1
|
Panayides JL, Riley DL, Hasenmaile F, van Otterlo WAL. The role of silicon in drug discovery: a review. RSC Med Chem 2024; 15:3286-3344. [PMID: 39430101 PMCID: PMC11484438 DOI: 10.1039/d4md00169a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/07/2024] [Indexed: 10/22/2024] Open
Abstract
This review aims to highlight the role of silicon in drug discovery. Silicon and carbon are often regarded as being similar with silicon located directly beneath carbon in the same group in the periodic table. That being noted, in many instances a clear dichotomy also exists between silicon and carbon, and these differences often lead to vastly different physiochemical and biological properties. As a result, the utility of silicon in drug discovery has attracted significant attention and has grown rapidly over the past decade. This review showcases some recent advances in synthetic organosilicon chemistry and examples of the ways in which silicon has been employed in the drug-discovery field.
Collapse
Affiliation(s)
- Jenny-Lee Panayides
- Pharmaceutical Technologies, Future Production: Chemicals, Council for Scientific and Industrial Research (CSIR) Meiring Naude Road, Brummeria Pretoria South Africa
| | - Darren Lyall Riley
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria Lynnwood Road Pretoria South Africa
| | - Felix Hasenmaile
- Department of Chemistry and Polymer Science, Stellenbosch University Matieland Stellenbosch 7600 South Africa
| | - Willem A L van Otterlo
- Department of Chemistry and Polymer Science, Stellenbosch University Matieland Stellenbosch 7600 South Africa
| |
Collapse
|
2
|
Kumar A, Upadhyay Y, Bera RK, Sahoo SK. Fluorescent Turn-On Sensing of Zinc(II) and Alkaline Phosphatase Activity Using a Pyridoxal-5'-Phosphate Derived Schiff Base. J Fluoresc 2023; 33:2469-2478. [PMID: 37140739 DOI: 10.1007/s10895-023-03254-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 04/26/2023] [Indexed: 05/05/2023]
Abstract
A novel Zn2+ ion and alkaline phosphatase (ALP) selective fluorescence turn-on sensor L was developed by reacting pyridoxal 5'-phosphate (PLP) with hydrazine. Sensor L shows significant flurescence enhancement at 476 nm due to the formation of a L-Zn2+ complex in 1:1 binding stoichiometry with the association constant of 3.1⋅104 M- 1. Using L, the concentration of Zn2+ can be detected down to 2.34 µM, and the practical utility of L was validated by quantifying Zn2+ in real water samples. Additionally, the receptor L was applied to mimic the dephosphorylation reaction catalysed by the enzyme ALP and the resulted fluorescence change was monitored to detect the ALP activity.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Chemistry, SV National Institute Technology, Surat, 395007, Gujarat, India
| | - Yachana Upadhyay
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, 302017, Rajasthan, India
| | - Rati Kanta Bera
- Department of Chemistry, ACC Wing, IMA Dehradun, Uttarakhand, 248007, India
| | - Suban K Sahoo
- Department of Chemistry, SV National Institute Technology, Surat, 395007, Gujarat, India.
| |
Collapse
|
3
|
Singh G, Devi A, Mohit, Satija P, Sushma, Vikas, Gonzalez-Silvera D, Espinosa-Ruiz C, Angeles Esteban M. ESIPT Silatranyl framework and their hybrid silica nanoparticles for recognition of Zn2+ ions: Synthesis, Antioxidant, Cytotoxicity and Molecular Docking approach as Xanthine oxidase inhibitor. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
4
|
Li L, Zhang Y, Yang J, Qu W, Cao H. A turn-on fluorescent sensor for Cd2+ and sequential detection of S2− using the quinolimide scaffold. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Singh G, Devi A, Mohit, Diksha, Suman, Saini A, Kaur JD, Gupta S, Vikas. Synthesis, “turn-on” fluorescence signals towards Zn 2+ and Hg 2+ and monoamine oxidase A inhibitory activity using a molecular docking approach of morpholine analogue Schiff base linked organosilanes. NEW J CHEM 2022. [DOI: 10.1039/d2nj03767j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A new set of morpholine analogue Schiff base linked organosilanes (5a–5c) was prepared.
Collapse
Affiliation(s)
- Gurjaspreet Singh
- Department of Chemistry & Centre of Advanced Studies, Panjab University, Chandigarh, 160014, India
| | - Anita Devi
- Department of Chemistry & Centre of Advanced Studies, Panjab University, Chandigarh, 160014, India
| | - Mohit
- Department of Chemistry & Centre of Advanced Studies, Panjab University, Chandigarh, 160014, India
| | - Diksha
- Department of Chemistry & Centre of Advanced Studies, Panjab University, Chandigarh, 160014, India
| | - Suman
- Department of Chemistry & Centre of Advanced Studies, Panjab University, Chandigarh, 160014, India
| | - Anamika Saini
- Department of Chemistry & Centre of Advanced Studies, Panjab University, Chandigarh, 160014, India
| | - Jashan Deep Kaur
- Department of Chemistry & Centre of Advanced Studies, Panjab University, Chandigarh, 160014, India
| | - Sofia Gupta
- Department of Chemistry & Centre of Advanced Studies, Panjab University, Chandigarh, 160014, India
| | - Vikas
- Department of Chemistry & Centre of Advanced Studies, Panjab University, Chandigarh, 160014, India
| |
Collapse
|