1
|
Liu Q, Wang H, Zhu W, Peng S, Zou H, Zhang P, Li Z, Zhang Z, Fu L, Qian Z. Determination of extracellular proteinase in L. helveticus Lh191404 based on whole genome sequencing and proteomics analysis. Int J Biol Macromol 2024; 276:133958. [PMID: 39033899 DOI: 10.1016/j.ijbiomac.2024.133958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/27/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Lactobacillus helveticus exhibits a remarkable proteolytic system. However, the etiology of these protein hydrolysis characteristics, whether caused by extracellular proteinases (EP) or cell envelope proteinases (CEP), has been puzzling researchers. In this study, third-generation Nanopore whole genome sequencing and proteomics analysis were used to unravel the root cause of the aforementioned confusion. The genome of L. helveticus Lh191404 was 2,117,643 bp in length, with 67 secreted proteins were found. Combined with proteomic analysis, it was found that the protein composition of extraction from CEP and EP were indeed the same substance. Bioinformatics analysis indicated that the CEP belonged to the PrtH1 Variant (PrtH1_V) genotype by phylogenetic analysis. The three-dimensional structures of various domains within the PrtH1_V-191404 had been characterized, providing a comprehensive understanding of its structural features. Results of proteinase activity showed that the optimal reaction temperature was 40 °C, with a pH of 6.50. These findings suggested that the origin of EP in L. helveticus Lh191404 may be due to CEP being released into the substrate after detaching from the cell wall. This research is of guiding significance for further understanding the operational mechanism of the protein hydrolysis system in lactic acid bacteria.
Collapse
Affiliation(s)
- Qingwen Liu
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266003, China
| | - Hao Wang
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266003, China; State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China.
| | - Wenye Zhu
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266003, China
| | - Shanyu Peng
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266003, China
| | - Hao Zou
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266003, China
| | - Pingyuan Zhang
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266003, China
| | - Zhenxing Li
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266003, China; State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Ziye Zhang
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266003, China; State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Lijun Fu
- School of Environmental and Biological Engineering, Putian University, Putian, Fujian 351100, China
| | - Zhuozhen Qian
- Fisheries Research Institute of Fujian, 7 Haishan Road, Xiamen 361013, China
| |
Collapse
|
2
|
Xu Y, Zhang F, Mu G, Zhu X. Effect of lactic acid bacteria fermentation on cow milk allergenicity and antigenicity: A review. Compr Rev Food Sci Food Saf 2024; 23:e13257. [PMID: 38284611 DOI: 10.1111/1541-4337.13257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 09/22/2023] [Accepted: 10/02/2023] [Indexed: 01/30/2024]
Abstract
Cow milk is a major allergenic food. The potential prevention and treatment effects of lactic acid bacteria (LAB)-fermented dairy products on allergic symptoms have garnered considerable attention. Cow milk allergy (CMA) is mainly attributed to extracellular and/or cell envelope proteolytic enzymes with hydrolysis specificity. Numerous studies have demonstrated that LAB prevents the risk of allergies by modulating the development and regulation of the host immune system. Specifically, LAB and its effectors can enhance intestinal barrier function and affect immune cells by interfering with humoral and cellular immunity. Fermentation hydrolysis of allergenic epitopes is considered the main mechanism of reducing CMA. This article reviews the linear epitopes of allergens in cow milk and the effect of LAB on these allergens and provides insight into the means of predicting allergenic epitopes by conventional laboratory analysis methods combined with molecular simulation. Although LAB can reduce CMA in several ways, the mechanism of action remains partially clarified. Therefore, this review additionally attempts to summarize the main mechanism of LAB fermentation to provide guidance for establishing an effective preventive and treatment method for CMA and serve as a reference for the screening, research, and application of LAB-based intervention.
Collapse
Affiliation(s)
- Yunpeng Xu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, P. R. China
| | - Feifei Zhang
- Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, P. R. China
| | - Guangqing Mu
- Dalian Key Laboratory of Functional Probiotics, Dalian, Liaoning, P. R. China
| | - Xuemei Zhu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, P. R. China
| |
Collapse
|
3
|
Zou H, Wang H, Zhang Z, Lin H, Li Z. Immune regulation by fermented milk products: the role of the proteolytic system of lactic acid bacteria in the release of immunomodulatory peptides. Crit Rev Food Sci Nutr 2023; 64:10498-10516. [PMID: 37341703 DOI: 10.1080/10408398.2023.2225200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Food allergies have emerged as a pressing health concern in recent years, largely due to food resources and environmental changes. Dairy products fermented by lactic acid bacteria play an essential role in mitigating allergic diseases. Lactic acid bacteria have been found to possess a distinctive proteolytic system comprising a cell envelope protease (CEP), transporter system, and intracellular peptidase. Studying the impact of different Lactobacillus proteolytic systems on the destruction of milk allergen epitopes and their potential to alleviate allergy symptoms by releasing peptides containing immune regulatory properties is a valuable and auspicious research approach. This paper summarizes the proteolytic systems of different species of lactic acid bacteria, especially the correlation between CEPs and the epitopes from milk allergens. Furthermore, the mechanism of immunomodulatory peptide release was also concluded. Finally, further research on the proteolytic system of lactic acid bacteria will provide additional clinical evidence for the possible treatment and/or prevention of allergic diseases with specific fermented milk/dairy products in the future.
Collapse
Affiliation(s)
- Hao Zou
- College of Food Science and Engineering, Ocean University of China, Qigndao, P.R. China
| | - Hao Wang
- College of Food Science and Engineering, Ocean University of China, Qigndao, P.R. China
| | - Ziye Zhang
- College of Food Science and Engineering, Ocean University of China, Qigndao, P.R. China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, Qigndao, P.R. China
| | - Zhenxing Li
- College of Food Science and Engineering, Ocean University of China, Qigndao, P.R. China
| |
Collapse
|
4
|
Jia W, Zhu J, Wang X, Peng J, Shi L. Covalent or non-covalent binding of polyphenols, polysaccharides, metal ions and nanoparticles to beta-lactoglobulin and advanced processing techniques: Reduce allergenicity and regulate digestion of beta-lactoglobulin. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Zhu Y, Gao L, Xie G, Yang F, Gao P, Yu D, Yu P, Jiang Q, Xu Y, Xia W. Effect of fermentation on immunological properties of allergens from black carp (
Mylopharyngodon piceus
) sausages. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yidan Zhu
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province Jiangnan University Wuxi Jiangsu214122China
| | - Ling Gao
- Children's Hospital of Nanjing Medical University Nanjing Jiangsu 210000 China
| | - Guojin Xie
- Children's Hospital of Nanjing Medical University Nanjing Jiangsu 210000 China
| | - Fang Yang
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province Jiangnan University Wuxi Jiangsu214122China
| | - Pei Gao
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province Jiangnan University Wuxi Jiangsu214122China
| | - Dawei Yu
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province Jiangnan University Wuxi Jiangsu214122China
| | - Peipei Yu
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province Jiangnan University Wuxi Jiangsu214122China
| | - Qixing Jiang
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province Jiangnan University Wuxi Jiangsu214122China
| | - Yanshun Xu
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province Jiangnan University Wuxi Jiangsu214122China
| | - Wenshui Xia
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province Jiangnan University Wuxi Jiangsu214122China
| |
Collapse
|
6
|
Abd El-Salam MH, El-Shibiny S. Reduction of Milk Protein Antigenicity by Enzymatic Hydrolysis and Fermentation. A Review. FOOD REVIEWS INTERNATIONAL 2019. [DOI: 10.1080/87559129.2019.1701010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|