1
|
Woźniczka M, Pająk M, Sutradhar M, Świątek M, Pasternak B, Charmier AJ, Namiecińska E, Gonciarz W. Complex forming properties of cannabinoid acids in a green solvent and bioassays focused on gastric disease caused by Helicobacter pylori infection. Sci Rep 2025; 15:18620. [PMID: 40436988 PMCID: PMC12119962 DOI: 10.1038/s41598-025-03442-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Accepted: 05/20/2025] [Indexed: 06/01/2025] Open
Abstract
The main objective of the present study was to determine the protolytic and coordination properties of two bioactive cannabinoid acids (cannabidiolic acid and cannabigerolic acid) in ethyl alcohol-water mixture (50/50, v/v). The complexation properties of these acids with copper(II) and zinc(II) ions were determined by potentiometric and ESI-MS methods. UV-Vis absorption spectra for the copper(II) systems confirmed the speciation models with one type of complex indicating coordination with completely deprotonated dinegative ligand molecule. The occurrence of precipitation at lower pH values limited the ability to determine complexes under these conditions. The research also aimed to identify potential biological and medicinal applications of cannabinoid acids and their complexes with zinc(II). The ability of these compounds to influence the growth of human Hs68 skin fibroblasts and AGS gastric adenocarcinoma cells was investigated. Furthermore, these structures were tested against Helicobacter pylori strains, one of the factors promoting gastric cancer development. At concentrations that were not-toxic to healthy cells (after dilution of the solutions, the composition of the ethanol/water mixture was approximately 1/99, v/v), the ligands exhibited bacterial inhibitory activity and cytotoxic properties against AGS cancer cells. Zinc(II) complexes, on the other hand, being biologically safe for all cells, had strong antibacterial properties, both inhibitory and bactericidal.
Collapse
Affiliation(s)
- Magdalena Woźniczka
- Department of Physical and Biocoordination Chemistry, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151, Lodz, Poland.
| | - Marek Pająk
- Department of Physical and Biocoordination Chemistry, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151, Lodz, Poland
| | - Manas Sutradhar
- Faculdade de Engenharia, Universidade Lusófona - Centro Universitário de Lisboa, Campo Grande 376, 1749-024, Lisboa, Portugal
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| | - Mirosława Świątek
- Department of Physical and Biocoordination Chemistry, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151, Lodz, Poland
| | - Beata Pasternak
- Department of Organic Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403, Lodz, Poland
| | - Adília Januário Charmier
- Faculdade de Engenharia, Universidade Lusófona - Centro Universitário de Lisboa, Campo Grande 376, 1749-024, Lisboa, Portugal
| | - Ewelina Namiecińska
- Department of Cosmetic Raw Materials Chemistry, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151, Lodz, Poland
| | - Weronika Gonciarz
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland.
| |
Collapse
|
2
|
Jia K, Wang J, Jiang C, Wang X. Ligand-Promoted Palladium-Catalyzed β-C(sp3)–H Arylation of Ketones Using Acetohydrazide as a Transient Directing Group. Synlett 2025; 36:65-68. [DOI: 10.1055/a-2310-0880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
AbstractA palladium-catalyzed β-C(sp3)–H arylation of aliphatic ketones by using acetohydrazide as a transient directing group has been developed. The reaction proceeds through a less-favored [5,5]-bicyclic palladacycle intermediate and is promoted by a pyridine ligand.
Collapse
|
3
|
Woźniczka M, Sutradhar M, Chmiela M, Gonciarz W, Pająk M. Equilibria in the aqueous system of cobalt(II) based on 2-picolinehydroxamic acid and N-(2-hydroxybenzyl)phenylalanine and its ability to inhibit the propagation of cancer cells. J Inorg Biochem 2023; 249:112389. [PMID: 37806005 DOI: 10.1016/j.jinorgbio.2023.112389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/15/2023] [Accepted: 09/25/2023] [Indexed: 10/10/2023]
Abstract
Mixed-ligand complexes of cobalt(II) with two bioligands, viz. 2-picolinehydroxamic acid and the reduced Schiff base N-(2-hydroxybenzyl)phenylalanine, were studied in aqueous solution by potentiometry and UV-Vis spectroscopic analysis. The coordination mode of the complexes and their stability were determined and compared to their parent species. Stacking interactions between the rings present in the ligands influence the stability of the complexes. Also, UV-Vis spectroscopy revealed that the stacking interactions affected the intercalation of DNA and mixed-ligand complexes. The in vitro anticancer activity of the free ligand 2-picolinehydroxamic acid and the complexes was tested against cervical and gastric human adenocarcinoma epithelial cell lines. At concentrations of 0.06 and 0.11 mM, the mixed-ligand structures showed the ability to reduce gastric cancer cells with no inhibitory effect on mouse fibroblasts. The cytotoxic effect was accompanied by damage to the cell nuclei, which may confirm that the complexes demonstrate effective binding to DNA. No determination of minimal inhibitory and bactericidal/fungicidal concentrations against the test organisms was possible at higher complex concentrations due to precipitation.
Collapse
Affiliation(s)
- Magdalena Woźniczka
- Department of Physical and Biocoordination Chemistry, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland.
| | - Manas Sutradhar
- Faculdade de Engenharia, Universidade Lusófona - Centro Universitário de Lisboa, Campo Grande 376, Lisboa 1749-024, Portugal; Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Magdalena Chmiela
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Weronika Gonciarz
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Marek Pająk
- Department of Physical and Biocoordination Chemistry, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland
| |
Collapse
|
4
|
Woźniczka M, Świątek M, Sutradhar M, Gądek-Sobczyńska J, Chmiela M, Gonciarz W, Pasternak B, Pająk M. Equilibria of complexes in the aqueous cobalt(II)- N-(2-hydroxybenzyl)phenylalanine system and their biological activity compared to analogous Schiff base structures. Comput Struct Biotechnol J 2023; 21:1312-1323. [PMID: 36814724 PMCID: PMC9939546 DOI: 10.1016/j.csbj.2023.01.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 01/30/2023] Open
Abstract
Due to their excellent prospects in biological applications, Schiff bases and their complexes are a source of continuing interest. The present study examines the formation of four cobalt(II) complexes with the reduced Schiff base N-(2-hydroxybenzyl)phenylalanine (PhAlaSal) in alkaline aqueous solution by pH-metry. UV-Vis and ESI-MS studies confirmed the model of proposed species. Kinetic analysis indicated that the single- and bi-ligand cobalt(II) complexes transitioned from octahedral to tetrahedral structures. The Schiff base and its complexes detected under physiological pH were tested for antimicrobial abilities and compared with analogous structures of the Schiff base derivative, N-(2-hydroxybenzyl)alanine (AlaSal). The ability of these structures to influence cell growth was tested on L929 mouse fibroblasts and on cervix and gastric adenocarcinoma cancer cell lines. N-(2-hydroxybenzyl)phenylalanine demonstrates greater antimicrobial efficacy than N-(2-hydroxybenzyl)alanine but also higher cytotoxicity; however, it is nonetheless effective against cancer cells. In turn, AlaSal demonstrates low cytotoxicity for fibroblasts and high cytotoxicity for gastric adenocarcinoma epithelial cells at bacteriostatic concentration for Helicobacter pylori and Candida strains. The presence of these microorganisms in the gastric milieu supports the development of gastritis and gastric cancer; AlaSal therapy may be simultaneously effective against both. Due to their cytotoxicity, Schiff base complexes are not suitable for use against fungal and bacterial infections, but may effectively prevent cancer cell growth. Data availability Data will be made available on request.
Collapse
Affiliation(s)
- Magdalena Woźniczka
- Department of Physical and Biocoordination Chemistry, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland,Corresponding author.
| | - Mirosława Świątek
- Department of Physical and Biocoordination Chemistry, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland
| | - Manas Sutradhar
- Faculdade de Engenharia, Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, Lisboa 1749-024, Portugal,Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Joanna Gądek-Sobczyńska
- Department of Physical and Biocoordination Chemistry, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland
| | - Magdalena Chmiela
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Weronika Gonciarz
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Beata Pasternak
- Department of Organic Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403 Lodz, Poland
| | - Marek Pająk
- Department of Physical and Biocoordination Chemistry, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland
| |
Collapse
|
5
|
Liu Y, Xi H, Wang J, Fu J, Shi T. Mechanistic studies on the oxidation reaction of antitubercular drug isoniazid and its analogy hydrazides by chlorine dioxide over a wide pH range. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
6
|
Woźniczka M, Sutradhar M, Pombeiro AJL, Świątek M, Pająk M, Gądek-Sobczyńska J, Chmiela M, Gonciarz W, Pasternak B, Kufelnicki A. Equilibria in Aqueous Cobalt(II)-Reduced Schiff Base N-(2-hydroxybenzyl)alanine System: Chemical Characterization, Kinetic Analysis, Antimicrobial and Cytotoxic Properties. Molecules 2020; 25:molecules25153462. [PMID: 32751474 PMCID: PMC7436002 DOI: 10.3390/molecules25153462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 11/16/2022] Open
Abstract
The present study describes the coordination properties of a reduced Schiff base, N-(2-hydroxybenzyl)alanine, towards cobalt(II) using potentiometric as well as spectroscopic (UV-Vis and ESI-MS) methods. The results indicate the formation of six mononuclear complexes showing high stability in aqueous solution. Coordination occurs in the {O−phenolic,N,O−carboxyl} and {N,O−carboxyl} chelation modes, depending on the degree of ligand deprotonation. Examination of the complexation equilibria at pH ca 7, which is important from a biological point of view, allowed to identify two species: [CoL] and [CoL2H]−. The kinetic analysis showed a structural change of those cobalt(II) complexes from octahedral to tetrahedral in accordance with a first-order time relationship. The antimicrobial properties of N-(2-hydroxybenzyl)alanine, cobalt(II) nitrate and of the Co(II) – ligand complexes were determined against Gram-positive bacteria (Enterococcus faecalis, Staphylococcus aureus, Staphylococcus epidermidis), Gram-negative bacteria (Pseudomonas aeruginosa, Escherichia coli, Helicobacter pylori) and a fungal strain (Candida). The results indicate that the complexes are more active for more strains than the ligand alone. Nevertheless, the complexes induce a higher decrease in the metabolic activity of cells but without damage to nuclei. Tetrahedral structures show stronger anti-cellular toxicity than octahedral complexes, which is most likely due to the higher accessibility of the cobalt(II) center.
Collapse
Affiliation(s)
- Magdalena Woźniczka
- Department of Physical and Biocoordination Chemistry, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland; (M.Ś.); (M.P.); (J.G.-S.); (A.K.)
- Correspondence:
| | - Manas Sutradhar
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (M.S.); (A.J.L.P.)
| | - Armando J. L. Pombeiro
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (M.S.); (A.J.L.P.)
| | - Mirosława Świątek
- Department of Physical and Biocoordination Chemistry, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland; (M.Ś.); (M.P.); (J.G.-S.); (A.K.)
| | - Marek Pająk
- Department of Physical and Biocoordination Chemistry, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland; (M.Ś.); (M.P.); (J.G.-S.); (A.K.)
| | - Joanna Gądek-Sobczyńska
- Department of Physical and Biocoordination Chemistry, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland; (M.Ś.); (M.P.); (J.G.-S.); (A.K.)
| | - Magdalena Chmiela
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (M.C.); (W.G.)
| | - Weronika Gonciarz
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (M.C.); (W.G.)
| | - Beata Pasternak
- Department of Organic Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403 Lodz, Poland;
| | - Aleksander Kufelnicki
- Department of Physical and Biocoordination Chemistry, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland; (M.Ś.); (M.P.); (J.G.-S.); (A.K.)
| |
Collapse
|
7
|
Woźniczka M, Świątek M, Pająk M, Gądek-Sobczyńska J, Chmiela M, Gonciarz W, Lisiecki P, Pasternak B, Kufelnicki A. Complexes in aqueous cobalt(II)-2-picolinehydroxamic acid system: Formation equilibria, DNA-binding ability, antimicrobial and cytotoxic properties. J Inorg Biochem 2018; 187:62-72. [PMID: 30055397 DOI: 10.1016/j.jinorgbio.2018.07.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/20/2018] [Accepted: 07/19/2018] [Indexed: 11/24/2022]
Abstract
The coordination properties of 2-picolinehydroxamic acid towards cobalt(II) in aqueous solution were determined by a pH-metric method and confirmed by spectroscopic (UV-Vis and ESI-MS) studies. The results show the formation of mononuclear complexes, as well as of metallacrowns (MC). All methods indicate a high tendency of 2-picolinehydroxamic acid to form cobalt(II) metallacrown 12-MC-4. ESI-MS additionally confirms 15-MC-5 and 18-MC-6, stabilized by a sodium ion and methanol. The complexes observed in the speciation model at a pH about 7.2 were studied for their DNA-binding ability. The decrease of absorbance in the range of ca 310-400 nm indicates effective binding to calf thymus DNA by 2-picolinehydroxamic acid complexes, via intercalative mode. The antimicrobial properties of 2-picolinehydroxamic acid, cobalt(II) ions and of the complexes formed in the Co(II) - ligand system were determined against Gram-positive bacteria (Enterococcus faecalis, Enterococcus faecium, Staphylococcus aureus, Bacillus subtilis), Gram-negative bacteria (Pseudomonas aeruginosa, Escherichia coli, Helicobacter pylori) and fungal strains (Candida, Aspergillus niger). The results indicate that the complexes demonstrate greater antibacterial and antifungal activity for most strains than the ligand. Both the complexes and the ligand induce a slight decrease in the metabolic activity of cells, while the complexes do not damage the cell nuclei. The 2-picolinehydroxamic acid complexes activate the human monocytic cells, suggesting they have immunomodulating properties, which are particularly important in combating infections caused by strains resistant to other drugs.
Collapse
Affiliation(s)
- Magdalena Woźniczka
- Department of Physical and Biocoordination Chemistry, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland.
| | - Mirosława Świątek
- Department of Physical and Biocoordination Chemistry, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland
| | - Marek Pająk
- Department of Physical and Biocoordination Chemistry, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland
| | - Joanna Gądek-Sobczyńska
- Department of Physical and Biocoordination Chemistry, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland
| | - Magdalena Chmiela
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Weronika Gonciarz
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Paweł Lisiecki
- Department of Pharmaceutical Microbiology and Microbiological Diagnostics, Medical University of Lodz, Pomorska 137, 90-235 Lodz, Poland
| | - Beata Pasternak
- Department of Organic Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403 Lodz, Poland
| | - Aleksander Kufelnicki
- Department of Physical and Biocoordination Chemistry, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland
| |
Collapse
|