1
|
Gullifa G, Barone L, Papa E, Giuffrida A, Materazzi S, Risoluti R. Portable NIR spectroscopy: the route to green analytical chemistry. Front Chem 2023; 11:1214825. [PMID: 37818482 PMCID: PMC10561305 DOI: 10.3389/fchem.2023.1214825] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 09/07/2023] [Indexed: 10/12/2023] Open
Abstract
There is a growing interest for cost-effective and nondestructive analytical techniques in both research and application fields. The growing approach by near-infrared spectroscopy (NIRs) pushes to develop handheld devices devoted to be easily applied for in situ determinations. Consequently, portable NIR spectrometers actually result definitively recognized as powerful instruments, able to perform nondestructive, online, or in situ analyses, and useful tools characterized by increasingly smaller size, lower cost, higher robustness, easy-to-use by operator, portable and with ergonomic profile. Chemometrics play a fundamental role to obtain useful and meaningful results from NIR spectra. In this review, portable NIRs applications, published in the period 2019-2022, have been selected to indicate starting references. These publications have been chosen among the many examples of the most recent applications to demonstrate the potential of this analytical approach which, not having the need for extraction processes or any other pre-treatment of the sample under examination, can be considered the "true green analytical chemistry" which allows the analysis where the sample to be characterized is located. In the case of industrial processes or plant or animal samples, it is even possible to follow the variation or evolution of fundamental parameters over time. Publications of specific applications in this field continuously appear in the literature, often in unfamiliar journal or in dedicated special issues. This review aims to give starting references, sometimes not easy to be found.
Collapse
Affiliation(s)
- G. Gullifa
- Department of Chemistry, “Sapienza” Università di Roma, Rome, Italy
| | - L. Barone
- Department of Chemistry, “Sapienza” Università di Roma, Rome, Italy
| | - E. Papa
- Department of Chemistry, “Sapienza” Università di Roma, Rome, Italy
| | - A. Giuffrida
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - S. Materazzi
- Department of Chemistry, “Sapienza” Università di Roma, Rome, Italy
| | - R. Risoluti
- Department of Chemistry, “Sapienza” Università di Roma, Rome, Italy
| |
Collapse
|
2
|
Ni D, Smyth HE, Cozzolino D, Gidley MJ. Holistic approach to effects of foods, human physiology, and psychology on food intake and appetite (satiation & satiety). Crit Rev Food Sci Nutr 2022; 64:3702-3712. [PMID: 36259784 DOI: 10.1080/10408398.2022.2134840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Appetite (satiation and satiety) is an essential element for the control of eating behavior, and as a consequence human nutrition, body weight, and chronic disease risk. A better understanding of appetite mechanisms is necessary to modulate eating behavior and food intake, and also provide a practical approach for weight management. Although many researchers have investigated the relationships between satiation/satiety and specific factors including human physiology, psychology, and food characteristics, limited information on the interactions between factors or comparisons between the relative importance of factors in contributing to satiation/satiety have been reported. This article reviews progress and gaps in understanding individual attributes contributing to perceived satiation/satiety, the advantages of considering multiple factors together in appetite experiments, as well as the applications of nondestructive sensing in evaluating human factors contributing to relative appetite perception. The approaches proposed position characterization of appetite (satiation and satiety) for personalized and precision nutrition in relation to human status and healthy diets. In particular, it is recommended that future studies of appetite perception recognize the inter-dependence of food type and intake, appetite (satiation and satiety), and individual status.
Collapse
Affiliation(s)
- Dongdong Ni
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland, Australia
| | - Heather E Smyth
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland, Australia
| | - Daniel Cozzolino
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland, Australia
| | - Michael J Gidley
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
3
|
Rakha A, Mehak F, Shabbir MA, Arslan M, Ranjha MMAN, Ahmed W, Socol CT, Rusu AV, Hassoun A, Aadil RM. Insights into the constellating drivers of satiety impacting dietary patterns and lifestyle. Front Nutr 2022; 9:1002619. [PMID: 36225863 PMCID: PMC9549911 DOI: 10.3389/fnut.2022.1002619] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Food intake and body weight regulation are of special interest for meeting today's lifestyle essential requirements. Since balanced energy intake and expenditure are crucial for healthy living, high levels of energy intake are associated with obesity. Hence, regulation of energy intake occurs through short- and long-term signals as complex central and peripheral physiological signals control food intake. This work aims to explore and compile the main factors influencing satiating efficiency of foods by updating recent knowledge to point out new perspectives on the potential drivers of satiety interfering with food intake regulation. Human internal factors such as genetics, gender, age, nutritional status, gastrointestinal satiety signals, gut enzymes, gastric emptying rate, gut microbiota, individual behavioral response to foods, sleep and circadian rhythms are likely to be important in determining satiety. Besides, the external factors (environmental and behavioral) impacting satiety efficiency are highlighted. Based on mechanisms related to food consumption and dietary patterns several physical, physiological, and psychological factors affect satiety or satiation. A complex network of endocrine and neuroendocrine mechanisms controls the satiety pathways. In response to food intake and other behavioral cues, gut signals enable endocrine systems to target the brain. Intestinal and gastric signals interact with neural pathways in the central nervous system to halt eating or induce satiety. Moreover, complex food composition and structures result in considerable variation in satiety responses for different food groups. A better understanding of foods and factors impacting the efficiency of satiety could be helpful in making smart food choices and dietary recommendations for a healthy lifestyle based on updated scientific evidence.
Collapse
Affiliation(s)
- Allah Rakha
- National Institute of Food Science and Technology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Fakiha Mehak
- National Institute of Food Science and Technology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Asim Shabbir
- National Institute of Food Science and Technology, University of Agriculture Faisalabad, Faisalabad, Pakistan
- *Correspondence: Muhammad Asim Shabbir
| | - Muhammad Arslan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | | | - Waqar Ahmed
- National Institute of Food Science and Technology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | | | - Alexandru Vasile Rusu
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
- Faculty of Animal Science and Biotechnology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
- Alexandru Vasile Rusu
| | - Abdo Hassoun
- Univ. Littoral Côte d'Opale, UMRt 1158 BioEcoAgro, USC ANSES, INRAe, Univ. Artois, Univ. Lille, Univ. Picardie Jules Verne, Univ. Liège, Junia, F-62200, Boulogne-sur-Mer, France
- Sustainable AgriFoodtech Innovation & Research (SAFIR), Arras, France
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture Faisalabad, Faisalabad, Pakistan
- Rana Muhammad Aadil
| |
Collapse
|