1
|
Wang C, Wang D, Xu T, Zhang Q, Fu Z. Effect of N-Aryl Para-Benzhydryl Substituent on the Thermal Stability of α-Diimine Nickel Catalyst. Macromol Rapid Commun 2023; 44:e2300221. [PMID: 37293788 DOI: 10.1002/marc.202300221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/18/2023] [Indexed: 06/10/2023]
Abstract
The thermal stability of α-diimine nickel catalysts has always been the focus of research. The introduction of large groups in the backbone or N-aryl ortho-position is a relatively mature solution. However, the question of whether the N-aryl bond rotation is a factor affecting the thermal stability of nickel catalysts is still open. In this work, the effects of N-aryl para-benzhydryl substitutes on catalyst thermal stability are investigated, and the results of ethylene polymerization and the factors affecting thermal stability (steric effect, electronic effect, five-membered coordination ring stability, N-aryl bond rotation, etc.) are systematically analyzed. It is believed that the introduction of large steric hindrance groups at the N-aryl para-position hinders the rotation of the N-aryl bond. This obstacle effect is beneficial to improving catalyst thermal stability, and the obstacle capacity is weakened with the increase of ortho-substituent size.
Collapse
Affiliation(s)
- Cheng Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, P. R. China
- ZJU-Hangzhou Xinglu High-end Polyolefin Research & Development Center, Hangzhou, 310058, P. R. China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Hangzhou, 310058, P. R. China
| | - Dan Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, P. R. China
| | - Tao Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, P. R. China
- ZJU-Hangzhou Xinglu High-end Polyolefin Research & Development Center, Hangzhou, 310058, P. R. China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Hangzhou, 310058, P. R. China
- Hangzhou Xinglu Technologies Co. Ltd., Hangzhou, 310012, P. R. China
| | - Qisheng Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, P. R. China
| | - Zhisheng Fu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, P. R. China
- ZJU-Hangzhou Xinglu High-end Polyolefin Research & Development Center, Hangzhou, 310058, P. R. China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Hangzhou, 310058, P. R. China
| |
Collapse
|
2
|
Zheng H, Pei L, Deng H, Gao H, Gao H. Electronic effects of amine-imine nickel and palladium catalysts on ethylene (co)polymerization. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2022.111773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
3
|
Slurry Homopolymerization of Ethylene Using Thermostable α-Diimine Nickel Catalysts Covalently Linked to Silica Supports via Substituents on Acenaphthequinone-Backbone. Polymers (Basel) 2022; 14:polym14173684. [PMID: 36080759 PMCID: PMC9459716 DOI: 10.3390/polym14173684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/18/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Four supported α-diimine nickel(II) catalysts covalently linked to silica via hydroxyl functionality on α-diimine acenaphthequinone-backbone were prepared and used in slurry polymerizations of ethylene to produce branched polyethylenes. The catalytic activities of these still reached 106 g/molNi·h at 70 °C. The life of the supported catalyst is prolonged, as can be seen from the kinetic profile. The molecular weight of the polyethylene obtained by the 955 silica gel supported catalyst was higher than that obtained by the 2408D silica gel supported catalyst. The melting points of polyethylene obtained by the supported catalysts S-C1-a/b are all above 110 °C. Compared with the homogeneous catalyst, the branching numbers of the polyethylenes obtained by the supported catalysts S-C1-a/b is significantly lower. The polyethylenes obtained by supported catalyst S-C1-a/b at 30-50 °C are free-flowing particles, which is obviously better than the rubber-like cluster polymer obtained from homogeneous catalyst.
Collapse
|
4
|
Wang C, Wang D, Fu Z, Qin Y, Zhang Q, Fan Z. Combining 1,2-diketopyracene with bulky benzhydryl-substituted anilines to obtain highly active α-diimine nickel catalysts at elevated temperature. J Catal 2022. [DOI: 10.1016/j.jcat.2022.06.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Effect of alkylaluminum structure and aggregation state on the micro-kinetics of ethylene polymerization catalyzed by α-diimine nickel complex. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Zhu L, Yu H, Wang L, Xing Y, Bilal Ul Amin. Advances in the Synthesis of Polyolefin Elastomers with “Chain-walking” Catalysts and Electron Spin Resonance Research of Related Catalytic Systems. CURR ORG CHEM 2021. [DOI: 10.2174/1385272825666210126100641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In recent years, polyolefin elastomers play an increasingly important role in industry.
The late transition metal complex catalysts, especially α-diimine Ni(II) and α-diimine
Pd(II) complex catalysts, are popular “chain-walking” catalysts. They can prepare polyolefin
with various structures, ranging from linear configuration to highly branched configuration.
Combining the “chain-walking” characteristic with different polymerization strategies, polyolefins
with good elasticity can be obtained. Among them, olefin copolymer is a common
way to produce polyolefin elastomers. For instance, strictly defined diblock or triblock copolymers
with excellent elastic properties were synthesized by adding ethylene and α-olefin
in sequence. As well as the incorporation of polar monomers may lead to some unexpected
improvement. Chain shuttling polymerization can generate multiblock copolymers in one pot
due to the interaction of the catalysts with chain shuttling agent. Furthermore, when regarding ethylene as the sole
feedstock, owing to the “oscillation” of the ligands of the asymmetric catalysts, polymers with stereo-block structures
can be generated. Generally, the elasticity of these polyolefins mainly comes from the alternately crystallineamorphous
block structures, which is closely related to the characteristic of the catalytic system. To improve performance
of the catalysts and develop excellent polyolefin elastomers, research on the catalytic mechanism is of great
significance. Electron spin resonance (ESR), as a precise method to detect unpaired electron, can be applied to study
transition metal active center. Therefore, the progress on the exploration of the valence and the proposed configuration
of catalyst active center in the catalytic process by ESR is also reviewed.
Collapse
Affiliation(s)
- Lei Zhu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Haojie Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Li Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yusheng Xing
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Bilal Ul Amin
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
7
|
Moskalev MV, Razborov DA, Skatova AA, Bazanov AA, Fedushkin IL. Alkali Metal Reduction of 1,2‐Bis[(2,6‐dibenzhydryl‐4‐methylphenyl)imino]acenaphthene (Ar
BIG
‐bian) to Radical‐Anion. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202000909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Mikhail V. Moskalev
- G.A. Razuvaev Institute of Organometallic Chemistry Russian Academy of Sciences Tropinina Str. 49 603137 Nizhny Novgorod Russian Federation
| | - Danila A. Razborov
- G.A. Razuvaev Institute of Organometallic Chemistry Russian Academy of Sciences Tropinina Str. 49 603137 Nizhny Novgorod Russian Federation
| | - Alexandra A. Skatova
- G.A. Razuvaev Institute of Organometallic Chemistry Russian Academy of Sciences Tropinina Str. 49 603137 Nizhny Novgorod Russian Federation
| | - Andrey A. Bazanov
- G.A. Razuvaev Institute of Organometallic Chemistry Russian Academy of Sciences Tropinina Str. 49 603137 Nizhny Novgorod Russian Federation
| | - Igor L. Fedushkin
- G.A. Razuvaev Institute of Organometallic Chemistry Russian Academy of Sciences Tropinina Str. 49 603137 Nizhny Novgorod Russian Federation
| |
Collapse
|
8
|
Ali A, Muhammad N, Hussain S, Jamil MI, Uddin A, Aziz T, Tufail MK, Guo Y, Wei T, Rasool G, Fan Z, Guo L. Kinetic and Thermal Study of Ethylene and Propylene Homo Polymerization Catalyzed by ansa-Zirconocene Activated with Alkylaluminum/Borate: Effects of Alkylaluminum on Polymerization Kinetics and Polymer Structure. Polymers (Basel) 2021; 13:268. [PMID: 33467427 PMCID: PMC7830494 DOI: 10.3390/polym13020268] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 11/24/2022] Open
Abstract
The kinetics of ethylene and propylene polymerization catalyzed by homogeneous metallocene were investigated using 2-thiophenecarbonyl chloride followed by quenched-flow methods. The studied metallocene catalysts are: rac-Me2Si(2-Me-4-Ph-Ind)2ZrCl2 (Mt-I), rac-Et(Ind)2ZrCl2 (Mt-II) activated with ([Me2NPh][B(C6F5)4] (Borate-I), [Ph3C][B(C6F5)4] (Borate-II), and were co-catalyzed with different molar ratios of alkylaluminum such as triethylaluminium (TEA) and triisobutylaluminium (TIBA). The change in molecular weight, molecular weight distribution, microstructure and thermal properties of the synthesized polymer are discussed in detail. Interestingly, both Mt-I and Mt-II showed high activity in polyethylene with productivities between 3.17 × 106 g/molMt·h to 5.06 × 106 g/molMt·h, activities were very close to each other with 100% TIBA, but Mt-II/borate-II became more active when TEA was more than 50% in cocatalyst. Similarly, Polypropylene showed the highest activity of 11.07 106 g /molMt·h with Mt-I/Borate-I/TIBA. The effects of alkylaluminum on PE molecular weight were much more complicated; MWD curve changed from mono-modal in Mt-I/borate-I/TIBA to bimodal type when TIBA was replaced by different amounts of TEA. In PE, the active center fractions [C*]/[Zr] of Mt-I/borate were higher than that of Mt-II/borate and average chain propagation rate constant (k p) value slightly decreased with the increase of TEA/TIBA ratio, but the Mt-II/borate systems showed higher k p 1007 k p (L/mol·s). In PP, the Mt-I/borate presented much higher [C*]/[Zr] and k p value than the Mt-II. This work also extend to investigate the mechanistic features of zirconocenes catalyzed olefin polymerizations that addressed the largely unknown issues in zirconocenes in the distribution of the catalyst, between species involved in polymer chain growth and dormant state. In both metallocene systems, chain transfer with alkylaluminum is the dominant way of chain termination. To understand the mechanism of cocatalyst effects on PE Mw and (MWD), the unsaturated chain ends formed via β-H transfer have been investigated by 1H NMR analysis.
Collapse
Affiliation(s)
- Amjad Ali
- Research School of Polymeric Materials, School of Material Science & Engineering, Jiangsu University, Zhenjiang 202113, China; (A.A.); (S.H.); (T.W.)
| | - Nadeem Muhammad
- Department of Enviromental Engineering, Wuhan University of Technology, Wuhan 430223, China; (N.M.); (M.K.T.); (G.R.)
| | - Shahid Hussain
- Research School of Polymeric Materials, School of Material Science & Engineering, Jiangsu University, Zhenjiang 202113, China; (A.A.); (S.H.); (T.W.)
| | - Muhammad Imran Jamil
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China; (M.I.J.); (A.U.); (T.A.); (Y.G.)
| | - Azim Uddin
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China; (M.I.J.); (A.U.); (T.A.); (Y.G.)
| | - Tariq Aziz
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China; (M.I.J.); (A.U.); (T.A.); (Y.G.)
| | - Muhammad Khurram Tufail
- Department of Enviromental Engineering, Wuhan University of Technology, Wuhan 430223, China; (N.M.); (M.K.T.); (G.R.)
| | - Yintian Guo
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China; (M.I.J.); (A.U.); (T.A.); (Y.G.)
| | - Tiantian Wei
- Research School of Polymeric Materials, School of Material Science & Engineering, Jiangsu University, Zhenjiang 202113, China; (A.A.); (S.H.); (T.W.)
| | - Ghulam Rasool
- Department of Enviromental Engineering, Wuhan University of Technology, Wuhan 430223, China; (N.M.); (M.K.T.); (G.R.)
| | - Zhiqiang Fan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China; (M.I.J.); (A.U.); (T.A.); (Y.G.)
| | - Li Guo
- Research School of Polymeric Materials, School of Material Science & Engineering, Jiangsu University, Zhenjiang 202113, China; (A.A.); (S.H.); (T.W.)
| |
Collapse
|
9
|
Zheng H, Zhong L, Du C, Du W, Cheung CS, Ruan J, Gao H. Combining hydrogen bonding interactions with steric and electronic modifications for thermally robust α-diimine palladium catalysts toward ethylene (co)polymerization. Catal Sci Technol 2021. [DOI: 10.1039/d0cy01617a] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Thermally robust α-diimine palladium catalysts are highly active for ethylene (co)polymerization at high temperatures by steric and electronic modifications in combination with hydrogen bonding interactions.
Collapse
Affiliation(s)
- Handou Zheng
- School of Materials Science and Engineering
- PCFM Lab
- GD HPPC Lab
- Sun Yat-sen University
- Guangzhou 510275
| | - Liu Zhong
- School of Materials Science and Engineering
- PCFM Lab
- GD HPPC Lab
- Sun Yat-sen University
- Guangzhou 510275
| | - Cheng Du
- School of Materials Science and Engineering
- PCFM Lab
- GD HPPC Lab
- Sun Yat-sen University
- Guangzhou 510275
| | - Wenbo Du
- School of Materials Science and Engineering
- PCFM Lab
- GD HPPC Lab
- Sun Yat-sen University
- Guangzhou 510275
| | - Chi Shing Cheung
- School of Materials Science and Engineering
- PCFM Lab
- GD HPPC Lab
- Sun Yat-sen University
- Guangzhou 510275
| | - Jingjing Ruan
- School of Materials Science and Engineering
- PCFM Lab
- GD HPPC Lab
- Sun Yat-sen University
- Guangzhou 510275
| | - Haiyang Gao
- School of Materials Science and Engineering
- PCFM Lab
- GD HPPC Lab
- Sun Yat-sen University
- Guangzhou 510275
| |
Collapse
|
10
|
Yuan S, Fan Z, Zhang Q, Flisak Z, Ma Y, Sun Y, Sun W. Enhancing performance of α‐diiminonickel precatalyst for ethylene polymerization by substitution with the 2,4‐bis(4,4'‐dimethoxybenzhydryl)‐6‐methylphenyl group. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shi‐Fang Yuan
- Institute of Applied Chemistry and The School of Chemistry and Chemical EngineeringShanxi University Taiyuan 030006 China
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular SciencesInstitute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Zhe Fan
- Institute of Applied Chemistry and The School of Chemistry and Chemical EngineeringShanxi University Taiyuan 030006 China
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular SciencesInstitute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Qiuyue Zhang
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular SciencesInstitute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Zygmunt Flisak
- Faculty of ChemistryUniversity of Opole Oleska 48 45‐052 Opole Poland
| | - Yanping Ma
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular SciencesInstitute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Yang Sun
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular SciencesInstitute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Wen‐Hua Sun
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular SciencesInstitute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- Key Laboratory of High‐Performance Synthetic Rubber and Its Composite Materials, Changchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
| |
Collapse
|
11
|
Moskalev MV, Razborov DA, Koptseva TS, Skatova AA, Rumyantcev RV, Fedushkin IL. Crystal Structures of 1,2-bis[(2,6-Dibenzhydryl-4-Methylphenyl)Imino]Acenaphthene. J STRUCT CHEM+ 2020. [DOI: 10.1134/s002247662002016x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Recent progress in preparation of branched polyethylene with nickel, titanium, vanadium and chromium catalytic systems and EPR study of related catalytic systems. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.109339] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|