1
|
Mondal R, Keerthana M, Pandurangan N, Shanmugaraju S. Zn(II)-Curcumin Complexes-Based Anticancer Agents. ChemMedChem 2024; 19:e202400558. [PMID: 39225342 DOI: 10.1002/cmdc.202400558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/31/2024] [Accepted: 09/03/2024] [Indexed: 09/04/2024]
Abstract
There is a great deal of research interest in the design of alternative metallodrugs to Pt(II)-derivatives for cancer treatment. The low solubility of such drugs in biological mediums leading to poor bioavailability is the major hurdle of several metal-based anticancer agents. These issues have recently been addressed by designing bio-active ligands based on metal-containing anticancer agents. Conjugating with bioactive ligands has significantly improved the bioavailability of the metallodrugs and their cancer cell targeting ability. One such naturally available bioactive ligand is curcumin. Until recently, several curcumin-based anticancer metallodrugs have been developed and successfully demonstrated for their anticancer studies. In this article, we aim to highlight, the synthesis, structure, and anticancer properties of various Zn(II)-curcumin-based coordination complexes. The effect of introducing different functional groups, targeting ligands, and photo-active ligands on the anticancer potential of such complexes has been mentioned in detail. The current status and future perspective on curcumin-based metallodrugs for cancer treatment have also been stated.
Collapse
Affiliation(s)
- Rajdeep Mondal
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala, 678557, India
| | - Muthukumar Keerthana
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala, 678557, India
| | - Nanjan Pandurangan
- Department of Chemistry, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore, Tamil Nadu, 641112, India
| | | |
Collapse
|
2
|
Sakla R, Ghosh A, Kumar V, Kanika, Das P, Sharma PK, Khan R, Jose DA. Light activated simultaneous release and recognition of biological signaling molecule carbon monoxide (CO). Methods 2023; 210:44-51. [PMID: 36642393 DOI: 10.1016/j.ymeth.2023.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/04/2023] [Accepted: 01/07/2023] [Indexed: 01/15/2023] Open
Abstract
The therapeutic action of carbon monoxide (CO) is very well known and has been studied on various types of tissues and animals. However, real-time spatial and temporal tracking and release of CO is still a challenging task. This paper reported an amphiphilic CO sensing probe NP and phospholipid 1,2-Dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) based nanoscale vesicular sensing system Ves-NP consisting of NP. The liposomal sensing system (Ves-NP) showed good selectivity and sensitivity for CO without any interference from other relevant biological analytes. Detection of CO is monitored by fluorescence OFF-ON signal. Ves-NP displayed LOD of 5.94 µM for CO detection with a response time of 5 min. Further, in a novel attempt, Ves-NP is co-embedded with the amphiphilic CO-releasing molecule 1-Mn(CO)3 to make an analyte replacement probe Ves-NP-CO. Having a both CO releasing and sensing moiety at the surface of the same liposomal system Ves-NP-CO play a dual role. Ves-NP-CO is used for the simultaneous release and recognition of CO that can be controlled by light. Thus, in this novel approach, for the first time we have attached both the release and recognition units of CO in the vesicular surface, both release and recognition simultaneously monitored by the change in fluorescent OFF-ON signal.
Collapse
Affiliation(s)
- Rahul Sakla
- Department of Chemistry, National Institute of Technology (NIT) Kurukshetra, Kurukshetra-136119, Haryana, India; Chemical Biology Unit, Institute of Nano Science and Technology (INST), Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Amrita Ghosh
- Department of Chemistry, Kurukshetra University, Kurukshetra-136119, Haryana, India
| | - Vinod Kumar
- Department of Chemistry, National Institute of Technology (NIT) Kurukshetra, Kurukshetra-136119, Haryana, India
| | - Kanika
- Chemical Biology Unit, Institute of Nano Science and Technology (INST), Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Priyadip Das
- Department of Chemistry, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur-603203, Tamil Nadu, India
| | - Pawan K Sharma
- Department of Chemistry, Kurukshetra University, Kurukshetra-136119, Haryana, India
| | - Rehan Khan
- Chemical Biology Unit, Institute of Nano Science and Technology (INST), Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - D Amilan Jose
- Department of Chemistry, National Institute of Technology (NIT) Kurukshetra, Kurukshetra-136119, Haryana, India.
| |
Collapse
|
3
|
Kannan S, Maayuri R, Shanmugaraju S. Terpyridine-4-amino-1,8-naphthalimide chemosensor for discriminative fluorescent sensing of divalent metal cations at ppb level of sensitivity. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2023.121432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
4
|
Mohan B, Estalayo-Adrián S, Umadevi D, la Cour Poulsen B, Blasco S, McManus GJ, Gunnlaugsson T, Shanmugaraju S. Design, Synthesis, and Anticancer Studies of a p-Cymene-Ru(II)-Curcumin Organometallic Conjugate Based on a Fluorescent 4-Amino-1,8-naphthalimide Tröger's Base Scaffold. Inorg Chem 2022; 61:11592-11599. [PMID: 35857283 DOI: 10.1021/acs.inorgchem.2c01005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A unique V-shaped "chiral" supramolecular scaffold, N-(4-pyridyl)-4-amino-1,8-naphthalimide Tröger's base (TBNap), was synthesized in good yield from a precursor N-(4-pyridyl)-4-amino-1,8-naphthalimide (Nap). TBNap was characterized using different spectroscopic methods and the molecular structure was elucidated by diffraction analysis. A new p-cymene-Ru(II)-curcumin conjugate (TB-Ru-Cur) was designed by reacting TBNap dipyridyl donor and ruthenium-curcuminato acceptor [RuCur = (p-cymene)Ru-(curcuminato)Cl] in the presence of silver triflate. TB-Ru-Cur was isolated in quantitative yield and characterized using Fourier transform infrared (FT-IR), NMR (1H, 13C, and 19F), and electrospray ionization mass spectrometry (ESI-MS), and the molecular structure has been predicted using a computational study. Both TBNap and TB-Ru-Cur exhibited intramolecular charge transfer (ICT)-based fluorescence emission. Furthermore, the anticancer properties of TBNap, Ru-Cur, and TB-Ru-Cur were assessed in different cancer cell lines. Gratifyingly, the conjugate TB-Ru-Cur displayed fast-cellular internalization and good cytotoxicity against HeLa, HCT-116, and HepG2 cancer cells and the estimated IC50 value was much lower than that of the precursors (TBNap and Ru-Cur) and the well-known chemotherapeutic drug cisplatin.
Collapse
Affiliation(s)
- Binduja Mohan
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678557, Kerala, India
| | - Sandra Estalayo-Adrián
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Dublin 2 D02 PN40, Ireland
| | - Deivasigamani Umadevi
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678557, Kerala, India
| | - Bjørn la Cour Poulsen
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Dublin 2 D02 PN40, Ireland
| | - Salvador Blasco
- Instituto de Ciencia Molecular, Universidad de Valencia, C/Catedrático José Beltrán Martínez 2, 46980 Paterna, Spain
| | - Gavin J McManus
- School of Biochemistry and Immunology and Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Dublin 2 D02 PN40, Ireland
| | - Thorfinnur Gunnlaugsson
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Dublin 2 D02 PN40, Ireland
| | | |
Collapse
|
5
|
Cd2+ and Zn2+ fluorescence turn-on sensing and the subsequent detection of S2− by a quinolimide-based sensor in water and living cells with application in the combinational logic gate. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Karuk Elmas SN. A coumarin-based fluorescence chemosensor for the determination of Al3+ and ClO− with different fluorescence emission channels. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|