1
|
Trerotola A, Gravina G, Vykhovanets V, Blal N, Guarnieri D, Maranzana A, Lamberti M, Mazzeo M, Strianese M. Fluorescent half-salen phenoxy-imine zinc complexes to reveal exogenous and endogenous H 2S. J Inorg Biochem 2025; 267:112875. [PMID: 40043349 DOI: 10.1016/j.jinorgbio.2025.112875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/16/2025] [Accepted: 02/26/2025] [Indexed: 03/15/2025]
Abstract
In this contribution, the synthesis and the reactivity with HS- of a family of half-salen Zn complexes are reported. We provide evidence that HS- binds the zinc center of all the complexes under investigation. DFT and CCSD(T) calculations were performed to model the reactivity of these complexes with HS-. We successfully applied a homoleptic zinc complex bearing a Schiff-based ligand with pyridine pendant arms as a probe for the monitoring of exogenous and endogenous H2S levels in live cells.
Collapse
Affiliation(s)
- Alessio Trerotola
- Dipartimento di Chimica e Biologia "Adolfo Zambelli" and INSTM Research Unit, Università degli Studi di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Giuseppe Gravina
- Dipartimento di Chimica e Biologia "Adolfo Zambelli" and INSTM Research Unit, Università degli Studi di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Viktoriia Vykhovanets
- Dipartimento di Chimica e Biologia "Adolfo Zambelli" and INSTM Research Unit, Università degli Studi di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Naym Blal
- Dipartimento di Chimica e Biologia "Adolfo Zambelli" and INSTM Research Unit, Università degli Studi di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Daniela Guarnieri
- Dipartimento di Chimica e Biologia "Adolfo Zambelli" and INSTM Research Unit, Università degli Studi di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Andrea Maranzana
- Dipartimento di Chimica, Università di Torino, via Pietro Giuria 7, I-10125 Torino, TO, Italy
| | - Marina Lamberti
- Dipartimento di Chimica e Biologia "Adolfo Zambelli" and INSTM Research Unit, Università degli Studi di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Mina Mazzeo
- Dipartimento di Chimica e Biologia "Adolfo Zambelli" and INSTM Research Unit, Università degli Studi di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Maria Strianese
- Dipartimento di Chimica e Biologia "Adolfo Zambelli" and INSTM Research Unit, Università degli Studi di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy.
| |
Collapse
|
2
|
Kamali S, Orojloo M, Amani S. Design and synthesis of a novel chemosensor for simultaneous detection of CN−, HCO3− and AcO− anions and Fe2+ cation in an organic-aqueous environment: An experimental and Density Functional Theory studies. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
3
|
Park S, Choe D, Lee JJ, Kim C. A benzyl carbazate-based colorimetric chemosensor for relay detection of Cu2+ and S2− in near-perfect aqueous media. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
4
|
Strianese M, Pappalardo D, Mazzeo M, Lamberti M, Pellecchia C. Salen-type aluminum and zinc complexes as two-faced Janus compounds: contribution to molecular sensing and polymerization catalysis. Dalton Trans 2020; 49:16533-16550. [PMID: 33140763 DOI: 10.1039/d0dt02639e] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The aim of the present review is to highlight the most recent achievements in different fields of application of salen-based zinc and aluminum complexes. More specifically this article focuses on the use of aluminum and zinc salen-type complexes as optical probes for biologically relevant molecules, as catalysts for the ring opening polymerization (ROP) of cyclic esters and co-polymerization of epoxides and anhydrides (ROCOP) and in the chemical fixation of carbon dioxide (CO2). The intention is to provide an overview of the most recent results from our group within the framework of the state-of-art-results in the literature.
Collapse
Affiliation(s)
- Maria Strianese
- Dipartimento di Chimica e Biologia "Adolfo Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy.
| | | | | | | | | |
Collapse
|
5
|
Junaid HM, Batool M, Harun FW, Akhter MS, Shabbir N. Naked Eye Chemosensing of Anions by Schiff Bases. Crit Rev Anal Chem 2020; 52:463-480. [DOI: 10.1080/10408347.2020.1806703] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | - Madeeha Batool
- Institute of Chemistry, University of the Punjab, Lahore, Pakistan
| | - Farah Wahida Harun
- Faculty of Science and Technology, Universiti Sains Islam Malaysia, Nilai, Negeri Sembilan, Malaysia
| | | | - Nabila Shabbir
- Institute of Chemistry, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
6
|
Naha S, Thirumalaivasan N, Garai S, Wu SP, Velmathi S. Nanomolar Detection of H 2S in an Aqueous Medium: Application in Endogenous and Exogenous Imaging of HeLa Cells and Zebrafish. ACS OMEGA 2020; 5:19896-19904. [PMID: 32803086 PMCID: PMC7424736 DOI: 10.1021/acsomega.0c02963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 07/17/2020] [Indexed: 06/11/2023]
Abstract
The homeostasis of short-lived reactive species such as hydrogen sulfide/hypochlorous acid (H2S/HOCl) in biological systems is essential for maintaining intercellular balance. An unchecked increase in biological H2S concentrations impedes homeostasis. In this report, we present a molecular probe pyrene-based sulfonyl hydrazone derived from pyrene for the selective detection of H2S endogenously as well as exogenously through a "turn-off" response in water. The structure of the receptor is confirmed by Fourier-transform infrared spectroscopy, 1H and 13C nuclear magnetic resonance spectroscopy, electrospray ionization mass spectrometry, and single-crystal X-ray diffraction studies. The receptor shows excellent green emission in both the aqueous phase and solid state. Quenching of green emission of the receptor is observed only when H2S is present in water with a detection limit of 18 nM. Other competing anions and cations do not have any influence on the receptor's optical properties. The efficiency of H2S detection is not negatively impacted by other reactive sulfur species too. The sensing mechanism of H2S follows a chemodosimetric reductive elimination of sulfur dioxide, which is supported by product isolation. The receptor is found to be biocompatible, as evident by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, and its utility is extended to endogenous and exogenous fluorescence imaging of HeLa cells and zebrafish.
Collapse
Affiliation(s)
- Sanay Naha
- Department
of Chemistry, National Institute of Technology
Tiruchirappalli, Tiruchirappalli 620015, India
| | | | - Somenath Garai
- Department
of Chemistry, National Institute of Technology
Tiruchirappalli, Tiruchirappalli 620015, India
| | - Shu-Pao Wu
- Department
of Applied Chemistry, National Chiao Tung
University, Hsinchu 30010, Taiwan
| | - Sivan Velmathi
- Department
of Chemistry, National Institute of Technology
Tiruchirappalli, Tiruchirappalli 620015, India
| |
Collapse
|
7
|
Parchegani F, Orojloo M, Zendehdel M, Amani S. Simultaneous measurement of hydrogen carbonate and acetate anions using biologically active receptor based on azo derivatives of naphthalene. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 229:117925. [PMID: 31846855 DOI: 10.1016/j.saa.2019.117925] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 12/01/2019] [Accepted: 12/06/2019] [Indexed: 06/10/2023]
Abstract
A novel receptor based on azo-derivatives of 1-naphthylamine (2-((E)-((4-chloro-3-(trifluoromethyl)phenyl)imino)methyl)-4-((E)-naphthalene-1-yldiazenyl)phenol(2) abbreviated CTNP was successfully designed and synthesized. Its sensing properties were studied deeply. Systematic studies of CTNP with HCO3- and AcO- anions in DMSO disclosed that there is hydrogen-bonding between CTNP and incoming anions. Significant changes in the visible region of the spectrum, as well as a drastic color change of CTNP from pale yellow to red, observed due to interaction as mentioned earlier. The stoichiometry of [CTNP: HCO3- or AcO-] complexes and association constants determined through Job's method and Benesi-Hildebrand (B-H) plot, respectively. Taking into account the analysis results, CTNP performs the selective recognition of sub-millimolar concentrations of HCO3- and AcO- efficiently. The antifungal activity of the receptor was tested against Aspergillus brasiliensis and Aspergillus niger. CTNP exhibited excellent antifungal activity against both strains. CTNP also represented antibacterial activity against Gram-positive bacteria: Staphylococcus epidermidis. It was cleared that designed receptor can be applied under physiological conditions for a long duration.
Collapse
Affiliation(s)
- Fatemeh Parchegani
- Chemistry Department, Faculty of Sciences, Arak University, Dr. Beheshti Ave., Arak 38156-88349, Iran
| | - Masoumeh Orojloo
- Chemistry Department, Faculty of Sciences, Arak University, Dr. Beheshti Ave., Arak 38156-88349, Iran
| | - Mojgan Zendehdel
- Chemistry Department, Faculty of Sciences, Arak University, Dr. Beheshti Ave., Arak 38156-88349, Iran
| | - Saeid Amani
- Chemistry Department, Faculty of Sciences, Arak University, Dr. Beheshti Ave., Arak 38156-88349, Iran.
| |
Collapse
|