1
|
Bintsis T, Papademas P. Sustainable Approaches in Whey Cheese Production: A Review. DAIRY 2023. [DOI: 10.3390/dairy4020018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
Whey cheeses have been produced from the very early steps of cheesemaking practices as a sustainable way to utilize whey, which is the main by-product of cheesemaking. Traditional whey cheeses, manufactured with similar processes, are Ricotta, Ricotta salata or Ricottone, and Ricotta fresca in Italy; Anthotyros, Myzithra, Manouri, Xynomyzithra, and Urda in Greece; Urda in Serbia and Romania as well as in other countries such as Israel; Lor in Turkey; Anari in Cyprus; Skuta in Croatia and Serbia; Gjetost and Brunost in Norway; Mesost and Messmör in Sweden; Mysuostur in Iceland; Myseost in Denmark; Requeijão in Portugal; and Requesón in Spain and Mexico. The production of whey cheese is based on the denaturation of whey proteins by heating to 88–92 °C. The specific processing conditions and aspects of the microbiology of whey cheeses are discussed. The special characteristics of whey cheeses, which are high pH and high moisture content, make them susceptible to microbial growth. Due to the limited shelf life of these products, extended research has been carried out to extend the shelf life of whey cheese. The sustainable preservation approaches, such as modified atmosphere packaging, addition of herbs and/or plant extracts, and bio-preservation methods are reviewed. Moreover, novel whey cheeses focused on functional properties have developed during the last 10 years.
Collapse
|
2
|
Vukić V, Vukić D, Pavlić B, Iličić M, Kocić-Tanackov S, Kanurić K, Bjekić M, Zeković Z. Antimicrobial potential of kombucha fresh cheese with the addition of sage ( Salvia officinalis L.) and its preparations. Food Funct 2023; 14:3348-3356. [PMID: 36942549 DOI: 10.1039/d2fo01774a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
One of the main challenges in fresh cheese technology is its rather limited shelf life. Prolongation of the shelf life of fresh cheese has been the focus of numerous research studies and different strategies have been thus used. One of the strategies that could prolong the shelf life of fresh cheese, as well as increase its quality is the application of different starter cultures. As the antimicrobial capacity of sage (Salvia officinalis) has been proven, the possibility of reusing its by-product obtained from a tea factory could be a significant step towards the retention of environmental equilibrium and simultaneous production of food with additional functional value. Therefore, the aim of our research was to examine the antimicrobial potential of kombucha fresh cheese with the addition of ground herbal sage, sage essential oil and sage supercritical fluid extract, and compare it with fresh cheese obtained from a commercial starter culture. In order to examine the antimicrobial activity of kombucha fresh cheese produced with the addition of sage preparations, the produced samples were artificially contaminated with common foodborne contaminants: Listeria monocytogenes, Escherichia coli and Staphylococcus aureus. The obtained results revealed that the addition of sage essential oil and herbal ground sage increased the antimicrobial activity during the 30 days of storage against E. coli in kombucha fresh cheese (decrease of 2.9 and 2.5 log CFU g-1, respectively). Implementation of sage significantly increased the antimicrobial activity of the fresh cheese produced with a commercial XPL-1 starter culture against L. monocytogenes (essential oil - 0.9 log CFU g-1 and ground sage - 1.2 log CFU g-1). In the XPL-1 sample, the growth of S. aureus was inhibited by the addition of ground sage - a decrease of 1.4 log CFU g-1. Analysis of the total phenols revealed their 5-fold higher content in the kombucha fresh cheeses compared to the samples obtained by the XPL-1 starter culture. These results correlate with the higher antimicrobial activity of the kombucha fresh cheese samples compared to the XPL-1 samples. According to our results, industrial waste, obtained as a by-product in sage (Salvia officinalis) filter tea production, can be efficiently used in fresh cheese technology in order to increase the antimicrobial activity against L. monocytogenes, E. coli and S. aureus.
Collapse
Affiliation(s)
- Vladimir Vukić
- University of Novi Sad, Faculty of Technology Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia.
| | - Dajana Vukić
- University of Novi Sad, Faculty of Technology Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia.
| | - Branimir Pavlić
- University of Novi Sad, Faculty of Technology Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia.
| | - Mirela Iličić
- University of Novi Sad, Faculty of Technology Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia.
| | - Sunčica Kocić-Tanackov
- University of Novi Sad, Faculty of Technology Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia.
| | - Katarina Kanurić
- University of Novi Sad, Faculty of Technology Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia.
| | - Maja Bjekić
- University of Novi Sad, Faculty of Technology Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia.
| | - Zoran Zeković
- University of Novi Sad, Faculty of Technology Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia.
| |
Collapse
|
3
|
Zhang B, Tan C, Zou F, Sun Y, Shang N, Wu W. Impacts of Cold Plasma Technology on Sensory, Nutritional and Safety Quality of Food: A Review. Foods 2022; 11:foods11182818. [PMID: 36140945 PMCID: PMC9497965 DOI: 10.3390/foods11182818] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
As an emerging non-thermal food processing technology, cold plasma (CP) technology has been widely applied in food preservation due to its high efficiency, greenness and lack of chemical residues. Recent studies have indicated that CP technology also has an impressing effect on improving food quality. This review summarized the impact of CP on the functional composition and quality characteristics of various food products. CP technology can prevent the growth of spoilage microorganisms while maintaining the physical and chemical properties of the food. It can maintain the color, flavor and texture of food. CP can cause changes in protein structure and function, lipid oxidation, vitamin and monosaccharide degradation, starch modification and the retention of phenolic substances. Additionally, it also degrades allergens and toxins in food. In this review, the effects of CP on organoleptic properties, nutrient content, safety performance for food and the factors that cause these changes were concluded. This review also highlights the current application limitations and future development directions of CP technology in the food industry. This review enables us to more comprehensively understand the impacts of CP technology on food quality and promotes the healthy application of CP technology in the food industry.
Collapse
Affiliation(s)
- Bo Zhang
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Chunming Tan
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Fanglei Zou
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Yu Sun
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Nan Shang
- College of Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
- Correspondence: (N.S.); (W.W.)
| | - Wei Wu
- College of Engineering, China Agricultural University, Beijing 100083, China
- Correspondence: (N.S.); (W.W.)
| |
Collapse
|
4
|
Urgu-Ozturk M. Possibilities of using the continuous type of UV light on the surface of lor (whey) cheese: impacts on mould growth, oxidative stability, sensory and colour attributes during storage. J DAIRY RES 2022; 89:1-7. [PMID: 35983807 DOI: 10.1017/s0022029922000590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This research paper addresses the hypothesis that the optimum doses of a continuous type of ultraviolet (UV) light applied to the surface of lor (whey) cheese needs to be identified to maximize mould inactivation and shelf life while minimizing quality deterioration. Therefore, the mould inactivation, protein and lipid oxidation products, sensory and colour attributes of lor cheese subjected to different doses of UV light (1.617, 4.018, and 36.832 kJ/m2) in a continuous type of UV system were evaluated. UV treated samples presented mould counts lower than those of untreated ones. UV treatment at more than 4.018 kJ/m2 allowed around 0.7-2.7 log reductions on mould growth during storage. The increase in UV light dose caused significant increases in primary and secondary lipid oxidation products. In particular, the highest doses applied to the surface of cheese samples had the highest values of protein carbonyls, as well as lipid oxidation products. Strong positive correlations were recorded between lipid and protein oxidation markers. Exposure to the highest doses of UV light increased foreign flavour perception, probably due to the oxidative reactions. The results indicated that the application of UV light to the lor cheese surface allowed delaying mould growth during storage but extreme doses could induce lipid and protein oxidation reactions, leading to quality deterioration.
Collapse
Affiliation(s)
- Muge Urgu-Ozturk
- Engineering Faculty, Food Engineering Department, Ege University, 35100 Bornova, Izmir, Turkey
| |
Collapse
|
5
|
Birania S, Attkan AK, Kumar S, Kumar N, Singh VK. Cold plasma in food processing and preservation: A review. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Sapna Birania
- Department of Processing and Food Engineering, College of Agricultural Engineering and Technology CCS Haryana Agricultural University Hisar India
| | - Arun Kumar Attkan
- Department of Processing and Food Engineering, College of Agricultural Engineering and Technology CCS Haryana Agricultural University Hisar India
| | - Sunil Kumar
- AICRP on Post Harvest Engineering and Technology, Department of Processing and Food Engineering, College of Agricultural Engineering and Technology CCS Haryana Agricultural University Hisar India
| | - Nitin Kumar
- Department of Processing and Food Engineering, College of Agricultural Engineering and Technology CCS Haryana Agricultural University Hisar India
| | - Vijay Kumar Singh
- Department of Processing and Food Engineering, College of Agricultural Engineering and Technology CCS Haryana Agricultural University Hisar India
| |
Collapse
|