1
|
Wang L, Wang W, Wang Q, Tang T, Liu W, Wang Z, Zhang J. Identification of the miRNAs and their target genes involved in fresh‐cut potato browning inhibition by nitrogen. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lihua Wang
- Key Laboratory of Agro‐products Quality and Safety Control in Storage and Transport Process Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology Chinese Academy of Agricultural Sciences Beijing 100193 China
| | - Wenjun Wang
- Key Laboratory of Agro‐products Quality and Safety Control in Storage and Transport Process Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology Chinese Academy of Agricultural Sciences Beijing 100193 China
| | - Qingjun Wang
- Zaozhuang Agricultural and Mechanical Technology Promotion Center Zaozhuang Shandong 277800 China
| | - Tiantian Tang
- Key Laboratory of Agro‐products Quality and Safety Control in Storage and Transport Process Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology Chinese Academy of Agricultural Sciences Beijing 100193 China
| | - Wenrui Liu
- Key Laboratory of Agro‐products Quality and Safety Control in Storage and Transport Process Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology Chinese Academy of Agricultural Sciences Beijing 100193 China
| | - Zhidong Wang
- Key Laboratory of Agro‐products Quality and Safety Control in Storage and Transport Process Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology Chinese Academy of Agricultural Sciences Beijing 100193 China
| | - Jie Zhang
- Key Laboratory of Agro‐products Quality and Safety Control in Storage and Transport Process Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology Chinese Academy of Agricultural Sciences Beijing 100193 China
| |
Collapse
|
2
|
Yang L, Liu J, Wang X, Wang R, Ren F, Zhang Q, Shan Y, Ding S. Characterization of Volatile Component Changes in Jujube Fruits during Cold Storage by Using Headspace-Gas Chromatography-Ion Mobility Spectrometry. Molecules 2019; 24:molecules24213904. [PMID: 31671527 PMCID: PMC6864690 DOI: 10.3390/molecules24213904] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/28/2019] [Accepted: 10/28/2019] [Indexed: 11/16/2022] Open
Abstract
Volatile components in jujube fruits from Zizyphus jujuba Mill. cv. Dongzao (DZ) and Zizyphus jujuba Mill. cv. Jinsixiaozao (JS) were analyzed under different cold storage periods via headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS). Results identified 53 peaks that corresponded to 47 compounds and were mostly alcohols, aldehydes, esters, and ketones. Differences in the volatile components of jujube fruits were revealed in topographic plots and fingerprints. For DZ, 3-pentanone was the characteristic component of fresh fruits. After storage for 15 days, dipropyl disulfide became the most special substance. Moreover, when stored for 30 and 45 days, the fruits had some same volatile components, like 2-pentyl furan and diallyl sulfide. However, for DZ stored for 60 days, esters were the prominent constituent of the volatile components, simultaneously, some new alcohols appeared. For JS, 2-ethyl furan was the representative of fresh fruits, and 2-butoxyethanol content was the most abundant after 15 and 30 days of storage. Different from that in DZ, the content of ester in JS increased after storage for 45 days. Substances such as amyl acetate dimer, methyl salicylate, and linalool greatly contributed to the jujube flavor during the late storage period. Principal component analysis (PCA) showed that fresh samples and refrigerated fruits were effectively distinguished. Heat map clustering analysis displayed the similarity of volatile components in different samples and was in accordance with PCA results. Hence, the volatile components of jujube fruits can be readily identified via HS-GC-IMS, and jujube fruits can be classified at different periods based on the difference of volatile components.
Collapse
Affiliation(s)
- Lvzhu Yang
- Longping Branch Graduate School, Hunan University, Changsha 410125, China.
- Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| | - Jie Liu
- Longping Branch Graduate School, Hunan University, Changsha 410125, China.
- Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| | - Xinyu Wang
- Longping Branch Graduate School, Hunan University, Changsha 410125, China.
- Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| | - Rongrong Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| | - Fang Ren
- G.A.S. Department of Shandong Hanon Science Instrument Co., Ltd., Jinan 253000, China.
| | - Qun Zhang
- Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| | - Yang Shan
- Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| | - Shenghua Ding
- Longping Branch Graduate School, Hunan University, Changsha 410125, China.
- Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| |
Collapse
|
3
|
Li L, Zhang M, Adhikari B, Gao Z. Recent advances in pressure modification-based preservation technologies applied to fresh fruits and vegetables. FOOD REVIEWS INTERNATIONAL 2016. [DOI: 10.1080/87559129.2016.1196492] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|