1
|
Paliwal K, Swain A, Mishra DP, Sudhadevi Antharjanam PK, Kumar M. A novel copper(II) complex with a salicylidene carbohydrazide ligand that promotes oxidative stress and apoptosis in triple negative breast cancer cells. Dalton Trans 2024; 53:17702-17720. [PMID: 39420621 DOI: 10.1039/d4dt01914h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
We report the synthesis, characterization, anti-cancer activity and mechanism of action of a novel water-soluble Cu(II) complex with salicylidene carbohydrazide as the ligand and o-phenanthroline as the co-ligand. The synthesized complex (1) was characterized by FT-IR, EPR, and electronic spectroscopy, as well as single crystal X-ray diffraction. This compound was found to be paramagnetic from EPR spectra and X-ray crystallography revealed that the molecule crystallized in an orthorhombic crystal system. The crystal lattice was asymmetric containing two distinct binuclear copper complexes containing the Schiff base as the major ligand, o-phenanthroline as a co-ligand, two nitrate anions, and two water molecules. The Cu(II) in the first site coordinated with the enolised ligand comprising enolate O-, phenolate O-, and the imine N and N,N from o-phen. The major part of this complex exists as Cu(II) coordinated with two H2O molecules at the second site with nitrate acting as the counter anion. However, a smaller portion of the complex exists where Cu(II) is coordinated with NO3- and H2O, and the remaining water molecule acts as lattice water. It was tested for DNA binding and cleavage properties which revealed that it binds in an intercalative mode to CT-DNA with Kb value of 1.25 × 104 M-1. Furthermore, cleavage studies reveal that the complex has potential for efficient DNA cleavage under both oxidative and hydrolytic conditions. It was able to enhance the rate of cleavage by 2.8 × 108 times. The complex shows good cytotoxicity to breast cancer monolayer (2D) as well as spheroid (3D) systems. The IC50 values for MDA-MB-231 and MCF-7 monolayer culture was calculated as 1.86 ± 0.17 μM and 2.22 ± 0.08 μM, respectively, and in (3D) spheroids of MDA-MB-231 cells, the IC50 value was calculated to be 1.51 ± 0.29 μM. It was observed that the complex outperformed cisplatin in both breast cancer cell lines. The cells treated with complex 1 underwent severe DNA damage, increased oxidative stress and cell cycle arrest which finally led to programmed cell death or apoptosis in triple negative breast cancer cells through an intrinsic pathway.
Collapse
Affiliation(s)
- Kumudini Paliwal
- Department of Chemical Engineering, Birla Institute of Technology and Science-Pilani, K.K. Birla Goa Campus, Zuarinagar, Goa 403726, India.
| | - Abinash Swain
- Cell Death Research Laboratory, Endocrinology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector-10, Jankipuram Extension, Lucknow, Uttar Pradesh 226031, India
| | - Durga Prasad Mishra
- Cell Death Research Laboratory, Endocrinology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector-10, Jankipuram Extension, Lucknow, Uttar Pradesh 226031, India
| | - P K Sudhadevi Antharjanam
- Sophisticated Analytical Instrument Facility, Indian Institute of Technology-Madras, Chennai 600 036, India
| | - Manjuri Kumar
- Department of Chemical Engineering, Birla Institute of Technology and Science-Pilani, K.K. Birla Goa Campus, Zuarinagar, Goa 403726, India.
| |
Collapse
|
2
|
Richa, Kumar V, Kataria R. Phenanthroline and Schiff Base associated Cu(II)-coordinated compounds containing N, O as donor atoms for potent anticancer activity. J Inorg Biochem 2024; 251:112440. [PMID: 38065049 DOI: 10.1016/j.jinorgbio.2023.112440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/25/2023]
Abstract
As an inherent metal ion, copper has been the subject of investigation for developing a novel antitumoral compound that exhibits fewer adverse effects. Copper serves as a cofactor in multiple enzymes, generates reactive oxygen species (ROS), facilitates tumour evolution, metastasis and angiogenesis and has been detected at elevated concentrations in the serum and tissues of various human cancer types. In the given setting, utilising two methodologies in developing novel Copper-based pharmaceuticals for anti-cancer applications is standard practice. These approaches involve either the sequestration of unbound Copper ions or the synthesis of Copper complexes that induce cellular apoptosis. In the past four decades, the latter system has been used, leading to numerous reviews that have examined the anticancer characteristics of a wide range of Copper complexes. These analyses have consistently demonstrated that multiple factors frequently influence the efficacy of these compounds. This review examines the possible anticancer properties of copper and Cu(II) complexes that incorporate Schiff base ligands containing 1,10-phenanthroline. The present study will comprehensively analyse the examined cell lines and mechanistic research associated with each complex.
Collapse
Affiliation(s)
- Richa
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Vinod Kumar
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Mahendergarh 123031, Haryana, India
| | - Ramesh Kataria
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
3
|
Paliwal K, Haldar P, Antharjanam PKS, Kumar M. Synthesis, Characterization, DNA/HSA Interaction, and Cytotoxic Activity of a Copper(II) Thiolate Schiff Base Complex and Its Corresponding Water-Soluble Stable Sulfinato-O Complex Containing Imidazole as a Co-ligand. ACS OMEGA 2023; 8:21948-21968. [PMID: 37360467 PMCID: PMC10286277 DOI: 10.1021/acsomega.3c01853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023]
Abstract
A Cu(II) thiolato complex [CuL(imz)] (1) (H2L = o-HOC6H4C(H)=NC6H4SH-o) and the corresponding water-soluble stable sulfinato-O complex [CuL'(imz)] (2) (H2L' = o-HOC6H4C(H)=NC6H4S(=O)OH) were synthesized and characterized using physicochemical techniques. Compound 2 is found to be a dimer in the solid state as characterized using single-crystal X-ray crystallography. XPS studies clearly showed the differences in the sulfur oxidation states in 1 and 2. Both compounds are found to be monomers in solution as revealed from their four-line X-band electron paramagnetic resonance spectra in CH3CN at room temperature (RT). 1-2 were tested to assess their ability to exhibit DNA binding and cleavage activity. Spectroscopic studies and viscosity experiments suggest that 1-2 bind to CT-DNA through the intercalation mode having moderate binding affinity (Kb ∼ 104 M-1). This is further supported by molecular docking studies of complex 2 with CT-DNA. Both complexes display significant oxidative cleavage of pUC19 DNA. Complex 2 also showed hydrolytic DNA cleavage. The interaction of 1-2 with HSA revealed that they have strong ability to quench the intrinsic fluorescence of HSA by a static quenching mechanism (kq ∼ 1013 M-1 s-1). This is further complemented by Förster resonance energy transfer studies that revealed binding distances of r = 2.85 and 2.75 nm for 1 and 2, respectively, indicating high potential for energy transfer from HSA to complex. 1-2 were capable of inducing conformational changes of HSA at secondary and tertiary levels as observed from synchronous and three-dimensional fluorescence spectroscopy. Molecular docking studies with 2 indicate that it forms strong hydrogen bonds with Gln221 and Arg222 located near the entrance of site-I of HSA. 1-2 showed potential toxicity in human cervical cancer HeLa cells, lung cancer A549 cells, and cisplatin-resistant breast cancer MDA-MB-231 cells and appeared to be most potent against HeLa cells (IC50 = 2.04 μM for 1 and 1.86 μM for 2). In HeLa cells, 1-2 mediated cell cycle arrest in S and G2/M phases, which progressed into apoptosis. Apoptotic features seen from Hoechst and AO/PI staining, damaged cytoskeleton actin viewed from phalloidin staining, and increased caspase-3 activity upon treatment with 1-2 collectively suggested that they induced apoptosis in HeLa cells via caspase activation. This is further supported by western blot analysis of the protein sample extracted from HeLa cells treated with 2.
Collapse
Affiliation(s)
- Kumudini Paliwal
- Department
of Chemical Engineering, Birla Institute
of Technology and Science-Pilani, K.K. Birla Goa Campus, Zuarinagar 403726, Goa, India
| | - Paramita Haldar
- Department
of Chemical Engineering, Birla Institute
of Technology and Science-Pilani, K.K. Birla Goa Campus, Zuarinagar 403726, Goa, India
| | | | - Manjuri Kumar
- Department
of Chemical Engineering, Birla Institute
of Technology and Science-Pilani, K.K. Birla Goa Campus, Zuarinagar 403726, Goa, India
| |
Collapse
|
4
|
Copper(II) complexes with 4-(diethylamino)salicylaldehyde and α-diimines: Anticancer, antioxidant, antigenotoxic effects and interaction with DNA and albumins. J Inorg Biochem 2022; 235:111942. [DOI: 10.1016/j.jinorgbio.2022.111942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 06/26/2022] [Accepted: 07/20/2022] [Indexed: 11/23/2022]
|
5
|
Parsekar S, Paliwal K, Haldar P, Antharjanam PKS, Kumar M. Synthesis, Characterization, Crystal Structure, DNA and HSA Interactions, and Anticancer Activity of a Mononuclear Cu(II) Complex with a Schiff Base Ligand Containing a Thiadiazoline Moiety. ACS OMEGA 2022; 7:2881-2896. [PMID: 35097283 PMCID: PMC8792924 DOI: 10.1021/acsomega.1c05750] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/30/2021] [Indexed: 05/07/2023]
Abstract
A mononuclear Cu(II) complex [Cu(HL)(o-phen)]·H2O (1) [H3L =, o-phen = 1,10-phenanthroline] was isolated from methanol, and its X-ray single-crystal structure was determined. Frozen glass X-band EPR of 1 in dimethylformamide (DMF) at LNT showed a spectrum that is characteristic of a monomeric tetragonal character with g ∥ = 2.164, g ⊥ = 2.087, A ∥ = 19.08 mT, and A ⊥ ≤ 4 mT. Electronic spectroscopic studies using calf thymus DNA (CT-DNA) showed strong binding affinity of 1 as reflected from its intrinsic binding constant (K b) value of 2.85 × 105 M-1. Competitive behavior of 1 with ethidium bromide (EB) displayed intercalative binding of DNA (K app = 1.3 × 106 M-1). The compound displayed significant oxidative cleavage of pUC19 DNA. The interaction between HSA and complex 1 was examined by employing fluorescence and electronic absorption spectroscopic experiments. The secondary and tertiary structures of HSA were found to be altered as suggested by three-dimensional (3D) fluorescence experiments. The affinity of 1 to bind to HSA was found to be strong as indicated from its value of the binding constant (K a = 2.89 × 105 M-1). Intrinsic fluorescence of the protein was found to be reduced through a mechanism of static quenching as suggested from the k q (2.01 × 1013 M-1 s-1) value, the bimolecular quenching constant. The Förster resonance energy transfer (FRET) process may also be accounted for such a high k q value. The r value (2.85 nm) calculated from FRET theory suggested that the distance between complex 1 (acceptor) and HSA (donor) is quite close. Complex 1 primarily bound to HSA in subdomain IIA as suggested by molecular docking studies. IC50 values (0.80 and 0.43 μM, respectively) obtained from the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay with HeLa and MCF7 cells suggested remarkable in vitro anticancer activity of 1. Nuclear dual staining assays revealed that cell death occurred via apoptosis in HeLa cells and reactive oxygen species (ROS) accumulation caused apoptosis induction. On treatment with a 5 μM dose of 1 in HeLa cells, the cell population significantly increased in the G2/M phase, while it was decreased in G0/G1 and S phases as compared to the control, clearly indicating G2/M phase arrest.
Collapse
Affiliation(s)
- Sidhali
U. Parsekar
- Department
of Chemical Engineering, Birla Institute
of Technology and Science-Pilani, K.K. Birla Goa Campus, Zuarinagar 403726, Goa, India
| | - Kumudini Paliwal
- Department
of Chemical Engineering, Birla Institute
of Technology and Science-Pilani, K.K. Birla Goa Campus, Zuarinagar 403726, Goa, India
| | - Paramita Haldar
- Department
of Chemical Engineering, Birla Institute
of Technology and Science-Pilani, K.K. Birla Goa Campus, Zuarinagar 403726, Goa, India
| | | | - Manjuri Kumar
- Department
of Chemical Engineering, Birla Institute
of Technology and Science-Pilani, K.K. Birla Goa Campus, Zuarinagar 403726, Goa, India
| |
Collapse
|
6
|
Aliabadi A, Zangeneh M, Izadi Z, Badzohre M, Ghadermazi M, Marabello D, Bagheri F, Farokhi A, Motieiyan E, Abdolmaleki S. Green synthesis, X-ray crystal structure, evaluation as in vitro cytotoxic and antibacterial agents of a new Zn(II) complex containing dipicolinic acid. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Phenanthroline-based Ni(II) coordination compounds involving unconventional discrete fumarate-water-nitrate clusters and energetically significant cooperative ternary π-stacked assemblies: Antiproliferative evaluation and theoretical studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131424] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Keypour H, Forouzandeh F, Hajari S, Jamshidi M, Moazzami Farida SH, William Gable R. Synthesis, characterization, in vitro cytotoxicity activity, and molecular docking studies of mononuclear and binuclear Macroacyclic Schiff base complexes. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Vatannavaz L, Sabounchei SJ, Sedghi A, Karamian R, Farida SHM, Rahmani N. Synthesis, characterization, theoretical study and biological activity studies of the mercury (
II
) complexes of 5‐methyl‐5‐(4‐nitrophenyl)‐hydantoin. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202100135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
| | | | - Asieh Sedghi
- Faculty of Chemistry Bu‐Ali Sina University Hamedan Iran
| | - Roya Karamian
- Department of Biology, Faculty of Science Bu‐Ali Sina University Hamedan Iran
| | | | - Nosrat Rahmani
- Department of Biology, Faculty of Basic Science Shahed University Tehran Iran
| |
Collapse
|
10
|
Synthesis, cytotoxicity, and antioxidant activity by in vitro and molecular docking studies of an asymmetrical diamine containing piperazine moiety and related Zn(II), Cd(II) and Mn(II) macrocyclic schif base complexes. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108443] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Parsekar SU, Velankanni P, Sridhar S, Haldar P, Mate NA, Banerjee A, Sudhadevi Antharjanam PK, Koley AP, Kumar M. Protein binding studies with human serum albumin, molecular docking and in vitro cytotoxicity studies using HeLa cervical carcinoma cells of Cu(ii)/Zn(ii) complexes containing a carbohydrazone ligand. Dalton Trans 2020; 49:2947-2965. [PMID: 32073070 DOI: 10.1039/c9dt04656a] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The interaction of two binuclear mixed ligand Cu(ii) complexes [Cu(o-phen)LCu(OAc)] (1) and [Cu(o-phen)LCu(o-phen)](OAc) (2) (H3L = o-HOC6H4C(H)[double bond, length as m-dash]N-NH-C(OH)[double bond, length as m-dash]N-N[double bond, length as m-dash]C(H)-C6H4OH-o) and a new mononuclear Zn(ii) complex [Zn(HL)(o-phen)(H2O)](OAc)·H2O (3) (H2L = o-HOC6H4-C(H)[double bond, length as m-dash]N-NH-C([double bond, length as m-dash]O)-NH-N[double bond, length as m-dash]C(H)-C6H4OH-o, o-phen = 1,10-phenanthroline, and OAc = CH3COO-) with human serum albumin (HSA) was studied using fluorescence quenching, synchronous and 3D fluorescence measurements and UV-vis spectroscopy. 3D fluorescence studies showed that the HSA structure was altered at the secondary and tertiary levels upon binding with the complexes. This was further supported by the electronic absorption spectral studies of HSA in the absence and presence of the compounds. The average binding distance (r) between HSA and the complexes was obtained by Förster's resonance energy transfer theory. Complex 3 was structurally characterized by X-ray crystallography. Molecular docking studies indicated that all three complexes primarily bind to HSA in subdomain IIA with amino acid residues such as Arg218 and Lys199 which are located at the entrance of Sudlow's site I. The in vitro cytotoxicities of complexes 1-3 against HeLa cells showed promising anticancer activity (IC50 = 3.5, 3.9 and 16.9 μM for 1, 2 and 3, respectively). Live cell time lapse imaging for 1 was done to capture the dynamic behavior of the cells upon treatment with the complex. Cell cycle analysis by flow cytometry with HeLa cells indicated that 1 and 2 induced cell cycle arrest in the G2/M phase while 3 induced arrest in the G0/G1 phase leading to cell death. Compounds 1 and 2 but not 3 induced apoptosis through the mitochondrial pathway as suggested from the relative p53, caspase3 and bcl2 mRNA levels measured by real-time quantitative PCR analysis.
Collapse
Affiliation(s)
- Sidhali U Parsekar
- Department of Chemical Engineering, Birla Institute of Technology and Science-Pilani, K. K. Birla Goa Campus, Zuarinagar, Goa 403726, India.
| | - Priyanka Velankanni
- Department of Chemical Engineering, Birla Institute of Technology and Science-Pilani, K. K. Birla Goa Campus, Zuarinagar, Goa 403726, India.
| | - Shruti Sridhar
- Department of Chemical Engineering, Birla Institute of Technology and Science-Pilani, K. K. Birla Goa Campus, Zuarinagar, Goa 403726, India. and Department of Biological Sciences, Birla Institute of Technology and Science-Pilani, K. K. Birla Goa Campus, Goa 403 726, India
| | - Paramita Haldar
- Department of Chemical Engineering, Birla Institute of Technology and Science-Pilani, K. K. Birla Goa Campus, Zuarinagar, Goa 403726, India.
| | - Nayan A Mate
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani, K. K. Birla Goa Campus, Goa 403 726, India
| | - Arnab Banerjee
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani, K. K. Birla Goa Campus, Goa 403 726, India
| | - P K Sudhadevi Antharjanam
- Sophisticated Analytical Instrument Facility, Indian Institute of Technology-Madras, Chennai 600 036, India
| | - Aditya P Koley
- Department of Chemistry, Birla Institute of Technology and Science-Pilani, K.K. Birla Goa Campus, Zuarinagar, Goa 403 726, India.
| | - Manjuri Kumar
- Department of Chemical Engineering, Birla Institute of Technology and Science-Pilani, K. K. Birla Goa Campus, Zuarinagar, Goa 403726, India.
| |
Collapse
|
12
|
Keypour H, Ansari N, Mahmoudabadi M, Karamian R, Moazzami Farida SH, Eslami Moghadam M, William Gable R. Mn(III), Zn(II) and Pt(II) macroacyclic complexes: Synthesis, X-ray structures, anticancer and antioxidant activities. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119705] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Topić E, Landripet I, Duguin M, Pisk J, Đilović I, Vrdoljak V, Rubčić M. Coordinating and supramolecular prospects of unsymmetrically substituted carbohydrazides. NEW J CHEM 2020. [DOI: 10.1039/d0nj03106b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Unsymmetrically substituted carbohydrazides serve as multifunctional ligands, practicing their chelating and supramolecular roles with cis-dioxomolybdenum(vi) cationic core and the Lindqvist anion.
Collapse
Affiliation(s)
- Edi Topić
- University of Zagreb
- Faculty of Science
- Department of Chemistry
- 10000 Zagreb
- Croatia
| | - Ivana Landripet
- Ruđer Bošković Institute
- Division of Materials Chemistry
- 10000 Zagreb
- Croatia
| | - Maëlle Duguin
- INP-ENSIACET
- 31030 Toulouse
- France
- Sleever Technologies
- ZA Gabor
| | - Jana Pisk
- University of Zagreb
- Faculty of Science
- Department of Chemistry
- 10000 Zagreb
- Croatia
| | - Ivica Đilović
- University of Zagreb
- Faculty of Science
- Department of Chemistry
- 10000 Zagreb
- Croatia
| | - Višnja Vrdoljak
- University of Zagreb
- Faculty of Science
- Department of Chemistry
- 10000 Zagreb
- Croatia
| | - Mirta Rubčić
- University of Zagreb
- Faculty of Science
- Department of Chemistry
- 10000 Zagreb
- Croatia
| |
Collapse
|
14
|
Efficient hydrolytic cleavage of DNA and antiproliferative effect on human cancer cells by two dinuclear Cu(II) complexes containing a carbohydrazone ligand and 1,10-phenanthroline as a coligand. J Biol Inorg Chem 2019; 24:343-363. [DOI: 10.1007/s00775-019-01651-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 01/29/2019] [Indexed: 12/21/2022]
|
15
|
Elamathi C, Butcher R, Prabhakaran R. Anomalous coordination behaviour of 6-methyl-2-oxo-1,2-dihydroquinoline-3-carboxaldehyde-4(N)-substituted Schiff bases in Cu(II) complexes: Studies of structure, biomolecular interactions and cytotoxicity. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4659] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- C. Elamathi
- Department of Chemistry; Bharathiar University; Coimbatore 641 046 India
| | - Ray Butcher
- Department of Inorganic and Structural Chemistry; Howard University; Washington DC 20059 USA
| | - R. Prabhakaran
- Department of Chemistry; Bharathiar University; Coimbatore 641 046 India
| |
Collapse
|
16
|
Ahmadi F, Shabrandi N, Hosseinzadeh L, Azizian H. Two DNA binding modes of a zinc-metronidazole and biological evaluation as a potent anti-cancer agent. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2019; 38:449-480. [PMID: 30689502 DOI: 10.1080/15257770.2018.1562073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A complex of metronidazole (MTZ) with zinc ion was synthesized and characterized by UV-Vis, Fourier transform infrared (FT-IR), 1H-NMR, X-ray crystallography and thermal gravimetric-differential thermal analysis (TG-DTA). The cytotoxicity effect of the synthesized complex investigated over SKNMC, A549, MCF-7, and MCDK cell lines and the results have shown that it has high cytotoxic potential over cancer cell lines. In order to clarify the mechanism of cell cytotoxicity, the oxidative stress and binding of the complex to the calf thymus-DNA studied by evaluating the intrinsic binding constant and defining thermodynamic parameters of complex over the DNA accompanying with in silico molecular modeling method. For this purpose, the complex optimized at the B3LYP/LANL2DZ level and docked over the DNA structure. The results revealed that the metronidazole-zinc complex interacted with DNA via hydrogen binding and electrostatic interaction to the minor groove region and phosphate backbone of DNA, respectively.
Collapse
Affiliation(s)
- Farhad Ahmadi
- a Department of Medicinal Chemistry Faculty of Pharmacy , Kermanshah University of Medical Sciences , Kermanshah , Iran.,b Physiology Research Center Iran University of Medical Sciences , Tehran , Iran.,c Department of Medicinal Chemistry Faculty of Pharmacy-International Campus , Iran University of Medical Sciences , Tehran , Iran
| | - Nosaibeh Shabrandi
- a Department of Medicinal Chemistry Faculty of Pharmacy , Kermanshah University of Medical Sciences , Kermanshah , Iran
| | - Leilah Hosseinzadeh
- d Student Research Committee, Faculty of Pharmacy , Kermanshah University of Medical Sciences , Kermanshah , Iran
| | - Homa Azizian
- c Department of Medicinal Chemistry Faculty of Pharmacy-International Campus , Iran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
17
|
Ribeiro N, Galvão AM, Gomes CSB, Ramos H, Pinheiro R, Saraiva L, Ntungwe E, Isca V, Rijo P, Cavaco I, Ramilo-Gomes F, Guedes RC, Pessoa JC, Correia I. Naphthoylhydrazones: coordination to metal ions and biological screening. NEW J CHEM 2019. [DOI: 10.1039/c9nj01816f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
VIVO, CuII and ZnII complexes from three new naphthoylhydrazones were screened towards their ability to bind albumin and their cytotoxicity.
Collapse
|
18
|
Kumar M, Parsekar SU, Duraipandy N, Kiran MS, Koley AP. Synthesis, DNA binding and in vitro cytotoxicity studies of a mononuclear copper(II) complex containing N2S(thiolate)Cu core and 1,10-phenanthroline as a coligand. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2018.09.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
19
|
Fetoh A, Salah Z, Abu El-Reash GM. Structural studies and biological evaluation of Co (II), Ni (II) and Cu (II) complexes of carbohydrazone derived from ethyl acetoacetate in addition to crystallographic description of La (III) or Sm (III) catalytic activity abnormal product. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ahmed Fetoh
- Department of Chemistry, Faculty of Science; Mansoura University; Mansoura Egypt
| | - Zeinab Salah
- Department of Chemistry, Faculty of Science; Mansoura University; Mansoura Egypt
| | | |
Collapse
|
20
|
Wu Y, Huang Y, Wang Y, Zou X, Wang J, Wu W. A regenerable zinc(II) coordination polymer as a dual-luminescent sensor for detection of Cr2O72– and 2,4,6-trinitrophenol in aqueous phase. J COORD CHEM 2018. [DOI: 10.1080/00958972.2018.1536784] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Yu Wu
- College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong, P. R. China
| | - Yun Huang
- College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong, P. R. China
| | - Yulan Wang
- College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong, P. R. China
| | - Xiang Zou
- College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong, P. R. China
| | - Jun Wang
- College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong, P. R. China
| | - Weiping Wu
- College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong, P. R. China
| |
Collapse
|
21
|
Majumder I, Chakraborty P, Álvarez R, Gonzalez-Diaz M, Peláez R, Ellahioui Y, Bauza A, Frontera A, Zangrando E, Gómez-Ruiz S, Das D. Bioactive Heterometallic Cu II-Zn II Complexes with Potential Biomedical Applications. ACS OMEGA 2018; 3:13343-13353. [PMID: 30411036 PMCID: PMC6217631 DOI: 10.1021/acsomega.8b01260] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/03/2018] [Indexed: 05/09/2023]
Abstract
A series of multinuclear heterometallic Cu-Zn complexes of molecular formula [(CuL)2Zn(dca)2] (1), [(CuL)2Zn(NO3)2] (2), [(CuL)2Zn2(Cl)4] (3), and [(CuL)2Zn2(NO2)4] (4) have been synthesized by reacting [CuL] as a "metalloligand (ML)" (where HL = N,N'-bis(5-chloro-2-hydroxybenzylidene)-2,2-dimethylpropane-1,3-diamine) and by varying the anions or coligands using the same molar ratios of the reactants. All of the four products including the ML have been characterized by infrared and UV-vis spectroscopies and elemental and single-crystal X-ray diffraction analyses. By varying the anions, different structures and topologies are obtained which we have tried to rationalize by means of thorough density functional theory calculations. All of the complexes (1-4) have now been applied for several biological investigations to verify their therapeutic worth. First, their cytotoxicity properties were assessed against HeLa human cervical carcinoma along with the determination of IC50 values. The study was extended with extensive DNA and protein binding experiments followed by detailed fluorescence quenching study with suitable reagents to comprehend the mechanistic pathway. From all of these biological studies, it has been found that all of these heterometallic complexes show more than a few fold improvement of their therapeutic values as compared to the similar homometallic ones probably because of the simultaneous synergic effect of copper and zinc. Among all of the four heterometallic complexes, complex 3 exhibits highest binding constants and IC50 values suggest for their better interaction toward the biological targets and hence have better clinical importance.
Collapse
Affiliation(s)
- Ishani Majumder
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Prateeti Chakraborty
- Department of Chemistry, Bangabasi College, 19, Rajkumar Chakraborty Sarani, Kolkata 700009, India
| | - Raquel Álvarez
- Department of Pharmaceutical Sciences, CIETUS and IBSAL, Faculty of Pharmacy, University of Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain
| | - Myriam Gonzalez-Diaz
- Department of Pharmaceutical Sciences, CIETUS and IBSAL, Faculty of Pharmacy, University of Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain
| | - Rafael Peláez
- Department of Pharmaceutical Sciences, CIETUS and IBSAL, Faculty of Pharmacy, University of Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain
| | - Younes Ellahioui
- Departamento de Biología y Geología, Física y Química Inorgánica, ESCET, Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles, Madrid, Spain
| | - Antonio Bauza
- Departament de Química, Universitat de les Illes Balears, Crta. De Valldemossa km 7.5, 07122 Palma, Baleares, Spain
| | - Antonio Frontera
- Departament de Química, Universitat de les Illes Balears, Crta. De Valldemossa km 7.5, 07122 Palma, Baleares, Spain
| | - Ennio Zangrando
- Dipartimento di Scienze Chimiche, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Santiago Gómez-Ruiz
- Departamento de Biología y Geología, Física y Química Inorgánica, ESCET, Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles, Madrid, Spain
| | - Debasis Das
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| |
Collapse
|
22
|
Parsekar SU, Fernandes J, Banerjee A, Chouhan OP, Biswas S, Singh M, Mishra DP, Kumar M. DNA binding, cleavage and cytotoxicity studies of three mononuclear Cu(II) chloro-complexes containing N–S donor Schiff base ligands. J Biol Inorg Chem 2018; 23:1331-1349. [DOI: 10.1007/s00775-018-1620-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/02/2018] [Indexed: 12/27/2022]
|
23
|
Koley MK, Parsekar SU, Duraipandy N, Kiran MS, Varghese B, Manoharan PT, Koley AP. DNA binding and cytotoxicity of two Cu(II) complexes containing a Schiff base ligand along with 1,10-phenanthroline or imidazole as a coligand. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.04.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
24
|
Azarkish M, Akbari A, Sedaghat T, Simpson J. Ternary complexes of Zn(II) and Cu(II) with 1-((2-hydroxynaphthalen-1-yl)methylene)-4-phenylthiosemicarbazide in the presence of heterocyclic bases as auxiliary ligands: Synthesis, spectroscopic and structural characterization and antibacterial activity. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2017.11.080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|