Çalışkan Koç G, Özkan Karabacak A, Süfer Ö, Adal S, Çelebi Y, Delikanlı Kıyak B, Öztekin S. Thawing frozen foods: A comparative review of traditional and innovative methods.
Compr Rev Food Sci Food Saf 2025;
24:e70136. [PMID:
39970035 PMCID:
PMC11838820 DOI:
10.1111/1541-4337.70136]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/13/2025] [Accepted: 01/20/2025] [Indexed: 02/21/2025]
Abstract
Due to the changing consumer lifestyles, the tendency to adopt foods that require less preparation time and offer both variety and convenience has played a significant role in the development of the frozen food industry. Freezing is one of the fundamental food preservation techniques, as it maintains high product quality. Freezing reduces chemical and enzymatic reactions, lowers water activity, and prevents microbial growth, thereby extending the shelf life of foods. The freezing and thawing procedures directly impact the quality of frozen foods. The degree of tissue damage is determined by the freezing rate and the structure of the ice crystals that form during the freezing process. Generally, thawing occurs more slowly than freezing. During thawing, microorganisms, as well as chemical and physical changes, can cause nutrient damage. Thus, the goal of this review is to identify innovative and optimal thawing strategies. In order to save energy and/or improve quality, new chemical and physical thawing aids are being developed alongside emerging techniques such as microwave-assisted, ohmic-assisted, high pressure, acoustic thawing, and so on. In addition to discussing the possible uses of these technologies for the thawing process and their effects on food quality, the purpose of this study is to present a thorough comparative overview of recent advancements in thawing techniques.
Collapse