set and formation of five-membered chelate rings. The geometry of the bis-chelated complex, cis-[VO(Hcef)2(H2O)](2-), is cis-octahedral and this species can deprotonate, around physiological pH, to form the corresponding mono-hydroxido cis-[VO(Hcef)2(OH)](3-). The interaction of cis-[VO(Hcef)2(H2O)](2-) with apo-transferrin (apo-hTf) was studied and the results suggest that V(IV)O(2+) distributes between (VO)apo-hTf/(VO)2apo-hTf and cis-[VO(Hcef)2(H2O)](2-), whereas mixed complexes are not formed for charge and steric effects. The interaction of cis-[VO(Hcef)2(H2O)](2-) with red blood cells shows that ceftriaxone helps V(IV)O(2+) ion to cross the erythrocyte membrane. Inside the cell cis-[VO(Hcef)2(H2O)](2-) decomposes and the same species formed by inorganic V(IV)O(2+) are observed. The relationship between the biotransformation in the plasma and red blood cells and the potential pharmacological activity of V(IV)O(2+) species of ceftriaxone is finally discussed.
Collapse
Affiliation(s)
- Daniele Sanna
- Istituto CNR di Chimica Biomolecolare, Trav. La Crucca 3, I-07040 Sassari, Italy
| | - Davide Fabbri
- Istituto CNR di Chimica Biomolecolare, Trav. La Crucca 3, I-07040 Sassari, Italy
| | - Maria Serra
- Istituto CNR di Chimica Biomolecolare, Trav. La Crucca 3, I-07040 Sassari, Italy
| | - Péter Buglyó
- Department of Inorganic and Analytical Chemistry, University of Debrecen, P.O. Box 21, H-4010 Debrecen, Hungary
| | - Linda Bíró
- Department of Inorganic and Analytical Chemistry, University of Debrecen, P.O. Box 21, H-4010 Debrecen, Hungary
| | - Valeria Ugone
- Dipartimento di Chimica e Farmacia, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy
| | - Giovanni Micera
- Dipartimento di Chimica e Farmacia, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy; Centro Interdisciplinare per lo Sviluppo della Ricerca Biotecnologica e per lo Studio della Biodiversità della Sardegna, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy
| | - Eugenio Garribba
- Dipartimento di Chimica e Farmacia, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy; Centro Interdisciplinare per lo Sviluppo della Ricerca Biotecnologica e per lo Studio della Biodiversità della Sardegna, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy.
| |
Collapse
|
39
|
Sanna D, Ugone V, Lubinu G, Micera G, Garribba E. Behavior of the potential antitumor VIVO complexes formed by flavonoid ligands. 1. Coordination modes and geometry in solution and at the physiological pH. J Inorg Biochem 2014; 140:173-84. [DOI: 10.1016/j.jinorgbio.2014.07.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 07/09/2014] [Accepted: 07/10/2014] [Indexed: 12/11/2022]
|
40
|
Levina A, McLeod AI, Kremer LE, Aitken JB, Glover CJ, Johannessen B, Lay PA. Reactivity-activity relationships of oral anti-diabetic vanadium complexes in gastrointestinal media: an X-ray absorption spectroscopic study. Metallomics 2014; 6:1880-8. [PMID: 25100248 DOI: 10.1039/c4mt00146j] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The reactions of oral V(V/IV) anti-diabetic drugs within the gastrointestinal environment (particularly in the presence of food) are a crucial factor that affects their biological activities, but to date these have been poorly understood. In order to build up reactivity-activity relationships, the first detailed study of the reactivities of typical V-based anti-diabetics, Na3V(V)O4 (A), [V(IV)O(OH2)5](SO4) (B), [V(IV)O(ma)2] (C, ma = maltolato(-)) and (NH4)[V(V)(O)2(dipic)] (D, dipic = pyridine-2,5-dicarboxylato(2-)) with simulated gastrointestinal (GI) media in the presence or absence of food components has been performed by the use of XANES (X-ray absorption near edge structure) spectroscopy. Changes in speciation under conditions that simulate interactions in the GI tract have been discerned using correlations of XANES parameters that were based on a library of model V(V), V(IV), and V(III) complexes for preliminary assessment of the oxidation states and coordination numbers. More detailed speciation analyses were performed using multiple linear regression fits of XANES from the model complexes to XANES obtained from the reaction products from interactions with the GI media. Compounds B and D were relatively stable in the gastric environment (pH ∼ 2) in the absence of food, while C was mostly dissociated, and A was converted to [V10O28](6-). Sequential gastric and intestinal digestion in the absence of food converted A, B and D to poorly absorbed tetrahedral vanadates, while C formed five- or six-coordinate V(V) species where the maltolato ligands were likely to be partially retained. XANES obtained from gastric digestion of A-D in the presence of typical food components converged to that of a mixture of V(IV)-aqua, V(IV)-amino acid and V(III)-aqua complexes. Subsequent intestinal digestion led predominantly to V(IV) complexes that were assigned as citrato or complexes with 2-hydroxyacidato donor groups from other organic compounds, including certain carbohydrates. The absence of strong reductants (such as ascorbate) in the food increased the V(V) component in gastrointestinal digestion products. These results can be used to predict the oral bioavailability of various types of V(V/IV) anti-diabetics, and the effects of taking such drugs with food.
Collapse
Affiliation(s)
- Aviva Levina
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.
| | | | | | | | | | | | | |
Collapse
|
41
|
Koleša-Dobravc T, Lodyga-Chruscinska E, Symonowicz M, Sanna D, Meden A, Perdih F, Garribba E. Synthesis and characterization of V(IV)O complexes of picolinate and pyrazine derivatives. Behavior in the solid state and aqueous solution and biotransformation in the presence of blood plasma proteins. Inorg Chem 2014; 53:7960-76. [PMID: 25013935 DOI: 10.1021/ic500766t] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Oxidovanadium(IV) complexes with 5-cyanopyridine-2-carboxylic acid (HpicCN), 3,5-difluoropyridine-2-carboxylic acid (HpicFF), 3-hydroxypyridine-2-carboxylic acid (H2hypic), and pyrazine-2-carboxylic acid (Hprz) have been synthesized and characterized in the solid state and aqueous solution through elemental analysis, IR and EPR spectroscopy, potentiometric titrations, and DFT simulations. The crystal structures of the complexes (OC-6-23)-[VO(picCN)2(H2O)]·2H2O (1·2H2O), (OC-6-24)-[VO(picCN)2(H2O)]·4H2O (2·4H2O), (OC-6-24)-Na[VO(Hhypic)3]·H2O (4), and two enantiomers of (OC-6-24)-[VO(prz)2(H2O)] (Λ-5 and Δ-5) have been determined also by X-ray crystallography. 1 presents the first crystallographic evidence for the formation of a OC-6-23 isomer for bis(picolinato) V(IV)O complexes, whereas 2, 4, and 5 possess the more common OC-6-24 arrangement. The strength order of the ligands is H2hypic ≫ HpicCN > Hprz > HpicFF, and this results in a different behavior at pH 7.40. In organic and aqueous solution the three isomers OC-6-23, OC-6-24, and OC-6-42 are formed, and this is confirmed by DFT simulations. In all the systems with apo-transferrin (VO)2(apo-hTf) is the main species in solution, with the hydrolytic V(IV)O species becoming more important with lowering the strength of the ligand. In the systems with albumin, (VO)(x)HSA (x = 5, 6) coexists with VOL2(HSA) and VOL(HSA)(H2O) when L = picCN, prz, with [VO(Hhypic)(hypic)](-), [VO(hypic)2](2-), and [(VO)4(μ-hypic)4(H2O)4] when H2hypic is studied, and with the hydrolytic V(IV)O species when HpicFF is examined. Finally, the consequence of the hydrolysis on the binding of V(IV)O(2+) to the blood proteins, the possible uptake of V species by the cells, and the possible relationship with the insulin-enhancing activity are discussed.
Collapse
Affiliation(s)
- Tanja Koleša-Dobravc
- Faculty of Chemistry and Chemical Technology, University of Ljubljana , Aškerčeva cesta 5, SI-1000 Ljubljana, Slovenia , and
| | | | | | | | | | | | | |
Collapse
|