5
|
Jing HD, Tian JY, Li W, He BL, Li HC, Jian FX, Shang C, Shen F. Predictive performance of the variation rate of the driving pressure on the outcome of invasive mechanical ventilation in patients with acute respiratory distress syndrome. Chin J Traumatol 2024; 27:107-113. [PMID: 38326140 DOI: 10.1016/j.cjtee.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/06/2023] [Accepted: 12/18/2023] [Indexed: 02/09/2024] Open
Abstract
PURPOSE To assess the value of the driving pressure variation rate (ΔP%) in predicting the outcome of weaning from invasive mechanical ventilation in patients with acute respiratory distress syndrome. METHODS In this case-control study, a total of 35 patients with moderate-severe acute respiratory distress syndrome were admitted to the intensive care unit between January 2022 and December 2022 and received invasive mechanical ventilation for at least 48 h were enrolled. Patients were divided into successful weaning group and failed weaning group depending on whether they could be removed from ventilator support within 14 days. Outcome measures including driving pressure, PaO2:FiO2, and positive end-expiratory pressure, etc. were assessed every 24 h from day 0 to day 14 until successful weaning was achieved. The measurement data of non-normal distribution were presented as median (Q1, Q3), and the differences between groups were compared by Wilcoxon rank sum test. And categorical data use the Chi-square test or Fisher's exact test to compare. The predictive value of ΔP% in predicting the outcome of weaning from the ventilator was analyzed using receiver operating characteristic curves. RESULTS Of the total 35 patients included in the study, 17 were successful vs. 18 failed in weaning from a ventilator after 14 days of mechanical ventilation. The cut-off values of the median ΔP% measured by Operator 1 vs. Operator 2 in the first 4 days were ≥ 4.17% and 4.55%, respectively (p < 0.001), with the area under curve of 0.804 (sensitivity of 88.2%, specificity of 64.7%) and 0.770 (sensitivity of 88.2%, specificity of 64.7%), respectively. There was a significant difference in mechanical ventilation duration between the successful weaning group and the failure weaning group (8 (6, 13) vs. 12 (7.5, 17.3), p = 0.043). The incidence of ventilator-associated pneumonia in the successful weaning group was significantly lower than in the failed weaning group (0.2‰ vs. 2.3‰, p = 0.001). There was a significant difference noted between these 2 groups in the 28-day mortality (11.8% vs. 66.7%, p = 0.003). CONCLUSION The median ΔP% in the first 4 days of mechanical ventilation showed good predictive performance in predicting the outcome of weaning from mechanical ventilation within 14 days. Further study is needed to confirm this finding.
Collapse
Affiliation(s)
- Hui-Dan Jing
- Department of Intensive Care Unit, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China; Department of Intensive Care Unit, Army Medical Center of PLA, Chongqing, 400042, China
| | - Jun-Ying Tian
- College of Foreign Languages, Chongqing Medical University, Chongqing, 400016, China
| | - Wei Li
- Department of Intensive Care Unit, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Bing-Ling He
- Department of Intensive Care Unit, Army Medical Center of PLA, Chongqing, 400042, China
| | - Hong-Chao Li
- Department of Intensive Care Unit, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Fu-Xia Jian
- Department of Intensive Care Unit, Army Medical Center of PLA, Chongqing, 400042, China
| | - Cui Shang
- Department of Intensive Care Unit, Army Medical Center of PLA, Chongqing, 400042, China
| | - Feng Shen
- Department of Intensive Care Unit, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.
| |
Collapse
|
6
|
Sekihara K, Okamoto T, Shibasaki T, Matsuda W, Funai K, Yonehiro Y, Matsubara C, Kimura A. Evaluation of a bundle approach for the prophylaxis of ventilator-associated pneumonia: A retrospective single-center Study. Glob Health Med 2023; 5:33-39. [PMID: 36865901 PMCID: PMC9974225 DOI: 10.35772/ghm.2022.01038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/17/2022] [Accepted: 09/12/2022] [Indexed: 11/08/2022]
Abstract
Ventilator-associated pneumonia (VAP) is defined as pneumonia occurring after the first 48 hours of intubation and mechanical ventilation and is the most frequent hospital-acquired infection associated with intensive care unit (ICU) admissions. Herein, we defined a novel VAP bundle including 10 preventive items. We analyzed compliance rates and clinical effectiveness associated with this bundle in patients undergoing intubation at our medical center. A total of 684 consecutive patients who underwent mechanical ventilation were admitted to the ICU between June 2018 and December 2020. VAP was diagnosed by at least two physicians based on the relevant United States Centers for Disease Control and Prevention criteria. We retrospectively evaluated associations between compliance and VAP incidence. The overall compliance rate was 77%, and compliance generally remained steady during the observation period. Moreover, although the number of ventilatory days remained unchanged, the incidence of VAP improved statistically significantly over time. Low compliance was identified in four categories: head-of-bed elevation of 30- 45º, avoidance of oversedation, daily assessment for extubation, and early ambulation and rehabilitation. The incidence of VAP was lower in those with an overall compliance rate of ≥ 75% than its incidence in the lower compliance group (15.8 vs. 24.1%, p = 0.018). When comparing low-compliance items between these groups, we found a statistically significant difference only for daily assessment for extubation (8.3 vs. 25.9%, p = 0.011). In conclusion, the evaluated bundle approach is effective for the prophylaxis of VAP and is thus eligible for inclusion in the Sustainable Development Goals.
Collapse
Affiliation(s)
- Keigo Sekihara
- Department of Intensive Care Medicine, Center Hospital of the National Center for Global Health and Medicine, Tokyo, Japan;,Department of First Surgery, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Tatsuya Okamoto
- Department of Intensive Care Medicine, Center Hospital of the National Center for Global Health and Medicine, Tokyo, Japan;,Address correspondence to:Tatsuya Okamoto, Department of Intensive Care Medicine, National Center for Global Health and Medicine, 1-21-1, Toyama, Shinjuku, Tokyo 162-8655, Japan. E-mail:
| | - Takatoshi Shibasaki
- Department of Intensive Care Medicine, Center Hospital of the National Center for Global Health and Medicine, Tokyo, Japan;,Department of Emergency Medicine and Critical Care, Center Hospital of the National Center for Global Health and Medicine, Tokyo, Japan
| | - Wataru Matsuda
- Department of Intensive Care Medicine, Center Hospital of the National Center for Global Health and Medicine, Tokyo, Japan;,Department of Emergency Medicine and Critical Care, Center Hospital of the National Center for Global Health and Medicine, Tokyo, Japan
| | - Kazuhito Funai
- Department of First Surgery, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Yuki Yonehiro
- Department of Intensive Care Medicine, Center Hospital of the National Center for Global Health and Medicine, Tokyo, Japan
| | - Chieko Matsubara
- Bureau of International Health Cooperation, National Center for Global Health and Medicine, Tokyo, Japan
| | - Akio Kimura
- Department of Intensive Care Medicine, Center Hospital of the National Center for Global Health and Medicine, Tokyo, Japan;,Department of Emergency Medicine and Critical Care, Center Hospital of the National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
8
|
Mastrogianni M, Katsoulas T, Galanis P, Korompeli A, Myrianthefs P. The Impact of Care Bundles on Ventilator-Associated Pneumonia (VAP) Prevention in Adult ICUs: A Systematic Review. Antibiotics (Basel) 2023; 12:227. [PMID: 36830138 PMCID: PMC9952750 DOI: 10.3390/antibiotics12020227] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
Ventilator-associated pneumonia (VAP) remains a common risk in mechanically ventilated patients. Different care bundles have been proposed to succeed VAP reduction. We aimed to identify the combined interventions that have been used to by ICUs worldwide from the implementation of "Institute for Healthcare Improvement Ventilator Bundle", i.e., from December 2004. A search was performed on the PubMed, Scopus and Science Direct databases. Finally, 38 studies met our inclusion criteria. The most common interventions monitored in the care bundles were sedation and weaning protocols, semi-recumbent positioning, oral and hand hygiene, peptic ulcer disease and deep venus thrombosis prophylaxis, subglottic suctioning, and cuff pressure control. Head-of-bed elevation was implemented by almost all studies, followed by oral hygiene, which was the second extensively used intervention. Four studies indicated a low VAP reduction, while 22 studies found an over 36% VAP decline, and in ten of them, the decrease was over 65%. Four of these studies indicated zero or nearly zero after intervention VAP rates. The studies with the highest VAP reduction adopted the "IHI Ventilator Bundle" combined with adequate endotracheal tube cuff pressure and subglottic suctioning. Multifaced techniques can lead to VAP reduction at a great extent. Multidisciplinary measures combined with long-lasting education programs and measurement of bundle's compliance should be the gold standard combination.
Collapse
Affiliation(s)
- Maria Mastrogianni
- Department of Nursing, National and Kapodistrian University of Athens, 123 Papadiamantopoulou Str, Goudi, 11527 Athens, Greece
- Department of Health Policy, Ministry of National Defense, Mesogeion Avenue 227–231, Holargos, 15561 Athens, Greece
| | - Theodoros Katsoulas
- Department of Nursing, National and Kapodistrian University of Athens, 123 Papadiamantopoulou Str, Goudi, 11527 Athens, Greece
- Intensive Care Unit, General and Oncologic Hospital of Kifissia “AgioiAnargiri”, Kaliftaki 41 Str, Kifissia, 14564 Athens, Greece
| | - Petros Galanis
- Department of Nursing, National and Kapodistrian University of Athens, 123 Papadiamantopoulou Str, Goudi, 11527 Athens, Greece
| | - Anna Korompeli
- Department of Nursing, National and Kapodistrian University of Athens, 123 Papadiamantopoulou Str, Goudi, 11527 Athens, Greece
- Intensive Care Unit, General and Oncologic Hospital of Kifissia “AgioiAnargiri”, Kaliftaki 41 Str, Kifissia, 14564 Athens, Greece
| | - Pavlos Myrianthefs
- Department of Nursing, National and Kapodistrian University of Athens, 123 Papadiamantopoulou Str, Goudi, 11527 Athens, Greece
- Intensive Care Unit, General and Oncologic Hospital of Kifissia “AgioiAnargiri”, Kaliftaki 41 Str, Kifissia, 14564 Athens, Greece
| |
Collapse
|
11
|
Koulenti D, Armaganidis A, Arvaniti K, Blot S, Brun-Buisson C, Deja M, De Waele J, Du B, Dulhunty JM, Garcia-Diaz J, Judd M, Paterson DL, Putensen C, Reina R, Rello J, Restrepo MI, Roberts JA, Sjovall F, Timsit JF, Tsiodras S, Zahar JR, Zhang Y, Lipman J. Protocol for an international, multicentre, prospective, observational study of nosocomial pneumonia in intensive care units: the PneumoINSPIRE study. CRIT CARE RESUSC 2021; 23:59-66. [PMID: 38046390 PMCID: PMC10692553 DOI: 10.51893/2021.1.oa5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Nosocomial pneumonia in the critical care setting is associated with increased morbidity, significant crude mortality rates and high health care costs. Ventilator-associated pneumonia represents about 80% of nosocomial pneumonia cases in intensive care units (ICUs). Wide variance in incidence of nosocomial pneumonia and diagnostic techniques used has been reported, while successful treatment remains complex and a matter of debate. Objective: To describe the epidemiology, diagnostic strategies and treatment modalities for nosocomial pneumonia in contemporary ICU settings across multiple countries around the world. Design, setting and patients: PneumoINSPIRE is a large, multinational, prospective cohort study of adult ICU patients diagnosed with nosocomial pneumonia. Participating ICUs from at least 20 countries will collect data on 10 or more consecutive ICU patients with nosocomial pneumonia. Site-specific information, including hospital policies on antibiotic therapy, will be recorded along with patient-specific data. Variables that will be explored include: aetiology and antimicrobial resistance patterns, treatment-related parameters (including time to initiation of antibiotic therapy, and empirical antibiotic choice, dose and escalation or de-escalation), pneumonia resolution, ICU and hospital mortality, and risk factors for unfavourable outcomes. The concordance of ventilator-associated pneumonia diagnosis with accepted definitions will also be assessed. Results and conclusions: PneumoINSPIRE will provide valuable information on current diagnostic and management practices relating to ICU nosocomial pneumonia, and identify research priorities in the field. Trial registration:ClinicalTrials.gov identifier NCT02793141.
Collapse
Affiliation(s)
- Despoina Koulenti
- University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Second Critical Care Department, Attikon University Hospital, Medical School, University of Athens, Athens, Greece
| | - Apostolos Armaganidis
- Second Critical Care Department, Attikon University Hospital, Medical School, University of Athens, Athens, Greece
| | - Kostoula Arvaniti
- Intensive Care Unit, Papageorgiou University Affiliated Hospital, Thessaloníki, Greece
| | - Stijn Blot
- University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Department of Internal Medicine, Faculty of Medicine and Health Science, Ghent University, Ghent, Belgium
| | - Christian Brun-Buisson
- Biostatistics, Biomathematics, Pharmacoepidemiology and Infectious Diseases Mixed Research Unit (French Institute for Medical Research [INSERM], Université de Versailles Saint Quentin Medical School and Institut Pasteur), Paris-Saclay University, Montigny-Le-Bretonneux, France
| | - Maria Deja
- Lumbeck Klinik für Anästhesiologie und Intensivmedizin, Sektion Interdisziplinäre Operative Intensivmedizin, Universitatsklinikum Schleswig-Holstein, Campus Lübeck, Universität zu Lübeck, Lübeck, Germany
| | - Jan De Waele
- Department of Critical Care Medicine, Ghent University Hospital, Ghent, Belgium
| | - Bin Du
- Medical Intensive Care Unit, Peking Union Medical College Hospital, Beijing, China
| | - Joel M. Dulhunty
- University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Department of Intensive Care Medicine, Royal Brisbane and Women’s Hospital, Brisbane, QLD, Australia
- Research and Medical Education, Redcliffe Hospital, Brisbane, QLD, Australia
| | - Julia Garcia-Diaz
- Infectious Diseases Department, Ochsner Clinic Foundation, New Orleans, LA, USA
- Ochsner Clinical School, The University of Queensland, New Orleans, LA, USA
| | - Matthew Judd
- Department of Intensive Care Medicine, Royal Brisbane and Women’s Hospital, Brisbane, QLD, Australia
| | - David L. Paterson
- University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Infectious Diseases Unit, Royal Brisbane and Women’s Hospital,Brisbane, QLD, Australia
| | - Christian Putensen
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Rosa Reina
- Critical Care Department, Hospital San Martin de la Plata, Buenos Aires, Argentina
| | - Jordi Rello
- Clinical Research/Innovation in Pneumonia and Sepsis Research Group, Vall d’Hebron Research Institute, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Efermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Clinical Research Department, Centre Hospitalier Universitaire de Nîmes, Nîmes, France
| | - Marcos I. Restrepo
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Texas Health Science Center, San Antonio, TX, USA
- Pulmonary and Critical Care Fellowship Program, University of Texas Health Science Center, San Antonio, TX, USA
- Medical Intensive Care Unit, South Texas Veterans Health Care System, Audie L Murphy Division, San Antonio, TX, USA
- INnovation Science in Pulmonary Infections REsearch Network, Department of Medicine, University of Texas Health Science Center, San Antonio, TX, USA
| | - Jason A. Roberts
- University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Department of Intensive Care Medicine, Royal Brisbane and Women’s Hospital, Brisbane, QLD, Australia
- Centre for Translational Anti-infective Pharmacodynamics, School of Pharmacy, University of Queensland, Brisbane, QLD, Australia
- Pharmacy Department, Royal Brisbane and Women’s Hospital, Brisbane, QLD, Australia
| | - Fredrik Sjovall
- Department of Intensive Care and Perioperative Medicine, Skane University Hospital, Malmö, Sweden
| | - Jean-Francois Timsit
- Infection, Antimicrobials, Modelling, Evolution Research Centre, French Institute for Medical Research (INSERM), Université de Paris, Paris, France
- Medical and Infectious Diseases Intensive Care Unit (MI2), Hôpital Bichat, Assistance Publique – Hôpitaux de Paris, Paris, France
| | - Sotirios Tsiodras
- Fourth Department of Internal Medicine, Attikon University Hospital, Athens, Greece
| | - Jean-Ralph Zahar
- Service de Microbiologie Clinique et Unité de Contrôle et de Prévention du risque Infectieux, Groupe Hospitalier Paris Seine Saint-Denis, Assistance Publique — Hôpitaux de Paris, Bobigny, France
- Infection, Antimicrobials, Modelling, Evolution Research Centre, Unité Mixte de Recherche 1137, Université Paris 13, Sorbonne Paris Cité, Paris, France
| | - Yuchi Zhang
- Department of Emergency Medicine, Tan Tock Seng Hospital, Singapore, Singapore
| | - Jeffrey Lipman
- University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Department of Intensive Care Medicine, Royal Brisbane and Women’s Hospital, Brisbane, QLD, Australia
- Anesthesiology and Critical Care Department, Centre Hospitalier Universitaire de Nîmes, University of Montpellier, Nîmes, France
| | - On behalf of the Working Group on Pneumonia of the European Society of Intensive Care Medicine
- University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Second Critical Care Department, Attikon University Hospital, Medical School, University of Athens, Athens, Greece
- Intensive Care Unit, Papageorgiou University Affiliated Hospital, Thessaloníki, Greece
- Department of Internal Medicine, Faculty of Medicine and Health Science, Ghent University, Ghent, Belgium
- Biostatistics, Biomathematics, Pharmacoepidemiology and Infectious Diseases Mixed Research Unit (French Institute for Medical Research [INSERM], Université de Versailles Saint Quentin Medical School and Institut Pasteur), Paris-Saclay University, Montigny-Le-Bretonneux, France
- Lumbeck Klinik für Anästhesiologie und Intensivmedizin, Sektion Interdisziplinäre Operative Intensivmedizin, Universitatsklinikum Schleswig-Holstein, Campus Lübeck, Universität zu Lübeck, Lübeck, Germany
- Department of Critical Care Medicine, Ghent University Hospital, Ghent, Belgium
- Medical Intensive Care Unit, Peking Union Medical College Hospital, Beijing, China
- Department of Intensive Care Medicine, Royal Brisbane and Women’s Hospital, Brisbane, QLD, Australia
- Research and Medical Education, Redcliffe Hospital, Brisbane, QLD, Australia
- Infectious Diseases Department, Ochsner Clinic Foundation, New Orleans, LA, USA
- Ochsner Clinical School, The University of Queensland, New Orleans, LA, USA
- Infectious Diseases Unit, Royal Brisbane and Women’s Hospital,Brisbane, QLD, Australia
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
- Critical Care Department, Hospital San Martin de la Plata, Buenos Aires, Argentina
- Clinical Research/Innovation in Pneumonia and Sepsis Research Group, Vall d’Hebron Research Institute, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Efermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Clinical Research Department, Centre Hospitalier Universitaire de Nîmes, Nîmes, France
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Texas Health Science Center, San Antonio, TX, USA
- Pulmonary and Critical Care Fellowship Program, University of Texas Health Science Center, San Antonio, TX, USA
- Medical Intensive Care Unit, South Texas Veterans Health Care System, Audie L Murphy Division, San Antonio, TX, USA
- INnovation Science in Pulmonary Infections REsearch Network, Department of Medicine, University of Texas Health Science Center, San Antonio, TX, USA
- Centre for Translational Anti-infective Pharmacodynamics, School of Pharmacy, University of Queensland, Brisbane, QLD, Australia
- Pharmacy Department, Royal Brisbane and Women’s Hospital, Brisbane, QLD, Australia
- Department of Intensive Care and Perioperative Medicine, Skane University Hospital, Malmö, Sweden
- Infection, Antimicrobials, Modelling, Evolution Research Centre, French Institute for Medical Research (INSERM), Université de Paris, Paris, France
- Medical and Infectious Diseases Intensive Care Unit (MI2), Hôpital Bichat, Assistance Publique – Hôpitaux de Paris, Paris, France
- Fourth Department of Internal Medicine, Attikon University Hospital, Athens, Greece
- Service de Microbiologie Clinique et Unité de Contrôle et de Prévention du risque Infectieux, Groupe Hospitalier Paris Seine Saint-Denis, Assistance Publique — Hôpitaux de Paris, Bobigny, France
- Infection, Antimicrobials, Modelling, Evolution Research Centre, Unité Mixte de Recherche 1137, Université Paris 13, Sorbonne Paris Cité, Paris, France
- Department of Emergency Medicine, Tan Tock Seng Hospital, Singapore, Singapore
- Anesthesiology and Critical Care Department, Centre Hospitalier Universitaire de Nîmes, University of Montpellier, Nîmes, France
| |
Collapse
|