1
|
Rogati GMA, Capecci C, Fazio E, Serroni S, Puntoriero F, Campagna S, Guidoni L. Molecular Modelling and Simulations of Light-Harvesting Decanuclear Ru-Based Dendrimers for Artificial Photosynthesis. Chemistry 2022; 28:e202103310. [PMID: 34752652 PMCID: PMC9299829 DOI: 10.1002/chem.202103310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Indexed: 11/08/2022]
Abstract
The structure of a decanuclear photo- and redox-active dendrimer based on Ru(II) polypyridine subunits, suitable as a light-harvesting multicomponent species for artificial photosynthesis, has been investigated by means of computer modelling. The compound has the general formula [Ru{(μ-dpp)Ru[(μ-dpp)Ru(bpy)2 ]2 }3 ](PF6 )20 (Ru10; bpy=2,2'-bipyridine; dpp=2,3-bis(2'-pyridyl)pyrazine). The stability of possible isomers of each monomer was investigated by performing classical molecular dynamics (MD) and quantum mechanics (QM) simulations on each monomer and comparing the results. The number of stable isomers is reduced to 36 with a prevalence of MER isomerism in the central core, as previously observed by NMR experiments. The simulations on decanuclear dendrimers suggest that the stability of the dendrimer is not linked to the stability of the individual monomers composing the dendrimer but rather governed by the steric constrains originated by the multimetallic assembly. Finally, the self-aggregation of Ru10 and the distribution of the counterions around the complexes is investigated using Molecular Dynamics both in implicit and explicit acetonitrile solution. In representative examples, with nine and four dendrimers, the calculated pair distribution function for the ruthenium centers suggests a self-aggregation mechanism in which the dendrimers are approaching in small blocks and then aggregate all together. Scanning transmission electron microscopy complements the investigation, supporting the formation of different aggregates at various concentrations.
Collapse
Affiliation(s)
- Giovanna M. A. Rogati
- Dipartimento di Ingegneria Scienze dell'Informazione e MatematicaUniversità dell'AquilaVia Vetoio 2, Coppito67100L'AquilaItaly
| | - Chiara Capecci
- Dipartimento di Ingegneria Scienze dell'Informazione e MatematicaUniversità dell'AquilaVia Vetoio 2, Coppito67100L'AquilaItaly
- Dipartimento di FisicaUniversità di Roma La SapienzaPiazzale Aldo Moro, 500185RomaItaly
| | - Enza Fazio
- Dipartimento di Scienze Matematiche e Informatiche Scienze Fisiche e Scienze della TerraUniversità di MessinaPiazza Pugliatti, 198122MessinaItaly
| | - Scolastica Serroni
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed AmbientaliUniversità di MessinaPiazza Pugliatti, 198122MessinaItaly
| | - Fausto Puntoriero
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed AmbientaliUniversità di MessinaPiazza Pugliatti, 198122MessinaItaly
| | - Sebastiano Campagna
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed AmbientaliUniversità di MessinaPiazza Pugliatti, 198122MessinaItaly
| | - Leonardo Guidoni
- Dipartimento di Scienze Fisiche e ChimicheUniversità dell'AquilaVia Vetoio, 2, Coppito67100L'AquilaItaly
| |
Collapse
|
2
|
Zou Y, Li H, Zhao X, Song J, Wang Y, Ma P, Niu J, Wang J. Ru(III) -based polyoxometalate tetramers as highly efficient heterogeneous catalysts for alcohol oxidation reactions at room temperature. Dalton Trans 2021; 50:12664-12673. [PMID: 34545885 DOI: 10.1039/d1dt01819a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel ruthenium-containing polyoxometalate-based organic-inorganic hybrid, K4Na9H7.4[(AsW9O33)4(WO2)4{Ru3.2(C3H3N2)2}]·42H2O (1), was successfully synthesized by a one-step hydrothermal method under acidic conditions, which applied a self-assembly strategy between inorganic polyoxometalate based on trivacant [B-α-AsW9O33]9- {AsW9} fragments and an organic ligand, imidazole (C3H4N2). Compound 1 was further characterized by single-crystal X-ray diffraction, PXRD, IR spectroscopy, UV-Vis spectroscopy, ESI-MS, elemental analysis and TGA. Single-crystal X-ray diffraction data reveal that the polyanion consists of four trivacant Keggin-type polyanion {AsW9} building blocks bridged by four {WO6} units, leading to a crown-shaped tetrameric structure [(AsW9O33)4(WO2)4{Ru3.2(C3H3N2)2}]20.4-. The ESI-MS result reveals that the polyanion unit has excellent structural integrity in water. Moreover, the catalysis study of 1 was also further investigated, and the experimental results indicate heterogeneous catalyst 1 presents high efficiency (yield = 98%), excellent selectivity (>99%), and good recyclability for the oxidation of 1-(4-chlorophenyl)ethanol to 4'-chloroacetophenone with commercially available 70% aqueous tert-butyl hydroperoxide {TBHP (aq.)} as the oxidant at room temperature.
Collapse
Affiliation(s)
- Yan Zou
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng Henan 475004, P.R. China.
| | - Huafeng Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng Henan 475004, P.R. China.
| | - Xue Zhao
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng Henan 475004, P.R. China.
| | - Junpeng Song
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng Henan 475004, P.R. China.
| | - Yaqiong Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng Henan 475004, P.R. China.
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng Henan 475004, P.R. China.
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng Henan 475004, P.R. China.
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng Henan 475004, P.R. China.
| |
Collapse
|
3
|
Rigodanza F, Marino N, Bonetto A, Marcomini A, Bonchio M, Natali M, Sartorel A. Water-Assisted Concerted Proton-Electron Transfer at Co(II)-Aquo Sites in Polyoxotungstates With Photogenerated Ru III (bpy) 33+ Oxidant. Chemphyschem 2021; 22:1208-1218. [PMID: 33851772 PMCID: PMC8251842 DOI: 10.1002/cphc.202100190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/13/2021] [Indexed: 02/06/2023]
Abstract
The cobalt substituted polyoxotungstate [Co6 (H2 O)2 (α-B-PW9 O34 )2 (PW6 O26 )]17- (Co6) displays fast electron transfer (ET) kinetics to photogenerated RuIII (bpy)33+ , 4 to 5 orders of magnitude faster than the corresponding ET observed for cobalt oxide nanoparticles. Mechanistic evidence has been acquired indicating that: (i) the one-electron oxidation of Co6 involves Co(II) aquo or Co(II) hydroxo groups (abbreviated as Co6(II)-OH2 and Co6(II)-OH, respectively, whose speciation in aqueous solution is associated to a pKa of 7.6), and generates a Co(III)-OH moiety (Co6(III)-OH), as proven by transient absorption spectroscopy; (ii) at pH>pKa , the Co6(II)-OH→RuIII (bpy)33+ ET occurs via bimolecular kinetics, with a rate constant k close to the diffusion limit and dependent on the ionic strength of the medium, consistent with reaction between charged species; (iii) at pH
Collapse
Affiliation(s)
- Francesco Rigodanza
- Department of Chemical SciencesUniversity of Padovavia Marzolo 135131PadovaItaly
- Consiglio Nazionale delle Ricerche (C.N.R.)Institute on Membrane Technology section of Padovavia Marzolo 135131PadovaItaly
| | - Nadia Marino
- Department of Chemistry and Chemical TechnologiesUniversity of Calabria87036Arcavacata di Rende (CS)Italy
| | - Alessandro Bonetto
- Dept. Environmental Sciences, Informatics and StatisticsUniversity Ca' Foscari Venice VegaparkVia delle Industrie 21/830175Marghera, VeniceItaly
| | - Antonio Marcomini
- Dept. Environmental Sciences, Informatics and StatisticsUniversity Ca' Foscari Venice VegaparkVia delle Industrie 21/830175Marghera, VeniceItaly
| | - Marcella Bonchio
- Department of Chemical SciencesUniversity of Padovavia Marzolo 135131PadovaItaly
- Consiglio Nazionale delle Ricerche (C.N.R.)Institute on Membrane Technology section of Padovavia Marzolo 135131PadovaItaly
| | - Mirco Natali
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DOCPAS)University of Ferrara, and Centro Interuniversitario per la Conversione Chimica dell'Energia Solare (SOLARCHEM) sez. di Ferraravia L. Borsari 4644121FerraraItaly
| | - Andrea Sartorel
- Department of Chemical SciencesUniversity of Padovavia Marzolo 135131PadovaItaly
| |
Collapse
|
4
|
Li H, He P, Wan R, Zou Y, Zhao X, Ma P, Niu J, Wang J. Trinuclear ruthenium core-containing polyoxometalate-based hybrids: preparation, characterization and catalytic behavior. Dalton Trans 2020; 49:2895-2904. [PMID: 32067023 DOI: 10.1039/c9dt04616j] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Two ruthenium-containing polyoxometalate-based hybrids (Ru-POMs), KH8[Ru3O(Trz)6Cl3]2[(NaO6)W6(H2O)6(AsW9O33)4]·28H2O (1) and H3[Ru3O(Trz)6Cl3]2[(WO)2W(OH)(AsW9O33)2]·6H2O (2), (Trz = 1,2,4-triazole), were successfully isolated by a one-step hydrothermal method under different acidic conditions and further characterized by single-crystal X-ray diffraction, powder X-ray diffraction (PXRD), IR spectroscopy, electrospray ionization and mass spectrometry (ESI-MS), thermogravimetric (TG) analyses and elemental analyses. Single-crystal X-ray diffraction analyses reveal two polyanions comprised of four/two identical trivacant Keggin-type polyanion building blocks, leading to the formation of tetrameric/dimeric assembly stabilized by additional metal-oxo cores, respectively. ESI-MS shows that the polyanion units [(NaO6)W6(H2O)6(AsW9O33)4]11- and [(WO)2W(OH)(AsW9O33)2]5- are intact in mixed solvent. Moreover, the two heterogeneous catalysts with trinuclear ruthenium cations were further investigated, and 1 was found to exhibit much higher yield (94.1%)/conversion (95.1%) and better selectivity (>99%) towards the oxidation of thioanisole to sulfoxide than 2.
Collapse
Affiliation(s)
- Huafeng Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China.
| | - Peipei He
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China.
| | - Rong Wan
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China.
| | - Yan Zou
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China.
| | - Xue Zhao
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China.
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China.
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China.
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
5
|
Nastasi F, Santoro A, Serroni S, Campagna S, Kaveevivitchai N, Thummel RP. Early photophysical events of a ruthenium(ii) molecular dyad capable of performing photochemical water oxidation and of its model compounds. Photochem Photobiol Sci 2019; 18:2164-2173. [PMID: 30793142 DOI: 10.1039/c8pp00530c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The early photophysical events occurring in the dinuclear metal complex [(ttb-terpy)(I)Ru(μ-dntpz)Ru(bpy)2]3+ (2; ttb-terpy = 4,4',4''-tri-tert-butyl-terpy; bpy = 2,2'-bipyridine; dntpz = 2,5-di-(1,8-dinaphthyrid-2-yl)pyrazine) - a species containing the chromophoric {(bpy)2Ru(μ-dntpz)}2+ subunit and the catalytic {(I)(ttb-terpy)Ru(μ-dntpz)}+ unit, already reported to be able to perform photocatalytic water oxidation - have been studied by ultrafast pump-probe spectroscopy in acetonitrile solution. The model species [Ru(bpy)2(dntpz)]2+ (1), [(bpy)2Ru(μ-dntpz)Ru(bpy)2]4+ (3), and [(ttb-terpy)(I)Ru((μ-dntpz)Ru[(ttb-terpy)(I)]2+ (4) have also been studied. For completeness, the absorption spectra, redox behavior of 1-4 and the spectroelectrochemistry of the dinuclear species 2-4 have been investigated. The usual 3MLCT (metal-to-ligand charge transfer) decay, characterized by relatively long lifetimes on the ns timescale, takes place in 1 and 3, whose lowest-energy level involves a {(bpy)2Ru(dntpz)}2+ unit, whereas for 2 and 4, whose lowest-energy excited state involves a 3MLCT centered on the {(I)(ttb-terpy)Ru(μ-dntpz)}+ subunit, the excited-state lifetimes are on the ps timescale, possibly involving population of a low-lying 3MC (metal-centered) level. Compound 2 also exhibits a fast process, with a time constant of 170 fs, which is attributed to intercomponent energy transfer from the MLCT state centered in the {(bpy)2Ru(μ-dntpz)}2+ unit to the MLCT state involving the {(I)(ttb-terpy)Ru(μ-dntpz)}+ unit. Both the intercomponent energy transfer and the MLCT-to-MC activation process take place from non-equilibrated MLCT states.
Collapse
Affiliation(s)
- Francesco Nastasi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, and Centro Interuniversitario per la Conversione Chimica dell'Energia Solare (SOLARCHEM, sezione di Messina), 98166 Messina, Italy
| | - Antonio Santoro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, and Centro Interuniversitario per la Conversione Chimica dell'Energia Solare (SOLARCHEM, sezione di Messina), 98166 Messina, Italy
| | - Scolastica Serroni
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, and Centro Interuniversitario per la Conversione Chimica dell'Energia Solare (SOLARCHEM, sezione di Messina), 98166 Messina, Italy
| | - Sebastiano Campagna
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, and Centro Interuniversitario per la Conversione Chimica dell'Energia Solare (SOLARCHEM, sezione di Messina), 98166 Messina, Italy
| | - Nattawut Kaveevivitchai
- Department of Chemistry, University of Houston, 112 Fleming Building, Houston, Texas 77204-5003, USA
| | - Randolph P Thummel
- Department of Chemistry, University of Houston, 112 Fleming Building, Houston, Texas 77204-5003, USA
| |
Collapse
|
6
|
An X, Stelter D, Keyes T, Reinhard BM. Plasmonic Photocatalysis of Urea Oxidation and Visible-Light Fuel Cells. Chem 2019. [DOI: 10.1016/j.chempr.2019.06.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
7
|
Ma Z, Yu T, Bi L. Ru-containing polyoxometalate fabricated on graphene oxide: Preparation, characterization and catalytic activity. J SOLID STATE CHEM 2019. [DOI: 10.1016/j.jssc.2019.03.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Natali M, Nastasi F, Puntoriero F, Sartorel A. Mechanistic Insights into Light‐Activated Catalysis for Water Oxidation. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201801236] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Mirco Natali
- Department of Chemical and Pharmaceutical Sciences University of Ferrara Via L. Borsari 46 44121 Ferrara Italy
| | - Francesco Nastasi
- Department of Chemical Biological University of Messina Via Sperone 31 98166 Messina Italy
| | - Fausto Puntoriero
- Department of Chemical Biological University of Messina Via Sperone 31 98166 Messina Italy
| | - Andrea Sartorel
- Department of Chemical Sciences Biological University of Padova Via Marzolo 1 35131 Padova Italy
| |
Collapse
|
9
|
Wang C, Amiri M, Endean RT, Martinez Perez O, Varley S, Rennie B, Rasu L, Bergens SH. Modular Construction of Photoanodes with Covalently Bonded Ru- and Ir-Polypyridyl Visible Light Chromophores. ACS APPLIED MATERIALS & INTERFACES 2018; 10:24533-24542. [PMID: 29969554 DOI: 10.1021/acsami.8b06605] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
1,10-phenanthroline is grafted to indium tin oxide (ITO) and titanium dioxide nanoparticle (TiO2) semiconductors by electroreduction of 5-diazo-1,10-phenanthroline in 0.1 M H2SO4. The lower and upper potential limits (-0.20 and 0.15 VSCE, respectively) were set to avoid reduction and oxidation of the 1,10-phenanthroline (phen) covalently grafted at C5 to the semiconductor. The resulting semiconductor-phen ligand (ITO-phen or TiO2-phen) was air stable, and was bonded to Ru- or Ir- by reaction with cis-[Ru(bpy)2(CH3CN)2]2+ (bpy = 2,2'-bipyridine) or cis-[Ir(ppy)2(CH3CN)2]+ (ppy = ortho-Cphenyl metalated 2-phenylpyridine) in CH2Cl2 and THF solvent at 50 °C. Cyclic voltammetry, X-ray photoelectron spectroscopy, solid-state UV-vis, and inductively coupled plasma-mass spectrometry all confirmed that the chromophores SC-[(phen)Ru(bpy)2]2+ and SC-[(phen)Ir(ppy)2]+ (SC = ITO or TiO2) formed in near quantitative yields by these reactions. The resulting photoanodes were active and relatively stable to photoelectrochemical oxidation of hydroquinone and triethylamine under neutral and basic conditions.
Collapse
Affiliation(s)
- Chao Wang
- Department of Chemistry , University of Alberta , 11227 Saskatchewan Drive , Edmonton , Alberta T6G 2G2 , Canada
| | - Mona Amiri
- Department of Chemistry , University of Alberta , 11227 Saskatchewan Drive , Edmonton , Alberta T6G 2G2 , Canada
| | - Riley T Endean
- Department of Chemistry , University of Alberta , 11227 Saskatchewan Drive , Edmonton , Alberta T6G 2G2 , Canada
| | - Octavio Martinez Perez
- Department of Chemistry , University of Alberta , 11227 Saskatchewan Drive , Edmonton , Alberta T6G 2G2 , Canada
| | - Samuel Varley
- Department of Chemistry , University of Alberta , 11227 Saskatchewan Drive , Edmonton , Alberta T6G 2G2 , Canada
| | - Ben Rennie
- Department of Chemistry , University of Alberta , 11227 Saskatchewan Drive , Edmonton , Alberta T6G 2G2 , Canada
| | - Loorthuraja Rasu
- Department of Chemistry , University of Alberta , 11227 Saskatchewan Drive , Edmonton , Alberta T6G 2G2 , Canada
| | - Steven H Bergens
- Department of Chemistry , University of Alberta , 11227 Saskatchewan Drive , Edmonton , Alberta T6G 2G2 , Canada
| |
Collapse
|
10
|
Puntoriero F, Serroni S, La Ganga G, Santoro A, Galletta M, Nastasi F, La Mazza E, Cancelliere AM, Campagna S. Photo‐ and Redox‐Active Metal Dendrimers: A Journey from Molecular Design to Applications and Self‐Aggregated Systems. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800507] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Fausto Puntoriero
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali (Chibiofaram) Università di Messina Via Sperone 31 98166 Messina Italy
- Centro Interuniversitario per la Fotosintesi Artificiale (SOLAR‐CHEM, sede di Messina) Via Sperone 31 98166 Messina Italy
| | - Scolastica Serroni
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali (Chibiofaram) Università di Messina Via Sperone 31 98166 Messina Italy
| | - Giuseppina La Ganga
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali (Chibiofaram) Università di Messina Via Sperone 31 98166 Messina Italy
| | - Antonio Santoro
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali (Chibiofaram) Università di Messina Via Sperone 31 98166 Messina Italy
| | - Maurilio Galletta
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali (Chibiofaram) Università di Messina Via Sperone 31 98166 Messina Italy
| | - Francesco Nastasi
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali (Chibiofaram) Università di Messina Via Sperone 31 98166 Messina Italy
- Centro Interuniversitario per la Fotosintesi Artificiale (SOLAR‐CHEM, sede di Messina) Via Sperone 31 98166 Messina Italy
| | - Emanuele La Mazza
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali (Chibiofaram) Università di Messina Via Sperone 31 98166 Messina Italy
| | - Ambra M. Cancelliere
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali (Chibiofaram) Università di Messina Via Sperone 31 98166 Messina Italy
| | - Sebastiano Campagna
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali (Chibiofaram) Università di Messina Via Sperone 31 98166 Messina Italy
- Centro Interuniversitario per la Fotosintesi Artificiale (SOLAR‐CHEM, sede di Messina) Via Sperone 31 98166 Messina Italy
| |
Collapse
|
11
|
Li M, Wang W, Yin P. A General Approach to Access Morphologies of Polyoxometalates in Solution by Using SAXS: An Ab Initio Modeling Protocol. Chemistry 2018; 24:6639-6644. [PMID: 29473664 DOI: 10.1002/chem.201800344] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Indexed: 11/08/2022]
Abstract
Herein, we reported a general protocol for an ab initio modeling approach to deduce structure information of polyoxometalates (POMs) in solutions from scattering data collected by the small-angle X-ray scattering (SAXS) technique. To validate the protocol, the morphologies of a serious of known POMs in either aqueous or organic solvents were analyzed. The obtained particle morphologies were compared and confirmed with previous reported crystal structures. To extend the feasibility of the protocol to an unknown system of aqueous solutions of Na2 MoO4 with the pH ranging from -1 to 8.35, the formation of {Mo36 } clusters was probed, identified, and confirmed by SAXS. The approach was further optimized with a multi-processing capability to achieve fast analysis of experimental data, thereby, facilitating in situ studies of formations of POMs in solutions. The advantage of this approach is to generate intuitive 3D models of POMs in solutions without confining information such as symmetries and possible sizes.
Collapse
Affiliation(s)
- Mu Li
- South China Advanced Institute for Soft Matter Science and Technology and State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P.R. China
| | - Weiyu Wang
- South China Advanced Institute for Soft Matter Science and Technology and State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P.R. China
| | - Panchao Yin
- South China Advanced Institute for Soft Matter Science and Technology and State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P.R. China
| |
Collapse
|
12
|
Bazzan I, Volpe A, Dolbecq A, Natali M, Sartorel A, Mialane P, Bonchio M. Cobalt based water oxidation catalysis with photogenerated Ru(bpy) 3 3+ : Different kinetics and competent species starting from a molecular polyoxometalate and metal oxide nanoparticles capped with a bisphosphonate alendronate pendant. Catal Today 2017. [DOI: 10.1016/j.cattod.2017.03.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Li J, Güttinger R, Moré R, Song F, Wan W, Patzke GR. Frontiers of water oxidation: the quest for true catalysts. Chem Soc Rev 2017; 46:6124-6147. [DOI: 10.1039/c7cs00306d] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Development of advanced analytical techniques is essential for the identification of water oxidation catalysts together with mechanistic studies.
Collapse
Affiliation(s)
- J. Li
- University of Zurich
- Department of Chemistry
- CH-8057 Zurich
- Switzerland
| | - R. Güttinger
- University of Zurich
- Department of Chemistry
- CH-8057 Zurich
- Switzerland
| | - R. Moré
- University of Zurich
- Department of Chemistry
- CH-8057 Zurich
- Switzerland
| | - F. Song
- University of Zurich
- Department of Chemistry
- CH-8057 Zurich
- Switzerland
| | - W. Wan
- University of Zurich
- Department of Chemistry
- CH-8057 Zurich
- Switzerland
| | - G. R. Patzke
- University of Zurich
- Department of Chemistry
- CH-8057 Zurich
- Switzerland
| |
Collapse
|