1
|
Pokorny T, Doroshenko I, Machac P, Simonikova L, Bittova M, Moravec Z, Karaskova K, Skoda D, Pinkas J, Styskalik A. Copper Phosphinate Complexes as Molecular Precursors for Ethanol Dehydrogenation Catalysts. Inorg Chem 2023. [PMID: 38032353 DOI: 10.1021/acs.inorgchem.3c01678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Nowadays, the production of acetaldehyde heavily relies on the petroleum industry. Developing new catalysts for the ethanol dehydrogenation process that could sustainably substitute current acetaldehyde production methods is highly desired. Among the ethanol dehydrogenation catalysts, copper-based materials have been intensively studied. Unfortunately, the Cu-based catalysts suffer from sintering and coking, which lead to rapid deactivation with time-on-stream. Phosphorus doping has been demonstrated to diminish coking in methanol dehydrogenation, fluid catalytic cracking, and ethanol-to-olefin reactions. This work reports a pioneering application of the well-characterized copper phosphinate complexes as molecular precursors for copper-based ethanol dehydrogenation catalysts enriched with phosphate groups (Cu-phosphate/SiO2). Three new catalysts (CuP-1, CuP-2, and CuP-3), prepared by the deposition of complexes {Cu(SAAP)}n (1), [Cu6(BSAAP)6] (2), and [Cu3(NAAP)3] (3) on the surface of commercial SiO2, calcination at 500 °C, and reduction in the stream of the forming gas 5% H2/N2 at 400 °C, exhibited unusual properties. First, the catalysts showed a rapid increase in catalytic activity. After reaching the maximum conversion, the catalyst started to deactivate. The unusual behavior could be explained by the presence of the phosphate phase, which made Cu2+ reduction more difficult. The phosphorus content gradually decreased during time-on-stream, copper was reduced, and the activity increased. The deactivation of the catalyst could be related to the copper diffusion processes. The most active CuP-1 catalyst reaches a maximum of 73% ethanol conversion and over 98% acetaldehyde selectivity at 325 °C and WHSV = 2.37 h-1.
Collapse
Affiliation(s)
- Tomas Pokorny
- Department of Chemistry, Faculty of Science, Masaryk University, Kotlarska 2, CZ-61137 Brno, Czech Republic
| | - Iaroslav Doroshenko
- Department of Chemistry, Faculty of Science, Masaryk University, Kotlarska 2, CZ-61137 Brno, Czech Republic
| | - Petr Machac
- Department of Chemistry, Faculty of Science, Masaryk University, Kotlarska 2, CZ-61137 Brno, Czech Republic
| | - Lucie Simonikova
- Department of Chemistry, Faculty of Science, Masaryk University, Kotlarska 2, CZ-61137 Brno, Czech Republic
| | - Miroslava Bittova
- Department of Chemistry, Faculty of Science, Masaryk University, Kotlarska 2, CZ-61137 Brno, Czech Republic
| | - Zdenek Moravec
- Department of Chemistry, Faculty of Science, Masaryk University, Kotlarska 2, CZ-61137 Brno, Czech Republic
| | - Katerina Karaskova
- Institute of Environmental Technology,CEET, VSB-TUO, CZ-70800 Ostrava, Czech Republic
| | - David Skoda
- Centre of Polymer Systems, Tomas Bata University in Zlin, Tr. Tomase Bati 5678, CZ-76001 Zlin, Czech Republic
| | - Jiri Pinkas
- Department of Chemistry, Faculty of Science, Masaryk University, Kotlarska 2, CZ-61137 Brno, Czech Republic
| | - Ales Styskalik
- Department of Chemistry, Faculty of Science, Masaryk University, Kotlarska 2, CZ-61137 Brno, Czech Republic
| |
Collapse
|
2
|
Bouroumane N, El Boutaybi M, El Kodadi M, Touzani R, Oussaid A, Hammouti B, Abboud M. Synthesis of new heterocyclic ligands and study of the catecholase activity of catalysts based on copper(II). REACTION KINETICS MECHANISMS AND CATALYSIS 2023. [DOI: 10.1007/s11144-023-02370-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
3
|
Hou LL, Bigdeli F, Cheng X, Wang LX, Zhang JW, Liu KG, Morsali A. Synthesis of Two Neutral Silver Alkynyl Nanoclusters by a Single Divalent Tetrahedral Anion Template and a Study of Their Optical Features. Inorg Chem 2022; 61:16693-16698. [PMID: 36239444 DOI: 10.1021/acs.inorgchem.2c02407] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The synthesis of nanoclusters from simple structural units is usually a challenging process because of the complexity and unpredictability of the self-assembly process of these types of compounds. Herein, two new neutral 19-nuclearity silver nanoclusters based on alkynyl ligands with the formulas [(CrO4)@Ag19(C≡CtBu)8(Ph2PO2)6(tfa)3(CH3OH)2] (1) and [(SO4)@Ag19(C≡CtBu)8(Ph2PO2)6(tfa)3(CH3OH)2] (2), in which tfa = trifluoroacetate, were synthesized, and their structures were investigated by single-crystal and powder X-ray diffraction, electrospray ionization mass spectrometry, elemental analyses, and Fourier transform infrared spectroscopy. The surface ligands of Ph2PO2H and trifluoroacetate were assembled through hydrogen bonding, metal-aromatic interactions, and coordination bonding around 19 silver atoms as the metal skeletons of the nanoclusters. Sulfate and chromate anions, as a template within the metal skeleton of clusters through bonding with silver atoms, stabilized the structure. In addition, the UV-vis absorption spectroscopy, luminescence properties, and thermal stability of the nanoclusters were investigated.
Collapse
Affiliation(s)
- Lin-Lin Hou
- Ningxia Key Laboratory of Photovoltaic Materials, School of Materials and New Energy, Ningxia University, Yin-Chuan, Ningxia 750021, China
| | - Fahime Bigdeli
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran 14117-13116, Iran
| | - Xun Cheng
- Ningxia Key Laboratory of Photovoltaic Materials, School of Materials and New Energy, Ningxia University, Yin-Chuan, Ningxia 750021, China
| | - Ling-Xiao Wang
- Ningxia Key Laboratory of Photovoltaic Materials, School of Materials and New Energy, Ningxia University, Yin-Chuan, Ningxia 750021, China
| | - Jing-Wen Zhang
- Ningxia Key Laboratory of Photovoltaic Materials, School of Materials and New Energy, Ningxia University, Yin-Chuan, Ningxia 750021, China
| | - Kuan-Guan Liu
- Ningxia Key Laboratory of Photovoltaic Materials, School of Materials and New Energy, Ningxia University, Yin-Chuan, Ningxia 750021, China
| | - Ali Morsali
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran 14117-13116, Iran
| |
Collapse
|
4
|
Neves A, Tomkowicz Z, Couto RA, Bombazar CC, Amorim SM, Bortoluzzi AJ, Peralta RA. Trinuclear CuII complex containing a new pentadentate ligand: Structure, magnetism, physicochemical properties and catecholase activity. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
5
|
Mohammadnezhad G, Amirian AM, Görls H, Plass W, Sandleben A, Schäfer S, Klein A. Redox Instability of Copper(II) Complexes of a Triazine‐Based PNP Pincer. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202001129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
| | - Ali Mohammad Amirian
- Department of Chemistry Isfahan University of Technology Isfahan 84156-83111 Iran
- Chemistry Department Faculty of Science Shiraz University Shiraz 71454 Iran
| | - Helmar Görls
- Lehrstuhl für Anorganische Chemie II Institut für Anorganische und Analytische Chemie Friedrich-Schiller-Universität Jena Humboldtstr. 8 07743 Jena Germany
| | - Winfried Plass
- Lehrstuhl für Anorganische Chemie II Institut für Anorganische und Analytische Chemie Friedrich-Schiller-Universität Jena Humboldtstr. 8 07743 Jena Germany
| | - Aaron Sandleben
- Department für Chemie Institut für Anorganische Chemie Universität zu Köln Greinstraße 6 50939 Köln Germany
| | - Sascha Schäfer
- Department für Chemie Institut für Anorganische Chemie Universität zu Köln Greinstraße 6 50939 Köln Germany
| | - Axel Klein
- Chemistry Department Faculty of Science Shiraz University Shiraz 71454 Iran
- Department für Chemie Institut für Anorganische Chemie Universität zu Köln Greinstraße 6 50939 Köln Germany
| |
Collapse
|
6
|
Navarro Y, Guedes GP, Del Águila-Sánchez MA, Iglesias MJ, Lloret F, López-Ortiz F. Synthesis, crystal structures and magnetic properties of a P-stereogenic ortho-(4-amino-tempo)phosphinic amide radical and its Cu II complex. Dalton Trans 2021; 50:2585-2595. [PMID: 33522545 DOI: 10.1039/d0dt04298f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of phosphinic amides containing one 4-amino-TEMPO substituent at the ortho position has been achieved through copper(i) catalyzed cross-coupling reactions of ortho-iodophosphinic amides with 4-amino-TEMPO. The method has been extended to the preparation of the first example of a P-stereogenic ortho-(4-amino-tempo)phosphinic amide radical 10. The reaction of 10 with Cu(hfac)2 afforded the P-stereogenic CuII complex 19. The crystal structure of both chiral compounds is reported. The molecular structure of 10 consists of a supramolecular zig-zag chain formed by intermolecular hydrogen bonds between the NH group of the phosphinic amide moiety and the nitroxide oxygen atom. In complex 19, the ligand acts as a bridge between two CuII ions coordinated to the oxygen atoms of the P[double bond, length as m-dash]O and N-O· groups leading to the formation of a polymeric helicate chain in which the metal ions exist in a distorted octahedral geometry. The magnetic behavior of ligand 10 is characterized by very weak intermolecular antiferromagnetic interactions, whereas ferro- and anti-ferromagnetic interactions are present in complex 19.
Collapse
Affiliation(s)
- Yolanda Navarro
- Área de Química Orgánica, Centro de Investigación CIAIMBITAL, Universidad de Almería, Carretera de Sacramento s/n, 04120 Almería, Spain.
| | - Guilherme P Guedes
- Universidade Federal Fluminense, Instituto de Química, Departamento de Química Inorgânica, Niterói, Rio de Janeiro, Brazil
| | - Miguel A Del Águila-Sánchez
- Área de Química Orgánica, Centro de Investigación CIAIMBITAL, Universidad de Almería, Carretera de Sacramento s/n, 04120 Almería, Spain.
| | - María José Iglesias
- Área de Química Orgánica, Centro de Investigación CIAIMBITAL, Universidad de Almería, Carretera de Sacramento s/n, 04120 Almería, Spain.
| | - Francisco Lloret
- Institut de Ciencia Molecular, Universitat de València, Catedràtic José Beltrán no.2, 46980 Paterna, Valencia, Spain
| | - Fernando López-Ortiz
- Área de Química Orgánica, Centro de Investigación CIAIMBITAL, Universidad de Almería, Carretera de Sacramento s/n, 04120 Almería, Spain.
| |
Collapse
|
7
|
Navarro Y, Guedes GP, Cano J, Ocón P, Iglesias MJ, Lloret F, López-Ortiz F. Synthesis, structural characterization and electrochemical and magnetic studies of M(hfac) 2 (M = Cu II, Co II) and Nd(hfac) 3 complexes of 4-amino-TEMPO. Dalton Trans 2020; 49:6280-6294. [PMID: 32329759 DOI: 10.1039/d0dt00541j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Three mononuclear complexes [M(hfac)x(ATEMPO)y], where M = Cu (11) and Co (12), x = y = 2; M = Nd (13), x = 4, y = 1, and two polynuclear complexes [{Cu(hfac)2(ATEMPO)}n], where n = 2 (14) and 4 (15), were obtained by the reaction of M(hfac)x (M = CuII, CoII, NdIII; x = 2, 3) with 4-amino-TEMPO (4-amino-2,2,6,6-tetramethylpiperidin-N-oxyl) in good yields and their structural, electrochemical and magnetic properties were examined. In all cases, the radical is coordinated to the metal through the amino group, except 15, and the metal ions have an octahedral geometry, except 13. Different coordination architectures of the copper complexes were obtained as a function of the stoichiometry and solvents used. In complexes 11 and 12 the radicals show an equatorial-equatorial and axial-equatorial arrangement, respectively, giving rise to two distinct 2D supramolecular systems through intermolecular interactions. Compound 13 is the first example of a lanthanide complex of the ATEMPO radical. The NdIII ion adopts a rare nine-coordination via binding to four hfac ligands and the radical. The dinuclear complex 14 shows a (Cu-O)2 core in which the CuII ions are bridged by the oxygen atoms from the hfac ligands. In compound 15 the ATEMPO radical acts as a bidentate ligand through the amino and nitroxyl groups leading to an unprecedented tetranuclear square-shaped framework. Cyclic voltammetry showed redox processes associated with the copper and TEMPO moieties. Electrochemical impedance spectroscopy revealed the temperature dependence of the conductivity for compound 15 with a maximum of 2.09 × 10-5 S cm-1 at 408 K. The magnetic behavior of complexes 11-15 is determined by metal-radical interactions. Ferromagnetic interaction has been observed for complex 11 due to the existence of two different exchange pathways arising from the conformational arrangement of the radicals around the metal center, whereas the single conformation of the radical in complex 14 resulted in a weak antiferromagnetic coupling. In complex 15 both O-Cu and N-Cu contacts are present giving rise to ferromagnetic and antiferromagnetic interactions, respectively.
Collapse
Affiliation(s)
- Yolanda Navarro
- Área de Química Orgánica, Centro de Investigación CIAIMBITAL, Universidad de Almería, Carretera de Sacramento s/n, 04120 Almería, Spain.
| | - Guilherme P Guedes
- Universidade Federal Fluminense, Instituto de Química, Departamento de Química Inorgânica, Niterói, Rio de Janeiro, Brazil
| | - Joan Cano
- Institut de Ciencia Molecular, Universitat de València, Catedràtic José Beltrán n°2, 46980 Paterna, Valencia, Spain
| | - Pilar Ocón
- Departamento de Química Física Aplicada, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - María José Iglesias
- Área de Química Orgánica, Centro de Investigación CIAIMBITAL, Universidad de Almería, Carretera de Sacramento s/n, 04120 Almería, Spain.
| | - Francisco Lloret
- Institut de Ciencia Molecular, Universitat de València, Catedràtic José Beltrán n°2, 46980 Paterna, Valencia, Spain
| | - Fernando López-Ortiz
- Área de Química Orgánica, Centro de Investigación CIAIMBITAL, Universidad de Almería, Carretera de Sacramento s/n, 04120 Almería, Spain.
| |
Collapse
|
8
|
Ramadan AEM, Shaban SY, Ibrahim MM, Eissa H, Al‐Saidi HM, Fathy AM. Catechol oxidase and phenoxazinone synthase mimicking activity, X‐ray diffraction and density function theory study of pyridine and phenolate‐based manganese(II) and iron(III) complexes: Synthesis and spectroscopic characterization. J CHIN CHEM SOC-TAIP 2020. [DOI: 10.1002/jccs.201900383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
| | - Shaban Y. Shaban
- Chemistry Department, Faculty of ScienceKafr El‐Sheikh University Egypt
| | - Mohamed M. Ibrahim
- Chemistry Department, Faculty of ScienceKafr El‐Sheikh University Egypt
- Chemistry Department, Faculty of ScienceTaif University Taif Saudi Arabia
| | - Hatem Eissa
- Chemistry Department, Faculty of ScienceKafr El‐Sheikh University Egypt
| | - Hamed M. Al‐Saidi
- Chemistry Department, University College in Al‐JamoumUmm Al‐Qura University Makkah Saudi Arabia
| | - Ahmad M. Fathy
- Chemistry Department, Faculty of ScienceZagazig University Zagazig Egypt
| |
Collapse
|
9
|
Schneider JD, Smith BA, Williams GA, Powell DR, Perez F, Rowe GT, Yang L. Synthesis and Characterization of Cu(II) and Mixed-Valence Cu(I)Cu(II) Clusters Supported by Pyridylamide Ligands. Inorg Chem 2020; 59:5433-5446. [PMID: 32237741 DOI: 10.1021/acs.inorgchem.0c00008] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A group of copper complexes supported by polydentate pyridylamide ligands H2bpda and H2ppda were synthesized and characterized. The two Cu(II) dimers [CuII2(Hbpda)2(ClO4)2] (1) and [CuII2(ppda)2(DMF)2] (2) were constructed by using neutral ligands to react with Cu(II) salts. Although the dimers showed similar structural features, the second-sphere interactions affect the structures differently. With the application of Et3N, the tetranuclear cluster (HNEt3)[CuII4(bpda)2(μ3-OH)2(ClO4)(DMF)3](ClO4)2 (3) and hexanuclear cluster (HNEt3)2[CuII6(ppda)6(H2O)2(CH3OH)2](ClO4)2 (4) were prepared under similar reaction conditions. The symmetrical and unsymmetrical arrangement of the ligand donors in ligands H2bpda and H2ppda led to the dramatic conformation difference of the two Cu(II) complexes. As part of our effort to explore mixed-valence copper chemistry, the triple-decker pentanuclear cluster [CuII3CuI2(bpda)3(μ3-O)] (5) was prepared. XPS examination demonstrated the localized mixed-valence properties of complex 5. Magnetic studies of the clusters with EPR evidence showed either weak ferromagnetic or antiferromagnetic interactions among copper centers. Due to the trigonal-planar conformation of the trinuclear Cu(II) motif with the μ3-O center, complex 5 exhibits geometric spin frustration and engages in antisymmetric exchange interactions. DFT calculations were also performed to better interpret spectroscopic evidence and understand the electronic structures, especially the mixed-valence nature of complex 5.
Collapse
Affiliation(s)
- Joseph D Schneider
- Department of Chemistry, University of Central Arkansas, Conway, Arkansas 72035, United States
| | - Brett A Smith
- Department of Chemistry & Physics, University of South Carolina-Aiken, Aiken, South Carolina 29801, United States
| | - Grant A Williams
- Department of Chemistry, University of Central Arkansas, Conway, Arkansas 72035, United States
| | - Douglas R Powell
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Felio Perez
- Integrated Microscopy Center, University of Memphis, Memphis, Tennessee 38152, United States
| | - Gerard T Rowe
- Department of Chemistry & Physics, University of South Carolina-Aiken, Aiken, South Carolina 29801, United States
| | - Lei Yang
- Department of Chemistry, University of Central Arkansas, Conway, Arkansas 72035, United States
| |
Collapse
|
10
|
Liu KG, Wei XW, Bigdeli F, Gao XM, Li JZ, Yan XW, Hu ML, Morsali A. Investigation of the Effect of a Mixed-Ligand on the Accommodation of a Templating Molecule into the Structure of High-Nucleus Silver Clusters. Inorg Chem 2020; 59:2248-2254. [PMID: 31999438 DOI: 10.1021/acs.inorgchem.9b02956] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Advancement of the synthesis and control of the self-assembly process of new high-nucleus silver clusters with desired structures is important for both the material sciences and the many applications. Herein, three new silver clusters, 20-, 22-, and 8-nucleus, based on alkynyl ligands were constructed and their structures were confirmed by single-crystal X-ray diffraction, powder X-ray diffraction, elemental analyses, and Fourier-transform infrared spectroscopy (FT-IR). For the first time, the trivalent tetrahedron anion of AsO43-, as a template, and the surface ligand of Ph2PO2H, with new coordination modes, were employed in preparation of the silver clusters. The role of surface ligands and template anions in the size and structure of the clusters was investigated. The presence of the template in the structure of the clusters led to the formation of the high-nucleus clusters. Also, in this report, it was shown that the participation of the template in the assembly of a cluster can be controlled by the surface ligands. UV-vis absorption and luminescent properties of the clusters and the thermal stability of the 8-nucleus cluster were also studied.
Collapse
Affiliation(s)
- Kuan-Guan Liu
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, and Ningxia Key Laboratory for Photovoltaic Materials , Ningxia University , Yin-Chuan , Ningxia 750021 , P. R. China
| | - Xue-Wen Wei
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, and Ningxia Key Laboratory for Photovoltaic Materials , Ningxia University , Yin-Chuan , Ningxia 750021 , P. R. China
| | - Fahime Bigdeli
- Department of Chemistry, Faculty of Sciences , Tarbiat Modares University , Tehran 14115-175 , Iran
| | - Xue-Mei Gao
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, and Ningxia Key Laboratory for Photovoltaic Materials , Ningxia University , Yin-Chuan , Ningxia 750021 , P. R. China
| | - Jing-Zhe Li
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, and Ningxia Key Laboratory for Photovoltaic Materials , Ningxia University , Yin-Chuan , Ningxia 750021 , P. R. China
| | - Xiao-Wei Yan
- College of Materials and Environmental Engineering, and Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization , Hezhou University , Hezhou , Guangxi 542800 , P. R. China
| | - Mao-Lin Hu
- College of Chemistry and Materials Engineering , Wenzhou University , Wenzhou 325035 , P. R. China
| | - Ali Morsali
- Department of Chemistry, Faculty of Sciences , Tarbiat Modares University , Tehran 14115-175 , Iran
| |
Collapse
|
11
|
Silva CP, Junior HC, Santos IF, Bernardino AM, Cassaro RA, Novak MA, Vaz MG, Guedes GP. Synthesis, crystal structure, magnetic properties and DFT calculations of a mononuclear copper(II) complex: Relevance of halogen bonding for magnetic interaction. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.06.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
12
|
Bikas R, Ajormal F, Emami M, Noshiranzadeh N, Kozakiewicz A. Catalytic oxidation of benzyl alcohols by new Cu(II) complexes of 1,3-oxazolidine based ligand obtained from a solvent free reaction. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.03.038] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Das A, Bhattacharya K, Das LK, Giri S, Ghosh A. Mixed azido/phenoxido bridged trinuclear Cu(ii) complexes of Mannich bases: Synthesis, structures, magnetic properties and catalytic oxidase activities. Dalton Trans 2018; 47:9385-9399. [DOI: 10.1039/c8dt01400k] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Three mixed azido/phenoxido bridged trinuclear Cu(ii) complexes of tetradentate Mannich base ligands, synthesised by a metalloligand approach show antiferromagnetic coupling and significant catecholase and phenoxazinone synthase like activities.
Collapse
Affiliation(s)
- Avijit Das
- Department of Chemistry
- University College of Science
- University of Calcutta
- Kolkata 700009
- India
| | - Kisholoy Bhattacharya
- Department of Chemistry
- University College of Science
- University of Calcutta
- Kolkata 700009
- India
| | - Lakshmi Kanta Das
- Department of Chemistry
- Government General Degree College at Kharagpur-II
- Paschim Medinipur
- India
| | - Sanjib Giri
- Department of Chemistry
- University College of Science
- University of Calcutta
- Kolkata 700009
- India
| | - Ashutosh Ghosh
- Department of Chemistry
- University College of Science
- University of Calcutta
- Kolkata 700009
- India
| |
Collapse
|
14
|
Saha S, Biswas N, Sasmal A, Gómez-García CJ, Garribba E, Bauza A, Frontera A, Pilet G, Rosair GM, Mitra S, Roy Choudhury C. Effect of temperature and ligand protonation on the electronic ground state in Cu(ii) polymers having unusual secondary interactions: a magnetic and catechol oxidase study. Dalton Trans 2018; 47:16102-16118. [DOI: 10.1039/c8dt02417k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two new polymeric Cu(ii) compounds with significant catecholase activity are described.
Collapse
Affiliation(s)
- Sandeepta Saha
- Sripur High School
- Kolkata – 700130
- India
- Department of Chemistry
- Jadavpur University
| | - Niladri Biswas
- Department of Chemistry
- West Bengal State University
- Kolkata 700126
- India
| | - Ashok Sasmal
- Department of Chemistry
- Jadavpur University
- Kolkata-700032
- India
| | - Carlos J. Gómez-García
- Instituto de Ciencia Molecular (ICMol)
- Dpto. Química Inorgánica, Universidad de Valencia
- 46980 Paterna
- Spain
| | - Eugenio Garribba
- Department of Chemistry and Pharmacy
- University of Sassari
- I-07100 Sassari
- Italy
| | - Antonio Bauza
- Departament de Química
- Universitat de les Illes Balears
- 07122 Palma de Mallorca
- Spain
| | - Antonio Frontera
- Departament de Química
- Universitat de les Illes Balears
- 07122 Palma de Mallorca
- Spain
| | - Guillaume Pilet
- Equipe de Cristallographie et Ingénierie Moleculaire
- Laboratoire des Multimatériaux et Interfaces (LMI)
- UMR 5615 CNRS-Université Claude Bernard Lyon 1
- 69622 Villeurbanne Cedex
- France
| | - Georgina M. Rosair
- Institute of Chemical Sciences
- School of Engineering and Physical Sciences
- Heriot Watt University
- Edinburgh EH14 4AS
- UK
| | - Samiran Mitra
- Department of Chemistry
- Jadavpur University
- Kolkata-700032
- India
| | | |
Collapse
|
15
|
Biomimetic oxidation of catechol employing complexes formed in situ with heterocyclic ligands and different copper(II) salts. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2018. [DOI: 10.1007/s13738-017-1211-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Balewski Ł, Gdaniec M, Sączewski J, Wicher B, Sączewski F. Copper(II)-assisted hydrolysis of cyclic ureas: Transformation of 1-(pyridin-2-yl)-2,3,7,8-tetrahydro-1H-imidazo[2,1-b][1,3,5]triazepin-5(6H)-ones into N1-[1-(pyridin-2-yl)imidazolidin-2-ylidene]-ethane-1,2-diamine ligands. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2017.08.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Ghosh K, Harms K, Chattopadhyay S. Two Cobalt(III) Schiff Base Complexes of the Type [Co(ABC)(DE)X]: Facile Synthesis, Characterization, Catechol Oxidase and Phenoxazinone Synthase Mimicking Activity. ChemistrySelect 2017. [DOI: 10.1002/slct.201701536] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kousik Ghosh
- Department of Chemistry, Inorganic Section; Jadavpur University; Kolkata 700 032 India
| | - Klaus Harms
- Fachbereich Chemie; Philipps-Universität Marburg; Hans-Meerwein-Strasse D-35032 Marburg Germany
| | - Shouvik Chattopadhyay
- Department of Chemistry, Inorganic Section; Jadavpur University; Kolkata 700 032 India
| |
Collapse
|
18
|
Emami M, Noshiranzadeh N, Bikas R, Gutierrez A, Kozakiewicz A. Synthesis, crystal structure and magnetic studies of linear and cubane-type tetranuclear Cu(II) complexes obtained by stoichiometric control of the reagents. Polyhedron 2017. [DOI: 10.1016/j.poly.2016.11.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Mandal L, Mandal S, Mohanta S. Syntheses, crystal structures, magnetochemistry and catechol oxidase activity of a tetracopper(ii) compound and a new type of dicopper(ii)-based 1D coordination polymer. NEW J CHEM 2017. [DOI: 10.1039/c7nj00286f] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
One phenoxo–hydroxo bridged tetranuclear cluster and one phenoxo-µ1,1-azido-µ1,3-azido bridged one-dimensional coordination polymer of copper(ii) derived from a Schiff base ligand are described.
Collapse
Affiliation(s)
- Leena Mandal
- Department of Chemistry
- University of Calcutta
- Kolkata
- India
| | | | | |
Collapse
|