1
|
Babu A, Sinha A. Catalytic Tetrazole Synthesis via [3+2] Cycloaddition of NaN 3 to Organonitriles Promoted by Co(II)-complex: Isolation and Characterization of a Co(II)-diazido Intermediate. ACS OMEGA 2024; 9:21626-21636. [PMID: 38764698 PMCID: PMC11097157 DOI: 10.1021/acsomega.4c02567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 03/30/2024] [Accepted: 04/05/2024] [Indexed: 05/21/2024]
Abstract
The [3+2] cycloaddition of sodium azide to nitriles to give 5-substituted 1H-tetrazoles is efficiently catalyzed by a Cobalt(II) complex (1) with a tetradentate ligand N,N-bis(pyridin-2-ylmethyl)quinolin-8-amine. Detailed mechanistic investigation shows the intermediacy of the cobalt(II) diazido complex (2), which has been isolated and structurally characterized. Complex 2 also shows good catalytic activity for the synthesis of 5-substituted 1H-tetrazoles. These are the first examples of cobalt complexes used for the [3+2] cycloaddition reaction for the synthesis of 1H-tetrazoles under homogeneous conditions.
Collapse
Affiliation(s)
- Archana Babu
- Advanced Catalysis Facility,
Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore632 006, India
| | - Arup Sinha
- Advanced Catalysis Facility,
Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore632 006, India
| |
Collapse
|
2
|
Gayathri S, Viswanathamurthi P, Bertani R, Sgarbossa P. Ruthenium Complexes Bearing α-Diimine Ligands and Their Catalytic Applications in N-Alkylation of Amines, α-Alkylation of Ketones, and β-Alkylation of Secondary Alcohols. ACS OMEGA 2022; 7:33107-33122. [PMID: 36157732 PMCID: PMC9494662 DOI: 10.1021/acsomega.2c03200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/24/2022] [Indexed: 06/16/2023]
Abstract
New Ru(II) complexes encompassing α-diimine ligands were synthesized by reacting ruthenium precursors with α-diimine hydrazones. The new ligands and Ru(II) complexes were analyzed by analytical and various spectroscopic methods. The molecular structures of L1 and complexes 1, 3, and 4 were determined by single-crystal XRD studies. The results reveal a distorted octahedral geometry around the Ru(II) ion for all complexes. Moreover, the new ruthenium complexes show efficient catalytic activity toward the C-N and C-C coupling reaction involving alcohols. Particularly, complex 3 demonstrates effective conversion in N-alkylation of aromatic amines, α-alkylation of ketones, and β-alkylation of alcohols.
Collapse
Affiliation(s)
- Sekar Gayathri
- Department
of Chemistry, Periyar University, Salem 636 011, Tamil Nadu, India
| | | | - Roberta Bertani
- Department
of Industrial Engineering, University of
Padova, via F. Marzoloa, Padova 35131, Italy
| | - Paolo Sgarbossa
- Department
of Industrial Engineering, University of
Padova, via F. Marzoloa, Padova 35131, Italy
| |
Collapse
|
3
|
Pragti, Kundu BK, Upadhyay SN, Sinha N, Ganguly R, Grabchev I, Pakhira S, Mukhopadhyay S. Pyrene-based fluorescent Ru(II)-arene complexes for significant biological applications: catalytic potential, DNA/protein binding, two photon cell imaging and in vitro cytotoxicity. Dalton Trans 2022; 51:3937-3953. [PMID: 35171173 DOI: 10.1039/d1dt04093f] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ruthenium complexes are being studied extensively as anticancer drugs following the inclusion of NAMI-A and KP1019 in phase II clinical trials for the treatment of metastatic phase and primary tumors. Herein, we designed and synthesized four organometallic Ru(II)-arene complexes [Ru(η6-p-cymene)(L)Cl] (1), [Ru(η6-benzene)(L)Cl] (2), [Ru(η6-p-cymene)(L)N3] (3) and [Ru(η6-benzene)(L)N3] (4) [HL = (E)-N'-(pyren-1-ylmethylene)thiopene-2-carbohydrazide] that have anticancer, antimetastatic and two-photon cell imaging abilities. Moreover, in the transfer hydrogenation of NADH to NAD+, these compounds also display good catalytic activity. All the complexes, 1-4, are well characterized by spectroscopic techniques (NMR, mass, FTIR, UV-vis and fluorescence). The single crystal X-ray diffraction technique proved that the ligand L coordinates through an N,O-bidentate chelating fashion in the solid-state structures of complexes 1 and 2. The stability study of the complexes was performed through UV-visible spectroscopy. The cytotoxicities of all the complexes were screened through MTT assay and the results revealed that the complexes have potential anticancer activity against various cancerous cells (HeLa, MCF7 and A431). Studies with spectroscopic techniques revealed that complexes 1-4 exhibit strong interactions with biological molecules i.e. proteins (HSA and BSA) and CT-DNA. The density functional theory (DFT-D) method has been employed in the present study to know the interaction between DNA and complexes by calculating the HOMO and LUMO energy. A plausible mechanism for NADH oxidation has also been explored and the DFT calculations are found to be in accord with the experimental observation. Furthermore, we have investigated intracellular reactive oxygen species (ROS) generation capabilities in the MCF7 breast cancer cell line. The Hoechst/PI dual staining method confirmed the apoptosis mode of cell death. Meanwhile, complexes 1-4 show capabilities to prevent the metastasis phase of cancer cells by inhibiting cell migration.
Collapse
Affiliation(s)
- Pragti
- Department of Chemistry, School of Basic Sciences, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India.
| | - Bidyut Kumar Kundu
- Department of Chemistry, School of Basic Sciences, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India. .,Department of Chemistry, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Shrish Nath Upadhyay
- Department of Metallurgy Engineering and Materials Science (MEMS), Indian Institute of Technology Indore, Indore-453552, MP, India.
| | - Nilima Sinha
- Department of Metallurgy Engineering and Materials Science (MEMS), Indian Institute of Technology Indore, Indore-453552, MP, India.
| | | | - Ivo Grabchev
- Sofia University "St Kliment Ohridski" Faculty of Medicine, 1, Koziak Str., 1407 Sofia, Bulgaria
| | - Srimanta Pakhira
- Department of Metallurgy Engineering and Materials Science (MEMS), Indian Institute of Technology Indore, Indore-453552, MP, India. .,Department of Physics, Indian Institute of Technology Indore (IITI), Simrol, Khandwa Road, Indore-453552, MP, India.,Centre for Advanced Electronics (CAE), Indian Institute of Technology Indore, Indore-453552, MP, India
| | - Suman Mukhopadhyay
- Department of Chemistry, School of Basic Sciences, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India.
| |
Collapse
|
4
|
AlObaid AA, Al-Zaqri N, Al-Muhimeed TI, Aljohani MM, Zarrouk A, Lgaz H, Warad I. Hemilability in neutral RuCl2(η1−P∩O)2(N∩N) complexes: Physicochemical, trans/cis-isomerization, thermal and A DFT/TD-DFT. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Sanchooli Tazeh K, Heydari R, Fatahpour M.
Fe
3
O
4
@
THAM‐Pd
as a highly efficient magnetically recoverable nanocatalyst for facile one‐pot assembly of substituted imidazoles under solvent‐free conditions. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Kazem Sanchooli Tazeh
- Department of Chemistry, Faculty of Science University of Sistan and Baluchestan Zahedan Iran
| | - Reza Heydari
- Department of Chemistry, Faculty of Science University of Sistan and Baluchestan Zahedan Iran
| | - Maryam Fatahpour
- Department of Chemistry, Faculty of Science University of Sistan and Baluchestan Zahedan Iran
| |
Collapse
|
6
|
Asressu KH, Chan CK, Wang CC. TMSOTf-catalyzed synthesis of trisubstituted imidazoles using hexamethyldisilazane as a nitrogen source under neat and microwave irradiation conditions. RSC Adv 2021; 11:28061-28071. [PMID: 35480777 PMCID: PMC9039414 DOI: 10.1039/d1ra05802a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 08/12/2021] [Indexed: 12/15/2022] Open
Abstract
In the process of drug discovery and development, an efficient and expedient synthetic method for imidazole-based small molecules from commercially available and cheap starting materials has great significance. Herein, we developed a TMSOTf-catalyzed synthesis of trisubstituted imidazoles through the reaction of 1,2-diketones and aldehydes using hexamethyldisilazane as a nitrogen source under microwave heating and solvent-free conditions. The chemical structures of representative trisubstituted imidazoles were confirmed using X-ray single-crystal diffraction analysis. This synthetic method has several advantages including the involvement of mild Lewis acid, being metal- and additive-free, wide substrate scope with good to excellent yields and short reaction time. Furthermore, we demonstrate the application of the methodology in the synthesis of biologically active imidazole-based drugs. Trisubstituted imidazoles are synthesized efficiently from the readily available 1,2-diketones and aldehydes using hexamethyldisilazane as a new and stable nitrogen source under TMSOTf-catalysis system, microwave heating and solvent-free conditions.![]()
Collapse
Affiliation(s)
| | - Chieh-Kai Chan
- Institute of Chemistry, Academia Sinica Taipei 115 Taiwan
| | | |
Collapse
|