1
|
Liu Y, Wang X, Wang Z, Xv T, Dai X, Liu Y, Sun Y, Zhao T, Zhang Y. Investigation of Dielectric Barrier Discharge Plasma for the Degradation of Erythromycin Solution. Molecules 2025; 30:625. [PMID: 39942730 PMCID: PMC11820737 DOI: 10.3390/molecules30030625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
Antibiotic contamination constitutes a serious environmental and public health risk. In order to fill the gap in the study of plasma degradation of erythromycin (ERY), this paper systematically investigated the mechanism of ERY degradation by dielectric barrier discharge (DBD) plasma. The underlying reaction mechanisms were investigated by experiments and molecular dynamics simulations. Plasma emission spectra revealed active hydroxyl radicals (·OH) and argon (Ar) spectral lines. The degradation efficiency of plasma treatment for ERY was found to be strongly influenced by treatment parameters, including applied voltage, treatment duration, and gas flow rate. In particular, a maximum degradation of 90% was achieved for a 250 mg/L ERY solution under conditions of 18 kV voltage, 850 sccm gas flow rate, and 60 min of treatment. The presence of ·OH and hydrogen peroxide (H2O2) in the reaction and their important role in the degradation were proved experimentally. Fracture of the ERY lactone ring induced by hydrogen abstraction reactions with reactive oxygen species (ROS) was observed by molecular dynamics simulations. In the in vitro antimicrobial assays targeting Staphylococcus aureus, the treated solutions demonstrated low toxicity, underscoring the practical applicability of dielectric barrier discharge (DBD) plasma technology in addressing antibiotic contamination in aquatic environments.
Collapse
Affiliation(s)
| | - Xiaolong Wang
- School of Electrical Engineering, Shandong University, Jinan 250061, China; (Y.L.); (Z.W.); (T.X.); (X.D.); (Y.L.); (Y.S.); (T.Z.); (Y.Z.)
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Pan C, Chen Q, Liu D, Ding M, Zhang L. Reactive molecular dynamics simulations investigating ROS-mediated HIV damage from outer gp120 protein to internal capsid protein. RSC Adv 2025; 15:331-336. [PMID: 39758918 PMCID: PMC11698125 DOI: 10.1039/d4ra07023b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/08/2024] [Indexed: 01/07/2025] Open
Abstract
Molecular dynamics (MD) with the ReaxFF force field is used to study the structural damage to HIV capsid protein and gp120 protein mediated by reactive oxygen species (ROS). Our results show that with an increase in ROS concentration, the structures of the HIV capsid protein and gp120 protein are more severely damaged, including dehydrogenation, increase in oxygen-containing groups, helix shortening or destruction, and peptide bond breaking. In particular, we noticed that extraction of H atoms from N atoms by ROS was significantly higher than that from C atoms. There was no significant difference in the effect of ROS on dehydrogenation and shortening or breaking of the helices. In contrast, the impact of O on the increase in oxygen-containing groups and the fracture of peptide bonds in the gp120 protein is more significant than that of O3, and the effect of O3 is greater than that of ˙OH. In addition, the degree of structural damage of the gp120 protein was greater than that of the capsid protein. These detailed findings deepen our understanding of the role of ROS in regulating the structure and function of the HIV capsid protein and gp120 protein and provide valuable insights for plasma therapy for acquired immune deficiency syndrome (AIDS).
Collapse
Affiliation(s)
- Cunjia Pan
- Xinjiang Laboratory of Phase Transitions and Microstructures in Condensed Matter Physics, College of Physical Science and Technology, Yili Normal University Yining 835000 China
| | - Qiaoyue Chen
- Xinjiang Laboratory of Phase Transitions and Microstructures in Condensed Matter Physics, College of Physical Science and Technology, Yili Normal University Yining 835000 China
| | - Danfeng Liu
- Xinjiang Laboratory of Phase Transitions and Microstructures in Condensed Matter Physics, College of Physical Science and Technology, Yili Normal University Yining 835000 China
| | - Mingming Ding
- Xinjiang Laboratory of Phase Transitions and Microstructures in Condensed Matter Physics, College of Physical Science and Technology, Yili Normal University Yining 835000 China
- School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou 510006 China
| | - Lili Zhang
- Xinjiang Laboratory of Phase Transitions and Microstructures in Condensed Matter Physics, College of Physical Science and Technology, Yili Normal University Yining 835000 China
| |
Collapse
|
3
|
Sun Y, Chen Y, Zhang Y. Interaction Mechanisms of Cold Atmospheric Plasmas with HIV Capsid Protein by Reactive Molecular Dynamics Simulation. Molecules 2024; 30:101. [PMID: 39795158 PMCID: PMC11722045 DOI: 10.3390/molecules30010101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
In recent years, plasma medicine has developed rapidly as a new interdisciplinary discipline. However, the key mechanisms of interactions between cold atmospheric plasma (CAP) and biological tissue are still in the exploration stage. In this study, by introducing the reactive molecular dynamics (MD) simulation, the capsid protein (CA) molecule of HIV was selected as the model to investigate the reaction process upon impact by reactive oxygen species (ROS) from CAP and protein molecules at the atomic level. The simulation results show that ground-state oxygen atoms can abstract hydrogen atoms from protein chains and break hydrogen bonds, leading to the destruction of the disulfide bonds, C-C bonds, and C-N bonds. Furthermore, the generation of alcohol-based groups resulting from the impact of ROS can alter the hydrophobicity of molecules and induce damage to the primary, secondary, and tertiary structures of proteins. The dosage effects on the reaction processes and products induced by CAP are also explored with varying numbers of ROS in the simulation box, and the influences on the broken C-H, N-H, and C-N bonds are discussed. In this study, the computational data suggest that severe damage can be caused to CA upon the impact of ROS by revealing the reaction processes and products.
Collapse
Affiliation(s)
| | | | - Yuantao Zhang
- School of Electrical Engineering, Shandong University, Jinan 250061, China; (Y.S.)
| |
Collapse
|
4
|
Murtaza B, Wang L, Li X, Nawaz MY, Saleemi MK, Khatoon A, Yongping X. Recalling the reported toxicity assessment of deoxynivalenol, mitigating strategies and its toxicity mechanisms: Comprehensive review. Chem Biol Interact 2024; 387:110799. [PMID: 37967807 DOI: 10.1016/j.cbi.2023.110799] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/04/2023] [Accepted: 11/07/2023] [Indexed: 11/17/2023]
Abstract
Mycotoxins frequently contaminate a variety of food items, posing significant concerns for both food safety and public health. The adverse consequences linked to poisoning from these substances encompass symptoms such as vomiting, loss of appetite, diarrhea, the potential for cancer development, impairments to the immune system, disruptions in neuroendocrine function, genetic damage, and, in severe cases, fatality. The deoxynivalenol (DON) raises significant concerns for both food safety and human health, particularly due to its potential harm to vital organs in the body. It is one of the most prevalent fungal contaminants found in edible items used by humans and animals globally. The presence of harmful mycotoxins, including DON, in food has caused widespread worry. Altered versions of DON have arisen as possible risks to the environment and well-being, as they exhibit a greater propensity to revert back to the original mycotoxins. This can result in the buildup of mycotoxins in both animals and humans, underscoring the pressing requirement for additional investigation into the adverse consequences of these modified mycotoxins. Furthermore, due to the lack of sufficient safety data, accurately evaluating the risk posed by modified mycotoxins remains challenging. Our review study delves into conjugated forms of DON, exploring its structure, toxicity, control strategies, and a novel animal model for assessing its toxicity. Various toxicities, such as acute, sub-acute, chronic, and cellular, are proposed as potential mechanisms contributing to the toxicity of conjugated forms of DON. Additionally, the study offers an overview of DON's toxicity mechanisms and discusses its widespread presence worldwide. A thorough exploration of the health risk evaluation associated with conjugated form of DON is also provided in this discussion.
Collapse
Affiliation(s)
- Bilal Murtaza
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China.
| | - Lili Wang
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China; Center for Food Safety of Animal Origin, Ministry of Education, Dalian University of Technology, Dalian, 116600, China
| | - Xiaoyu Li
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China; Center for Food Safety of Animal Origin, Ministry of Education, Dalian University of Technology, Dalian, 116600, China
| | | | | | - Aisha Khatoon
- Department of Pathology, University of Agriculture, Faisalabad, Pakistan
| | - Xu Yongping
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China; Center for Food Safety of Animal Origin, Ministry of Education, Dalian University of Technology, Dalian, 116600, China.
| |
Collapse
|
5
|
Computational Studies of Aflatoxin B 1 (AFB 1): A Review. Toxins (Basel) 2023; 15:toxins15020135. [PMID: 36828449 PMCID: PMC9967988 DOI: 10.3390/toxins15020135] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/25/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Aflatoxin B1 (AFB1) exhibits the most potent mutagenic and carcinogenic activity among aflatoxins. For this reason, AFB1 is recognized as a human group 1 carcinogen by the International Agency of Research on Cancer. Consequently, it is essential to determine its properties and behavior in different chemical systems. The chemical properties of AFB1 can be explored using computational chemistry, which has been employed complementarily to experimental investigations. The present review includes in silico studies (semiempirical, Hartree-Fock, DFT, molecular docking, and molecular dynamics) conducted from the first computational study in 1974 to the present (2022). This work was performed, considering the following groups: (a) molecular properties of AFB1 (structural, energy, solvent effects, ground and the excited state, atomic charges, among others); (b) theoretical investigations of AFB1 (degradation, quantification, reactivity, among others); (c) molecular interactions with inorganic compounds (Ag+, Zn2+, and Mg2+); (d) molecular interactions with environmentally compounds (clays); and (e) molecular interactions with biological compounds (DNA, enzymes, cyclodextrins, glucans, among others). Accordingly, in this work, we provide to the stakeholder the knowledge of toxicity of types of AFB1-derivatives, the structure-activity relationships manifested by the bonds between AFB1 and DNA or proteins, and the types of strategies that have been employed to quantify, detect, and eliminate the AFB1 molecule.
Collapse
|
6
|
Loi M, Logrieco AF, Pusztahelyi T, Leiter É, Hornok L, Pócsi I. Advanced mycotoxin control and decontamination techniques in view of an increased aflatoxin risk in Europe due to climate change. Front Microbiol 2023; 13:1085891. [PMID: 36762096 PMCID: PMC9907446 DOI: 10.3389/fmicb.2022.1085891] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023] Open
Abstract
Aflatoxins are toxic secondary metabolites produced by Aspergillus spp. found in staple food and feed commodities worldwide. Aflatoxins are carcinogenic, teratogenic, and mutagenic, and pose a serious threat to the health of both humans and animals. The global economy and trade are significantly affected as well. Various models and datasets related to aflatoxins in maize have been developed and used but have not yet been linked. The prevention of crop loss due to aflatoxin contamination is complex and challenging. Hence, the set-up of advanced decontamination is crucial to cope with the challenge of climate change, growing population, unstable political scenarios, and food security problems also in European countries. After harvest, decontamination methods can be applied during transport, storage, or processing, but their application for aflatoxin reduction is still limited. Therefore, this review aims to investigate the effects of environmental factors on aflatoxin production because of climate change and to critically discuss the present-day and novel decontamination techniques to unravel gaps and limitations to propose them as a tool to tackle an increased aflatoxin risk in Europe.
Collapse
Affiliation(s)
- Martina Loi
- Institute of Sciences of Food Production, National Research Council, Bari, Italy,*Correspondence: Martina Loi, ✉
| | - Antonio F. Logrieco
- Institute of Sciences of Food Production, National Research Council, Bari, Italy
| | - Tünde Pusztahelyi
- Central Laboratory of Agricultural and Food Products, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Éva Leiter
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, Institute of Biotechnology, University of Debrecen, Debrecen, Hungary,ELRN-UD Fungal Stress Biology Research Group, University of Debrecen, Debrecen, Hungary
| | - László Hornok
- Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, Institute of Biotechnology, University of Debrecen, Debrecen, Hungary,ELRN-UD Fungal Stress Biology Research Group, University of Debrecen, Debrecen, Hungary
| |
Collapse
|