1
|
Naeimi K, Bayat M, Alavi Pour E. Trinuclear cylinder-like potential anticancer and antibacterial Cu(i), Ag(i) and Au(i) nano-sized cationic complexes with tris-NHC ligands: cationic M 3 metal cluster displaying positive or negative cooperativity in triad [L 2(R) 6→M 3] 3+ complexes? RSC Adv 2025; 15:6742-6752. [PMID: 40027587 PMCID: PMC11869827 DOI: 10.1039/d4ra08514k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/24/2025] [Indexed: 03/05/2025] Open
Abstract
N-Heterocyclic carbenes (NHCs) are a class of organic molecules containing a divalent carbon atom, known as a carbene, within a heterocyclic (ring) structure where nitrogen atoms (N) form part of the ring. These molecules have garnered significant attention in coordination chemistry due to their unique bonding properties, particularly as strong σ-donor ligands that facilitate the formation of stable complexes. A theoretical study was conducted to investigate the structural and bonding characteristics of M←C bonds in trinuclear, nano-sized Cu(i), Ag(i), and Au(i) cations with two tris-NHC ligands, which exhibit promising anti-cancer and antibacterial potential. The study employed natural bond orbital (NBO) techniques, energy decomposition analysis (EDA), and extended transition-state natural orbital for chemical valence (ETS-NOCV) methods to analyze the bonding interactions. The cooperativity values between bonds were also examined, revealing positive values indicative of anti-cooperativity within the complexes. The results further demonstrated that the M←C interactions are predominantly electrostatic in nature. These findings highlight the unique structural and electronic properties of the complexes, suggesting their potential as candidates for anti-cancer and antibacterial applications.
Collapse
Affiliation(s)
- Khadijeh Naeimi
- Department of Inorganic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University Hamedan Iran
| | - Mehdi Bayat
- School of Chemistry, College of Science, University of Tehran Tehran , Iran
| | - Ehsan Alavi Pour
- Department of Inorganic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University Hamedan Iran
| |
Collapse
|
2
|
Abd-El-Aziz A, Li Z, Zhang X, Elnagdy S, Mansour MS, ElSherif A, Ma N, Abd-El-Aziz AS. Advances in Coordination Chemistry of Schiff Base Complexes: A Journey from Nanoarchitectonic Design to Biomedical Applications. Top Curr Chem (Cham) 2025; 383:8. [PMID: 39900838 DOI: 10.1007/s41061-025-00489-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 01/09/2025] [Indexed: 02/05/2025]
Abstract
Since the discovery of Schiff bases over one and a half centuries ago, there has been tremendous research activity in the design of various Schiff bases and examination of their diverse structures and versatile applications. This family of compounds has continued to captivate many research groups due to the simplicity of their synthesis through the condensation of amines with carbonyl compounds. While conventional synthesis has been the most widely used, green synthetic methodologies have been also explored for this reaction, including sonication, microwave-assisted, natural acid-catalyzed and mechanochemical syntheses as well as utilizing ionic liquid solvents or deep eutectic solvents. Schiff bases have been utilized as excellent ligands for coordination to transition metals and late transition metals (lanthanides and actinides). These Schiff base compounds can be mono-, di-, or polydentate ligands. The aim of this review is to examine the biological applications of Schiff base complexes over the past decade with particular focus on their antimicrobial, antiviral, anticancer, antidiabetic, and anti-inflammatory activity. Schiff base complexes have been found effective in combating bacterial and fungal infections with numerous examples in the literature. The review addressed this area by focusing on the very recent examples while using tables to summarize the vast breadth of research according to the metallic moieties. Viruses have continued to be a target of many researchers in light of their continuous mutations and impact on human health, and therefore some examples of Schiff base complexes with antiviral activity are described. Cancer continues to be among the leading causes of death worldwide. In this article, the use of Schiff base complexes for, and the mechanisms associated with, their anticancer activity are highlighted. The production of reactive oxygen species (ROS) or intercalation with DNA base pairs leading to cell cycle arrest were the main mechanisms described. While there have been some efforts made to use Schiff base complexes as antidiabetic or anti-inflammatory agents, there are limited examples when compared with antimicrobial and anticancer studies. The conclusion of this review highlights the emerging areas of research and future perspectives with an emphasis on the potential uses of Schiff bases in the treatment of infectious and noninfectious diseases.
Collapse
Affiliation(s)
- Ahmad Abd-El-Aziz
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266400, China
| | - Zexuan Li
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266400, China
| | - Xinyue Zhang
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266400, China
| | - Sherif Elnagdy
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, Egypt
| | - Mohamed S Mansour
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Ahmed ElSherif
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Ning Ma
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266400, China
| | - Alaa S Abd-El-Aziz
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China.
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266400, China.
| |
Collapse
|
3
|
Zarenezhad E, Behmard E, Karami R, Behrouz S, Marzi M, Ghasemian A, Soltani Rad MN. The antibacterial and anti-biofilm effects of novel synthetized nitroimidazole compounds against methicillin-resistant Staphylococcus aureus and carbapenem-resistant Escherichia coli and Klebsiella pneumonia in vitro and in silico. BMC Chem 2024; 18:244. [PMID: 39696637 DOI: 10.1186/s13065-024-01333-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 10/29/2024] [Indexed: 12/20/2024] Open
Abstract
The antibiotic resistance and biofilm formation by bacterial pathogens has led to failure in infections elimination. This study aimed to assess the antibacterial and anti-biofilm properties of novel synthesized nitroimidazole compounds (8a-8o). In this study, nitroimidazole compounds were synthesized via the A3 coupling reaction of sample substrates in the presence of copper-doped silica cuprous sulfate (CDSCS). Fifteen and two carbapenemase producing Escherichia coli and Klebsiella pneumonia (CP-E. coli and CP-K. pneumonia, respectively) and one methicillin-resistant Staphylococcus aureus (MRSA) and one methicillin-susceptible S. aureus (MSSA) plus standard strain of each isolate were included. The antibacterial effects of these compounds demonstrated that the lowest minimum inhibitory and bactericidal concentrations (MIC/MBC, respectively) levels corresponded to compound 8g against S. aureus (1/2 µg/mL) and K. pneumonia (8/32 µg/mL) standard and clinical strains and confirmed by in silico assessment. This was comparable to those of metronidazole being 32-128 µg/mL against K. pneumonia and 32-64 µg/mL against S. aureus. In comparison to metronidazole, against CP-E. coli, compounds 8i and 8m had significantly higher antibacterial effects (p < 0.001) and against CP-K. pneumonia, compounds 8a-8j and 8l-8o had significantly higher (p < 0.0001) antibacterial effects. Compound 8g exhibited significantly higher antibacterial effects against MSSA and compounds 8b (p < 0.001), 8c (p < 0.001), 8d (p < 0.001), 8e (p < 0.001) and 8g (p < 0.0001) exerted significantly higher antibacterial effects than metronidazole against MRSA. Moreover, potential anti-biofilm effects was corresponded to compounds 8a, 8b, 8c, 8e, 8f, 8g, 8i, 8k, 8m and 8n. Considering the antibacterial and anti-biofilm effects of novel synthesized compounds evaluated in this study, further assessments is warranted to verify their properties in vivo and clinical trials in the future.
Collapse
Affiliation(s)
- Elham Zarenezhad
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Esmaeil Behmard
- School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Raziyeh Karami
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Somayeh Behrouz
- Department of Chemistry, Shiraz University of Technology, Shiraz, 71555-313, Iran
| | - Mahrokh Marzi
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran.
| | | |
Collapse
|
4
|
Côrte-Real L, Pósa V, Martins M, Colucas R, May NV, Fontrodona X, Romero I, Mendes F, Pinto Reis C, Gaspar MM, Pessoa JC, Enyedy ÉA, Correia I. Cu(II) and Zn(II) Complexes of New 8-Hydroxyquinoline Schiff Bases: Investigating Their Structure, Solution Speciation, and Anticancer Potential. Inorg Chem 2023. [PMID: 37441730 PMCID: PMC10369496 DOI: 10.1021/acs.inorgchem.3c01066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
We report the synthesis and characterization of three novel Schiff bases (L1-L3) derived from the condensation of 2-carbaldehyde-8-hydroxyquinoline with amines containing morpholine or piperidine moieties. These were reacted with CuCl2 and ZnCl2 yielding six new coordination compounds, with the general formula ML2, where M = Cu(II) or Zn(II) and L = L1-L3, which were all characterized by analytical, spectroscopic (Fourier transform infrared (FTIR), UV-visible absorption, nuclear magnetic resonance (NMR), or electron paramagnetic resonance (EPR)), and mass spectrometric techniques, as well as by single-crystal X-ray diffraction. In the solid state, two Cu(II) complexes, with L1 and L2, are obtained as dinuclear compounds, with relatively short Cu-Cu distances (3.146 and 3.171 Å for Cu2(L1)4 and Cu2(L2)4, respectively). The free ligands show moderate lipophilicity, while their complexes are more lipophilic. The pKa values of L1-L3 and formation constants of the complex (for ML and ML2) species were determined by spectrophotometric titrations, with the Cu(II) complexes showing higher stability than the Zn(II) complexes. EPR indicated the presence of several species in solution as pH varied and binding modes were proposed. The binding of the complexes to bovine serum albumin (BSA) was evaluated by fluorescence and circular dichroism (CD) spectroscopies. All complexes bind BSA, and as demonstrated by CD, the process takes several hours to reach equilibrium. The antiproliferative activity was evaluated in malignant melanoma cells (A375) and in noncancerous keratinocytes (HaCaT). All complexes display significant cytotoxicity (IC50 < 10 μM) but modest selectivity. The complexes show higher activity than the free ligands, the Cu(II) complexes being more active than the Zn(II) complexes, and approximately twice more cytotoxic than cisplatin. A Guava ViaCount assay corroborated the antiproliferative activity.
Collapse
Affiliation(s)
- Leonor Côrte-Real
- Centro de Química Estrutural, Institute of Molecular Sciences, and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Vivien Pósa
- MTA-SZTE Lendület Functional Metal Complexes Research Group, Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| | - Matilde Martins
- Centro de Química Estrutural, Institute of Molecular Sciences, and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Raquel Colucas
- Centro de Química Estrutural, Institute of Molecular Sciences, and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Nóra V May
- Centre for Structural Science, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Magyar Tudósok krt. 2, H-1117 Budapest, Hungary
| | - Xavier Fontrodona
- Departament de Química and Serveis Tècnics de Recerca, Universitat de Girona, Campus de Montilivi, E-17071 Girona, Spain
| | - Isabel Romero
- Departament de Química and Serveis Tècnics de Recerca, Universitat de Girona, Campus de Montilivi, E-17071 Girona, Spain
| | - Filipa Mendes
- Centro de Ciências e Tecnologias Nucleares and Department of Nuclear Sciences and Engineering, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km139,7), 2695-066 Bobadela LRS, Portugal
| | - Catarina Pinto Reis
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Maria Manuela Gaspar
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - João Costa Pessoa
- Centro de Química Estrutural, Institute of Molecular Sciences, and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Éva A Enyedy
- MTA-SZTE Lendület Functional Metal Complexes Research Group, Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| | - Isabel Correia
- Centro de Química Estrutural, Institute of Molecular Sciences, and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal
| |
Collapse
|
5
|
Saranya G, Devendraprasad K, Jayanthi P, Shanmugapriya P, Bhuvaneshwari N. Greener and rapid synthesis of benzal-based Schiff base ligands as an efficient antibacterial, antioxidant, and anticancer agent. SYNTHETIC COMMUN 2023. [DOI: 10.1080/00397911.2023.2172349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- G. Saranya
- Department of Chemistry, Chikkaiah Naicker College, Erode, India
| | | | - P. Jayanthi
- KSR College of Engineering, Tiruchengode, India
| | | | - N. Bhuvaneshwari
- Department of Chemistry, Chikkaiah Naicker College, Erode, India
| |
Collapse
|
6
|
Rezaeivala M, Bozorg M, Rafiee N, Sayin K, Tuzun B. A new morpholine-based ligand as corrosion inhibitor for Carbon Steel during acid pickling: Experimental and theoretical studies. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Ivanišević I, Kovačić M, Zubak M, Ressler A, Krivačić S, Katančić Z, Gudan Pavlović I, Kassal P. Amphiphilic Silver Nanoparticles for Inkjet-Printable Conductive Inks. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12234252. [PMID: 36500875 PMCID: PMC9739383 DOI: 10.3390/nano12234252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 05/14/2023]
Abstract
The large-scale manufacturing of flexible electronics is nowadays based on inkjet printing technology using specially formulated conductive inks, but achieving adequate wetting of different surfaces remains a challenge. In this work, the development of a silver nanoparticle-based functional ink for printing on flexible paper and plastic substrates is demonstrated. Amphiphilic silver nanoparticles with narrow particle size distribution and good dispersibility were prepared via a two-step wet chemical synthesis procedure. First, silver nanoparticles capped with poly(acrylic acid) were prepared, followed by an amidation reaction with 3-morpholynopropylamine (MPA) to increase their lipophilicity. Density functional theory (DFT) calculations were performed to study the interactions between the particles and the dispersion medium in detail. The amphiphilic nanoparticles were dispersed in solvents of different polarity and their physicochemical and rheological properties were determined. A stable ink containing 10 wt% amphiphilic silver nanoparticles was formulated and inkjet-printed on different surfaces, followed by intense pulsed light (IPL) sintering. Low sheet resistances of 3.85 Ω sq-1, 0.57 Ω sq-1 and 19.7 Ω sq-1 were obtained for the paper, coated poly(ethylene terephthalate) (PET) and uncoated polyimide (PI) flexible substrates, respectively. Application of the nanoparticle ink for printed electronics was demonstrated via a simple flexible LED circuit.
Collapse
Affiliation(s)
- Irena Ivanišević
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Marin Kovačić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Marko Zubak
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Antonia Ressler
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
- Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 6, P.O. Box 589, 33014 Tampere, Finland
| | - Sara Krivačić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Zvonimir Katančić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Iva Gudan Pavlović
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Petar Kassal
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
- Correspondence:
| |
Collapse
|
8
|
4,4’-(((2,2-Dimethylpropane-1,3-Diyl)Bis(Azanediyl)Bis(Methylene) Bis(2-Methoxyphenol) as New Reduced Form of Schiff Base for Protecting API 5L Grade B in 1 M HCl. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-022-07281-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Jafari H, Ameri E, Rezaeivala M, Berisha A. Experimental and theoretical studies on protecting steel against 0.5 M H2SO4 corrosion by new schiff base. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
10
|
Rezaeivala M, Karimi S, Sayin K, Tüzün B. Experimental and theoretical investigation of corrosion inhibition effect of two piperazine-based ligands on carbon steel in acidic media. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128538] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Singh G, Devi A, Mohit, Diksha, Suman, Saini A, Kaur JD, Gupta S, Vikas. Synthesis, “turn-on” fluorescence signals towards Zn 2+ and Hg 2+ and monoamine oxidase A inhibitory activity using a molecular docking approach of morpholine analogue Schiff base linked organosilanes. NEW J CHEM 2022. [DOI: 10.1039/d2nj03767j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A new set of morpholine analogue Schiff base linked organosilanes (5a–5c) was prepared.
Collapse
Affiliation(s)
- Gurjaspreet Singh
- Department of Chemistry & Centre of Advanced Studies, Panjab University, Chandigarh, 160014, India
| | - Anita Devi
- Department of Chemistry & Centre of Advanced Studies, Panjab University, Chandigarh, 160014, India
| | - Mohit
- Department of Chemistry & Centre of Advanced Studies, Panjab University, Chandigarh, 160014, India
| | - Diksha
- Department of Chemistry & Centre of Advanced Studies, Panjab University, Chandigarh, 160014, India
| | - Suman
- Department of Chemistry & Centre of Advanced Studies, Panjab University, Chandigarh, 160014, India
| | - Anamika Saini
- Department of Chemistry & Centre of Advanced Studies, Panjab University, Chandigarh, 160014, India
| | - Jashan Deep Kaur
- Department of Chemistry & Centre of Advanced Studies, Panjab University, Chandigarh, 160014, India
| | - Sofia Gupta
- Department of Chemistry & Centre of Advanced Studies, Panjab University, Chandigarh, 160014, India
| | - Vikas
- Department of Chemistry & Centre of Advanced Studies, Panjab University, Chandigarh, 160014, India
| |
Collapse
|