1
|
Zhang Z, Li H, Hu Y, Sun B, Ke T, Wu Q, Lian X, Yu W. The efficacy and safety of inhaled antibiotics for pneumonia: A systematic review and meta-analysis. Pulm Pharmacol Ther 2024; 86:102315. [PMID: 39009240 DOI: 10.1016/j.pupt.2024.102315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/15/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
OBJECTIVES The aim of this study was to evaluate the efficacy and safety of inhaled antibiotics for adults with pneumonia by meta-analysis. METHODS Literature retrieval was completed through five databases (PubMed, Embase, Cochrane Library, Web of Science and Scopus) by the deadline of May 31, 2024. The process of study selection and data extraction were performed independently by two reviewers. The quality of observational studies and randomized controlled trial (RCT) studies were evaluated by Newcastle Ottawa scale and Jadad scale, respectively. The primary outcomes included mortality, clinical cure, and microbiological cure. Secondary outcomes were recurrence and renal impairment. RESULTS There were 30 studies were analyzed, including 12 RCT studies and 18 observational studies. Inhaled antibiotics did not significantly reduce mortality in RCT studies (odds ratio (OR) = 1.06, 95 % confidence interval (CI): 0.80-1.41). Inhaled antibiotics were associated with higher rates of clinical cure (OR = 1.47 95%CI: 0.82-2.66 in RCT studies and OR = 2.09, 95%CI: 1.36-3.21 in observational studies) and microbiological cure (OR = 7.00 in RCT studies and OR = 2.20 in observational studies). Subgroup analysis showed patients received inhaled antibiotics combined with intravenous administration and inhaled amikacin had better improvements of mortality, clinical cure and microbiological cure. Inhaled antibiotics were not associated with recurrence. The pooled OR of renal impairment were 0.65 (95%CI: 0.27-1.13; I-squared = 43.5 %, P = 0.124) and 0.63(95%CI: 0.26-1.11; I-squared = 69.0 %, P = 0.110) in RCT studies and observational studies, respectively. CONCLUSIONS Inhaled antibiotics decreased risk of renal impairment and achieved significant improvements of clinical and microbiological cure in patients with pneumoniae.
Collapse
Affiliation(s)
- Zengzeng Zhang
- Department of Infectious Diseases, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Xiangshan First People's Hospital Medical and Health Group, Ningbo Fourth Hospital, Ningbo, China
| | - Hong Li
- Department of Infectious Diseases, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Xiangshan First People's Hospital Medical and Health Group, Ningbo Fourth Hospital, Ningbo, China
| | - Yutao Hu
- Department of Infectious Diseases, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Xiangshan First People's Hospital Medical and Health Group, Ningbo Fourth Hospital, Ningbo, China
| | - Binhui Sun
- Department of Infectious Diseases, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Xiangshan First People's Hospital Medical and Health Group, Ningbo Fourth Hospital, Ningbo, China
| | - Tingting Ke
- Department of Infectious Diseases, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Xiangshan First People's Hospital Medical and Health Group, Ningbo Fourth Hospital, Ningbo, China
| | - Qihuan Wu
- Department of Infectious Diseases, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Xiangshan First People's Hospital Medical and Health Group, Ningbo Fourth Hospital, Ningbo, China
| | - Xiang Lian
- Department of Infectious Diseases, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Xiangshan First People's Hospital Medical and Health Group, Ningbo Fourth Hospital, Ningbo, China.
| | - Wei Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
2
|
Myrianthefs P, Zakynthinos GE, Tsolaki V, Makris D. Aerosolized Antibiotics to Manage Ventilator-Associated Infections: A Comprehensive Review. Antibiotics (Basel) 2023; 12:antibiotics12050801. [PMID: 37237704 DOI: 10.3390/antibiotics12050801] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Ventilator-associated lower respiratory tract infectious complications in critically ill patients cover a wide spectrum of one disease process (respiratory infection), initiating from tracheal tube and/or tracheobronchial colonization, to ventilator associated tracheobronchitis (VAT) and ventilator-associated pneumonia (VAP). VAP occurence has been associated with increased intensive care unit (ICU) morbidity (ventilator days, as well as length of ICU and hospital stay) and ICU mortality. Therefore, treatments that aim at VAP/VAT incidence reduction are a high priority. AIM The aim of the present review is to discuss the current literature concerning two major aspects: (a) can aerosolized antibiotics (AA) administered in a pre-emptive way prevent the occurrence of ventilator-associated infections? and (b) can VAT treatment with aerosolized avert the potential evolution to VAP? RESULTS There were identified eight studies that provided data on the use of aerosolized antibiotics for the prevention of VAT/VAP. Most of them report favorable data on reducing the colonisation rate and the progression to VAP/VAT. Another four studies dealt with the treatment of VAT/VAP. The results support the decrease in the incidence to VAP transition and/or the improvement in signs and symptoms of VAP. Moreover, there are concise reports on higher cure rates and microbiological eradication in patients treated with aerosolized antibiotics. Yet, differences in the delivery modality adopted and resistance emergence issues preclude the generalisability of the results. CONCLUSION Aerosolized antibiotic therapy can be used to manage ventilator-associated infections, especially those with difficult to treat resistance. The limited clinical data raise the need for large randomized controlled trials to confirm the benefits of AA and to evaluate the impact on antibiotic selection pressure.
Collapse
Affiliation(s)
- Pavlos Myrianthefs
- "Agioi Anargyroi" General Hospital, School of Health Sciences, Department of Nursing, National and Kapodistrian University of Athens, 14564 Athens, Greece
| | - George E Zakynthinos
- Third Cardiology Clinic, University of Athens, Sotiria Hospital, 11526 Athens, Greece
| | - Vasiliki Tsolaki
- Department of Intensive Care Medicine, University Hospital of Larissa, 41110 Larissa, Greece
| | - Demosthenes Makris
- Department of Intensive Care Medicine, University Hospital of Larissa, 41110 Larissa, Greece
- Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| |
Collapse
|
3
|
Giurazza R, Mazza MC, Andini R, Sansone P, Pace MC, Durante-Mangoni E. Emerging Treatment Options for Multi-Drug-Resistant Bacterial Infections. Life (Basel) 2021; 11:life11060519. [PMID: 34204961 PMCID: PMC8229628 DOI: 10.3390/life11060519] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/29/2021] [Accepted: 06/01/2021] [Indexed: 02/07/2023] Open
Abstract
Antimicrobial resistance (AMR) remains one of the top public health issues of global concern. Among the most important strategies for AMR control there is the correct and appropriate use of antibiotics, including those available for the treatment of AMR pathogens. In this article, after briefly reviewing the most important and clinically relevant multi-drug-resistant bacteria and their main resistance mechanisms, we describe the emerging antimicrobial options for both MDR Gram-positive cocci and Gram-negative bacilli, including recently marketed agents, molecules just approved or under evaluation and rediscovered older antibiotics that have regained importance due to their antimicrobial spectrum. Specifically, emerging options for Gram-positive cocci we reviewed include ceftaroline, ceftobiprole, tedizolid, dalbavancin, and fosfomycin. Emerging treatment options for Gram-negative bacilli we considered comprise ceftolozane-tazobactam, ceftazidime-avibactam, meropenem-vaborbactam, imipenem-relebactam, aztreonam-avibactam, minocycline, fosfomycin, eravacycline, plazomicin, and cefiderocol. An exciting scenario is opening today with the long awaited growing availability of novel molecules for the treatment of AMR bacteria. Knowledge of mechanisms of action and resistance patterns allows physicians to increasingly drive antimicrobial treatment towards a precision medicine approach. Strict adherence to antimicrobial stewardship practices will allow us to preserve the emerging antimicrobials for our future.
Collapse
Affiliation(s)
- Roberto Giurazza
- Department of Precision Medicine, University of Campania ‘L. Vanvitelli’, Internal Medicine Section, Piazzale Ettore Ruggieri snc, 80131 Naples, Italy; (R.G.); (M.C.M.)
- Department of Woman, Child and General & Specialized Surgery, University of Campania ‘L. Vanvitelli’, Piazza Miraglia, 80138 Naples, Italy; (P.S.); (M.C.P.)
| | - Maria Civita Mazza
- Department of Precision Medicine, University of Campania ‘L. Vanvitelli’, Internal Medicine Section, Piazzale Ettore Ruggieri snc, 80131 Naples, Italy; (R.G.); (M.C.M.)
- Department of Woman, Child and General & Specialized Surgery, University of Campania ‘L. Vanvitelli’, Piazza Miraglia, 80138 Naples, Italy; (P.S.); (M.C.P.)
| | - Roberto Andini
- Unit of Infectious and Transplant Medicine, AORN Ospedali dei Colli-Monaldi Hospital, Piazzale Ettore Ruggieri snc, 80131 Naples, Italy;
| | - Pasquale Sansone
- Department of Woman, Child and General & Specialized Surgery, University of Campania ‘L. Vanvitelli’, Piazza Miraglia, 80138 Naples, Italy; (P.S.); (M.C.P.)
| | - Maria Caterina Pace
- Department of Woman, Child and General & Specialized Surgery, University of Campania ‘L. Vanvitelli’, Piazza Miraglia, 80138 Naples, Italy; (P.S.); (M.C.P.)
| | - Emanuele Durante-Mangoni
- Department of Precision Medicine, University of Campania ‘L. Vanvitelli’, Internal Medicine Section, Piazzale Ettore Ruggieri snc, 80131 Naples, Italy; (R.G.); (M.C.M.)
- Unit of Infectious and Transplant Medicine, AORN Ospedali dei Colli-Monaldi Hospital, Piazzale Ettore Ruggieri snc, 80131 Naples, Italy;
- Correspondence: ; Tel.: +39-081-7062475; Fax: +39-081-7702645
| |
Collapse
|
4
|
Abstract
PURPOSE OF REVIEW To describe recent data about Acinetobacter baumannii pneumonia epidemiology and the therapeutic options including adjunctive nebulized therapy. RECENT FINDINGS A. baumannii is a major cause of nosocomial pneumonia in certain geographic areas affecting mainly debilitated patients, with prolonged hospitalization and broad-spectrum antimicrobials. Inappropriate empirical treatment has clearly been associated with increased mortality in A. baumannii pneumonia. Carbapenems may not be considered the treatment of choice in areas with high rates of carbapenem-resistant A. baumannii. Nowadays, polymyxins are the antimicrobials with the greatest level of in-vitro activity. Colistin is the antimicrobial most widely used although polymyxin B is associated with less renal toxicity. It is clear that lung concentrations of polymyxins are suboptimal in a substantial proportion of patients. This issue has justified the use of combination therapy or adjunctive nebulized antibiotics. Current evidence does not allow us to recommend combination therapy for A. baumannii pneumonia. Regarding nebulized antibiotics, it seems reasonable to use in patients who are nonresponsive to systemic antibiotics or A. baumannii isolates with colistin minimum inhibitory concentrations close to the susceptibility breakpoints. Cefiderocol, a novel cephalosporin active against A. baumannii, may represent an attractive therapeutic option if ongoing clinical trials confirm preliminary results. SUMMARY The optimal treatment for multidrug-resistant A. baumannii pneumonia has not been established. New therapeutic options are urgently needed. Well designed, randomized controlled trials must been conducted to comprehensively evaluate the effectiveness and safety of nebulized antibiotics for the treatment of A. baumannii pneumonia.
Collapse
|
5
|
Effectiveness of adjunctive nebulized antibiotics in critically ill patients with respiratory tract infections. Eur J Clin Microbiol Infect Dis 2019; 39:361-368. [PMID: 31734797 PMCID: PMC7223945 DOI: 10.1007/s10096-019-03733-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 10/02/2019] [Indexed: 10/29/2022]
Abstract
The purpose of the study was to analyze the effectiveness of adding nebulized antibiotics to systemic antimicrobials in critically ill patients with respiratory tract infections (pneumonia or tracheobronchitis) and the effect on renal function. A retrospective observational cohort study including critically ill patients with respiratory tract infections during a 2-year period was conducted. Intervention group included patients that received nebulized and systemic antimicrobials. Patients in the control group received only systemic antimicrobials. Clinical resolution was the primary endpoint. Secondary outcomes included change in fever, inflammatory parameters, and creatinine clearance; length of hospital stay, systemic therapy, and mechanical ventilation; hospital readmission; and mortality. Regression models were performed to estimate the effect of nebulized antibiotics on outcome variables adjusted by potential confounders. A total of 136 patients were included (93 in control group and 43 in intervention group). The intervention group had higher odds of clinical resolution (adjusted odds ratio (OR): 7.1; 95% confidence interval (95% CI): 1.2, 43.3). Nebulized antibiotic therapy was independently associated with reduction in procalcitonin (adjusted OR: 12.4; 95% CI: 1.4, 109.7). There were no significant differences in the rest of the secondary outcomes or in creatinine clearance reduction. Adding nebulized antibiotics for the management of respiratory tract infections has a positive impact on clinical resolution without increasing the risk of renal toxicity.
Collapse
|
6
|
Rhodes NJ, Cruce CE, O'Donnell JN, Wunderink RG, Hauser AR. Resistance Trends and Treatment Options in Gram-Negative Ventilator-Associated Pneumonia. Curr Infect Dis Rep 2018; 20:3. [PMID: 29511909 DOI: 10.1007/s11908-018-0609-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Hospital-acquired and ventilator-associated pneumonia (VAP) are frequent causes of infection among critically ill patients. VAP is the most common hospital-acquired bacterial infection among mechanically ventilated patients. Unfortunately, many of the nosocomial Gram-negative bacteria that cause VAP are increasingly difficult to treat. Additionally, the evolution and dissemination of multi- and pan-drug resistant strains leave clinicians with few treatment options. VAP patients represent a dynamic population at risk for antibiotic failure and under-dosing due to altered antibiotic pharmacokinetic parameters. Since few antibiotic agents have been approved within the last 15 years, and no new agents specifically targeting VAP have been approved to date, it is anticipated that this problem will worsen. Given the public health crisis posed by resistant Gram-negative bacteria, it is essential to establish a firm understanding of the current epidemiology of VAP, the changing trends in Gram-negative resistance in VAP, and the current issues in drug development for Gram-negative bacteria that cause VAP. RECENT FINDINGS Rapid identification technologies and phenotypic methods, new therapeutic strategies, and novel treatment paradigms have evolved in an attempt to improve treatment outcomes for VAP; however, clinical data supporting alternative treatment strategies and adjunctive therapies remain sparse. Importantly, new classes of antimicrobials, novel virulence factor inhibitors, and beta-lactam/beta-lactamase inhibitor combinations are currently in development. Conscientious stewardship of new and emerging therapeutic agents will be needed to ensure they remain effective well into the future.
Collapse
Affiliation(s)
- Nathaniel J Rhodes
- Department of Pharmacy Practice, Midwestern University, Chicago College of Pharmacy, 555 31st St., Downers Grove, IL, 60515, USA. .,Department of Pharmacy, Northwestern Memorial Hospital, Chicago, IL, USA.
| | - Caroline E Cruce
- Department of Pharmacy Practice, Midwestern University, Chicago College of Pharmacy, 555 31st St., Downers Grove, IL, 60515, USA.,Department of Pharmacy, Northwestern Memorial Hospital, Chicago, IL, USA
| | - J Nicholas O'Donnell
- Department of Pharmacy Practice, Albany College of Pharmacy and Health Sciences, Albany, NY, USA
| | - Richard G Wunderink
- Department of Internal Medicine, Division of Pulmonary Critical Care, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Alan R Hauser
- Department of Internal Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|