1
|
Spasmolytic and Antibacterial Activity of Two Citrus sinensis Osbeck Varieties Cultivated in Mexico. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:3960837. [PMID: 28356916 PMCID: PMC5357527 DOI: 10.1155/2017/3960837] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/07/2017] [Indexed: 11/18/2022]
Abstract
Antibacterial activity on ATCC strains of Escherichia coli, Salmonella enterica, Salmonella enteritidis, and Salmonella choleraesuis and spasmolytic effect on contraction on rat ileum trips were determinate. Eight organic extracts (hexanic and methanolic) of albedo (mesocarp) and flavedo (pericarp) of two varieties (Valencian and National) of Citrus sinensis (L.) Osbeck of Yucatán, México, were studied. Additionally, chromatographic fingerprints were obtained and correlated with their pharmacological effects. MAN, MAV, and HFN extract caused inhibition against S. choleraesuis (MIC: 1000 µg/mL) and S. enteritidis (MIC: 1000 µg/mL). Regarding the spasmolytic effect, the Valencian extracts variety was more efficient on spontaneous contraction, HAV (Emax = 51.98 ± 1.98%), MAV (Emax = 35.98 ± 1.42%), HFV (Emax = 68.91 ± 4.14%), and MFV (Emax = 51.28 ± 2.59%), versus National variety, HAN (Emax = 43.80 ± 6.32%), MAN (Emax = 14.62 ± 1.69%), HFN (Emax = 64.87 ± 3.04%), and MFN (Emax = 31.01 ± 3.92%). Chromatographic fingerprints of HFV and HFN were found to have some similar signals that belong to monoterpenes, whereas for HAN and HAV similar signals were found belonging to fatty acids and triterpenoids. Methanolic extracts showed signals of (1) furfural, (2) furfural acetone (3) furfuraldehyde and (4) β–sitosterol compounds. Flavedo portion of C. sinensis possessed spasmolytic effect on rat ileum strips and antibacterial activity against Salmonella strains. This species is source for obtaining bioactive compounds with therapeutic potential in the treatment of infectious diarrhea.
Collapse
|
2
|
Zhanel GG, Fontaine S, Adam H, Schurek K, Mayer M, Noreddin AM, Gin AS, Rubinstein E, Hoban DJ. A Review of New Fluoroquinolones : Focus on their Use in Respiratory Tract Infections. ACTA ACUST UNITED AC 2016; 5:437-65. [PMID: 17154673 DOI: 10.2165/00151829-200605060-00009] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The new respiratory fluoroquinolones (gatifloxacin, gemifloxacin, levofloxacin, moxifloxacin, and on the horizon, garenoxacin) offer many improved qualities over older agents such as ciprofloxacin. These include retaining excellent activity against Gram-negative bacilli, with improved Gram-positive activity (including Streptococcus pneumoniae and Staphylococcus aureus). In addition, gatifloxacin, moxifloxacin and garenoxacin all demonstrate increased anaerobic activity (including activity against Bacteroides fragilis). The new fluoroquinolones possess greater bioavailability and longer serum half-lives compared with ciprofloxacin. The new fluoroquinolones allow for once-daily administration, which may improve patient adherence. The high bioavailability allows for rapid step down from intravenous administration to oral therapy, minimizing unnecessary hospitalization, which may decrease costs and improve quality of life of patients. Clinical trials involving the treatment of community-acquired respiratory infections (acute exacerbations of chronic bronchitis, acute sinusitis, and community-acquired pneumonia) demonstrate high bacterial eradication rates and clinical cure rates. In the treatment of community-acquired respiratory tract infections, the various new fluoroquinolones appear to be comparable to each other, but may be more effective than macrolide or cephalosporin-based regimens. However, additional data are required before it can be emphatically stated that the new fluoroquinolones as a class are responsible for better outcomes than comparators in community-acquired respiratory infections. Gemifloxacin (except for higher rates of hypersensitivity), levofloxacin, and moxifloxacin have relatively mild adverse effects that are more or less comparable to ciprofloxacin. In our opinion, gatifloxacin should not be used, due to glucose alterations which may be serious. Although all new fluoroquinolones react with metal ion-containing drugs (antacids), other drug interactions are relatively mild compared with ciprofloxacin. The new fluoroquinolones gatifloxacin, gemifloxacin, levofloxacin, and moxifloxacin have much to offer in terms of bacterial eradication, including activity against resistant respiratory pathogens such as penicillin-resistant, macrolide-resistant, and multidrug-resistant S. pneumoniae. However, ciprofloxacin-resistant organisms, including ciprofloxacin-resistant S. pneumoniae, are becoming more prevalent, thus prudent use must be exercised when prescribing these valuable agents.
Collapse
Affiliation(s)
- George G Zhanel
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, CanadaDepartment of Clinical Microbiology, Health Sciences Centre, Winnipeg, Manitoba, CanadaDepartment of Medicine, Health Sciences Centre, Winnipeg, Manitoba, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
New semiphysiological absorption model to assess the pharmacodynamic profile of cefuroxime axetil using nonparametric and parametric population pharmacokinetics. Antimicrob Agents Chemother 2009; 53:3462-71. [PMID: 19528278 DOI: 10.1128/aac.00054-09] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cefuroxime axetil is widely used to treat respiratory tract infections. We are not aware of a population pharmacokinetic (PK) model for cefuroxime axetil. Our objectives were to develop a semiphysiological population PK model and evaluate the pharmacodynamic profile for cefuroxime axetil. Twenty-four healthy volunteers received 250 mg oral cefuroxime as a suspension after a standardized breakfast. Liquid chromatography-tandem mass spectrometry was used for drug analysis, NONMEM and S-ADAPT (results reported) were used for parametric population PK modeling, and NPAG was used for nonparametric population PK modeling. Monte Carlo simulations were used to predict the duration for which the non-protein-bound-plasma concentration was above the MIC (fT(>MIC)). A model with one disposition compartment, a saturable and time-dependent drug release from the stomach, and fast drug absorption from the intestine yielded precise (r > 0.992) and unbiased curve fits and an excellent predictive performance. The apparent clearance was 21.7 liters/h (19.8% coefficient of variation [CV]) and the volume of distribution 38.7 liters (18.3% CV). Robust (>or=90%) probabilities of target attainment (PTAs) were achieved by 250 mg cefuroxime given every 12 h (q12h) or q8h for MICs of <or=0.375 mg/liter or <or=0.5 mg/liter, respectively, for the bacteriostasis target fT(>MIC) of >or=40% and for MICs of <or=0.094 mg/liter or <or=0.375 mg/liter, respectively, for the near-maximal-killing target fT(>MIC) of >or=65%. For the >or=40% fT(>MIC) target, the PTAs for 250 mg cefuroxime q12h were >or=97.8% for Streptococcus pyogenes and penicillin-susceptible Streptococcus pneumoniae. Cefuroxime at 250 mg q12h or q8h achieved PTAs below 73% or 92%, respectively, for Haemophilus influenzae, Moraxella catarrhalis, and penicillin-intermediate S. pneumoniae for susceptibility data from various countries. Depending on the MIC distribution, 250 mg oral cefuroxime q8h instead of q12h should be considered, especially for more-severe infections that require near-maximal killing by cefuroxime.
Collapse
|
4
|
Richter SN, Giaretta G, Comuzzi V, Leo E, Mitchenall LA, Fisher LM, Maxwell A, Palumbo M. Hot-spot consensus of fluoroquinolone-mediated DNA cleavage by Gram-negative and Gram-positive type II DNA topoisomerases. Nucleic Acids Res 2007; 35:6075-85. [PMID: 17766248 PMCID: PMC2094056 DOI: 10.1093/nar/gkm653] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Bacterial DNA gyrase and topoisomerase IV are selective targets of fluoroquinolones. Topoisomerase IV versus gyrase and Gram-positive versus Gram-negative behavior was studied based on the different recognition of DNA sequences by topoisomerase-quinolone complexes. A careful statistical analysis of preferred bases was performed on a large number (>400) of cleavage sites. We found discrete preferred sequences that were similar when using different enzymes (i.e. gyrase and topoisomerase IV) from the same bacterial source, but in part diverse when employing enzymes from different origins (i.e. Escherichia coli and Streptococcus pneumoniae). Subsequent analysis on the wild-type and mutated consensus sequences showed that: (i) Gn/Cn-rich sequences at and around the cleavage site are hot spots for quinolone-mediated strand breaks, especially for E. coli topoisomerases: we elucidated positions required for quinolone and enzyme recognition; (ii) for S. pneumoniae enzymes only, A and T at positions -2 and +6 are discriminating cleavage determinants; (iii) symmetry of the target sequence is a key trait to promote cleavage and (iv) the consensus sequence adopts a heteronomous A/B conformation, which may trigger DNA processing by the enzyme-drug complex.
Collapse
Affiliation(s)
- Sara N. Richter
- Department of Pharmaceutical Sciences, Department of Histology, Microbiology and Medical Biotechnologies, University of Padova, 35131 Padova, Italy, Molecular Genetics Group, Molecular and Metabolic Signalling Centre, Division of Basic Medical Sciences, St. George's, University of London, London SW17 0RE and Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK
| | - Giulia Giaretta
- Department of Pharmaceutical Sciences, Department of Histology, Microbiology and Medical Biotechnologies, University of Padova, 35131 Padova, Italy, Molecular Genetics Group, Molecular and Metabolic Signalling Centre, Division of Basic Medical Sciences, St. George's, University of London, London SW17 0RE and Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK
| | - Valentina Comuzzi
- Department of Pharmaceutical Sciences, Department of Histology, Microbiology and Medical Biotechnologies, University of Padova, 35131 Padova, Italy, Molecular Genetics Group, Molecular and Metabolic Signalling Centre, Division of Basic Medical Sciences, St. George's, University of London, London SW17 0RE and Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK
| | - Elisabetta Leo
- Department of Pharmaceutical Sciences, Department of Histology, Microbiology and Medical Biotechnologies, University of Padova, 35131 Padova, Italy, Molecular Genetics Group, Molecular and Metabolic Signalling Centre, Division of Basic Medical Sciences, St. George's, University of London, London SW17 0RE and Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK
| | - Lesley A. Mitchenall
- Department of Pharmaceutical Sciences, Department of Histology, Microbiology and Medical Biotechnologies, University of Padova, 35131 Padova, Italy, Molecular Genetics Group, Molecular and Metabolic Signalling Centre, Division of Basic Medical Sciences, St. George's, University of London, London SW17 0RE and Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK
| | - L. Mark Fisher
- Department of Pharmaceutical Sciences, Department of Histology, Microbiology and Medical Biotechnologies, University of Padova, 35131 Padova, Italy, Molecular Genetics Group, Molecular and Metabolic Signalling Centre, Division of Basic Medical Sciences, St. George's, University of London, London SW17 0RE and Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK
| | - Anthony Maxwell
- Department of Pharmaceutical Sciences, Department of Histology, Microbiology and Medical Biotechnologies, University of Padova, 35131 Padova, Italy, Molecular Genetics Group, Molecular and Metabolic Signalling Centre, Division of Basic Medical Sciences, St. George's, University of London, London SW17 0RE and Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK
| | - Manlio Palumbo
- Department of Pharmaceutical Sciences, Department of Histology, Microbiology and Medical Biotechnologies, University of Padova, 35131 Padova, Italy, Molecular Genetics Group, Molecular and Metabolic Signalling Centre, Division of Basic Medical Sciences, St. George's, University of London, London SW17 0RE and Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK
- *To whom correspondence should be addressed. +39049 827 5699+39049 827 5366
| |
Collapse
|
5
|
Felmingham D, Cantón R, Jenkins SG. Regional trends in β-lactam, macrolide, fluoroquinolone and telithromycin resistance among Streptococcus pneumoniae isolates 2001–2004. J Infect 2007; 55:111-8. [PMID: 17568680 DOI: 10.1016/j.jinf.2007.04.006] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Revised: 04/13/2007] [Accepted: 04/17/2007] [Indexed: 11/13/2022]
Abstract
OBJECTIVES To determine global antibacterial resistance rates among community-acquired isolates of Streptococcus pneumoniae. METHODS Between 2001 and 2004, 20,142 S. pneumoniae isolates from 151 centres in 40 countries were collected and tested for susceptibility to common antibacterials in the PROTEKT surveillance study. RESULTS The prevalence of beta-lactam and macrolide resistance did not change, but there was marked geographic variability. The most common macrolide resistance mechanism was ribosomal methylation mediated by erm(B), except in Canada, Greece and the USA where drug efflux mediated by mef(A) was predominant. The erythromycin minimum inhibitory concentration for mef(A) isolates increased significantly (P<0.001; chi2 test). The global prevalence of macrolide-resistant isolates positive for both erm(B) and mef(A) was 12.0% in 2003-2004; erm(B)+mef(A) strains were particularly common in South Korea (40.8%), South Africa (46.4%) and the USA (29.6%). Telithromycin was the most active antibacterial tested. Over the studied period, > or = 99.7% of all isolates and > 99% of erythromycin-resistant isolates, irrespective of genotype, were susceptible to telithromycin. CONCLUSIONS These results confirm the high worldwide prevalence of resistance to commonly used antibacterial agents and multiple resistance phenotypes among clinical isolates of S. pneumoniae and suggest that high-level macrolide resistance is continuing to increase in most countries.
Collapse
|
6
|
von Nussbaum F, Brands M, Hinzen B, Weigand S, Häbich D. Antibacterial natural products in medicinal chemistry--exodus or revival? Angew Chem Int Ed Engl 2007; 45:5072-129. [PMID: 16881035 DOI: 10.1002/anie.200600350] [Citation(s) in RCA: 480] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
To create a drug, nature's blueprints often have to be improved through semisynthesis or total synthesis (chemical postevolution). Selected contributions from industrial and academic groups highlight the arduous but rewarding path from natural products to drugs. Principle modification types for natural products are discussed herein, such as decoration, substitution, and degradation. The biological, chemical, and socioeconomic environments of antibacterial research are dealt with in context. Natural products, many from soil organisms, have provided the majority of lead structures for marketed anti-infectives. Surprisingly, numerous "old" classes of antibacterial natural products have never been intensively explored by medicinal chemists. Nevertheless, research on antibacterial natural products is flagging. Apparently, the "old fashioned" natural products no longer fit into modern drug discovery. The handling of natural products is cumbersome, requiring nonstandardized workflows and extended timelines. Revisiting natural products with modern chemistry and target-finding tools from biology (reversed genomics) is one option for their revival.
Collapse
Affiliation(s)
- Franz von Nussbaum
- Bayer HealthCare AG, Medicinal Chemistry Europe, 42096 Wuppertal, Germany.
| | | | | | | | | |
Collapse
|
7
|
Lynch JP, File TM, Zhanel GG. Levofloxacin for the treatment of community-acquired pneumonia. Expert Rev Anti Infect Ther 2007; 4:725-42. [PMID: 17140350 DOI: 10.1586/14787210.4.5.725] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
New respiratory fluoroquinolones (FQs), such as levofloxacin, offer many improved qualities over older agents, such as ciprofloxacin. These include retaining excellent Gram-negative bacilli activity, with improved Gram-positive activity. New FQ-like levofloxacin possesses greater bioavailabilty and a longer serum half-life compared with ciprofloxacin, allowing for once-daily dosing, which may improve patient adherence. The high bioavailability of levofloxacin allows for rapid step-down from intravenous administration to oral therapy, minimizing unnecessary hospitalization, which may decrease costs and improve patient quality of life. Levofloxacin has been evaluated for the treatment of community-acquired pneumonia (CAP) in numerous randomized clinical trials. Most published studies have used the 500 mg dose, although more recent studies have investigated the 750 mg dose once daily. These trials demonstrate that levofloxacin is effective and safe for the treatment of CAP, displaying relatively mild adverse effects that are more or less comparable with ciprofloxacin. Levofloxacin has much to offer in terms of bacterial eradication, including for resistant respiratory pathogens. However, ciprofloxacin-resistant organisms are becoming more prevalent so prudence must be exercised when prescribing this agent.
Collapse
Affiliation(s)
- Joseph P Lynch
- University of California, Los Angeles, Division of Pulmonary, Critical Care Medicine & Hospitalists, The David Geffen School of Medicine, Los Angeles, CA, USA.
| | | | | |
Collapse
|
8
|
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) has posed an immense problem for clinicians in the hospital setting for years, emerging as the most frequent nosocomial infection. To deal with this problem pathogen and others, infectious disease specialists have developed a variety of procedures for their control and prevention, involving options from preventative measures such as decolonization and isolation of MRSA-confirmed patients, to the more simple procedures of hand washing, expanding glove use, and reducing time in the hospital. With the realization that MRSA is now a community problem, there are expanded efforts toward more direct intervention, such as the use of anti-MRSA antibacterials and vaccines, in an attempt to reduce the overall burden of MRSA.
Collapse
Affiliation(s)
- Liangsu Wang
- Infectious Disease Research, Merck & Co Inc, Rahway, NJ, USA
| | | |
Collapse
|
9
|
Draghi DC, Jones ME, Sahm DF, Tillotson GS. Geographically-based evaluation of multidrug resistance trends among Streptococcus pneumoniae in the USA: findings of the FAST surveillance initiative (2003–2004). Int J Antimicrob Agents 2006; 28:525-31. [PMID: 17101260 DOI: 10.1016/j.ijantimicag.2006.09.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Revised: 09/08/2006] [Accepted: 09/09/2006] [Indexed: 11/20/2022]
Abstract
Surveillance initiatives to track Streptococcus pneumoniae resistance trends are important for understanding the current in vitro effectiveness of available antimicrobial agents. The antimicrobial susceptibility profiles of S. pneumoniae (n=1479 isolates) collected from 17 geographical areas across the USA (2003-2004) were analysed; 36.8% of isolates were resistant to one or more agents (24.4% were multidrug-resistant, i.e. resistant to two or more antimicrobial classes). Multidrug resistance involved resistance to beta-lactams, macrolides, tetracycline and trimethoprim/sulphamethoxazole, but rarely fluoroquinolones (>96% of multidrug-resistant isolates were fluoroquinolone-susceptible). Multidrug resistance rates were prominent regardless of the geographical region surveyed. As this trend continues, the empirical therapeutic options for S. pneumoniae infections will diminish and there will be an ongoing need to evaluate the effectiveness of potent fluoroquinolones such as gemifloxacin.
Collapse
Affiliation(s)
- D C Draghi
- Focus Bio-Inova, Inc., 13665 Dulles Technology Drive, Suite 200, Herndon, VA 20171-4603, USA
| | | | | | | |
Collapse
|
10
|
von Nussbaum F, Brands M, Hinzen B, Weigand S, Häbich D. Antibakterielle Naturstoffe in der medizinischen Chemie – Exodus oder Renaissance? Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200600350] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
11
|
Hoban DJ, Bouchillon SK, Johnson BM, Johnson JL, Dowzicky MJ. In vitro activity of tigecycline against 6792 Gram-negative and Gram-positive clinical isolates from the global Tigecycline Evaluation and Surveillance Trial (TEST Program, 2004). Diagn Microbiol Infect Dis 2005; 52:215-27. [PMID: 16105567 DOI: 10.1016/j.diagmicrobio.2005.06.001] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tigecycline, a new glycylcycline antibiotic, has shown promising in vitro activity against many common pathogens, including multidrug-resistant strains. To determine the activity of tigecycline against a broad range of pathogens from diverse populations and geographic areas, the Tigecycline Evaluation and Surveillance Trial (TEST Program) commenced in 2003. This study evaluated the activity of tigecycline and commonly used antimicrobials against 6792 clinical isolates from 40 study centers in 11 countries. Tigecycline was the most active agent tested against Gram-positive facultative species including multidrug-resistant strains. MIC90 results (microg/mL) for tigecycline against Enterococcus faecalis, Enterococcus faecium, Staphylococcus aureus, Streptococcus agalactiae, and Streptococcus pneumoniae were 0.12, 0.12, 0.25, and 0.25 microg/mL, respectively. Tigecycline was active against Enterobacteriaceae with an MIC90 of 1 microg/mL. Haemophilus influenzae was very susceptible to tigecycline with an MIC90 of only 0.25 microg/mL. Pseudomonas aeruginosa was the least susceptible organism tested against tigecycline. Tigecycline appears to be a promising new glycylcycline agent for the treatment of many types of pathogens with varying resistance phenotypes.
Collapse
Affiliation(s)
- Daryl J Hoban
- International Health Management Associates, Inc, Schaumburg, IL 60173-3817, USA.
| | | | | | | | | |
Collapse
|
12
|
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) has become a serious nosocomial pathogen, and more recent reports in the scientific literature underscore the potential issues with emerging community-MRSA. MRSA is reported to be involved in > 50% of hospital S. aureus infections, more in the intensive care unit (ICU) than the non-ICU, and increases in multi-drug resistant MRSA and increasingly virulent MRSA have been reported. Together with its broad-based beta-lactam resistance, MRSA often possesses a multi-drug resistance genotype, including cephalosporins, aminoglycosides, fluoroquinolones, and macrolide resistances. MRSA has now emerged as the predominant nosocomial Gram-positive pathogen, and it has a high rate of morbidity and mortality. Action must be taken to contain and eradicate MRSA through a combination of infection control, the development of novel anti-MRSA agents, development of vaccines and other non-traditional approaches of intervention.
Collapse
Affiliation(s)
- John F Barrett
- Merck Research Laboratories, 126 E. Lincoln Avenue, Rahway, NJ 07065, USA.
| |
Collapse
|
13
|
Barrett JF. MRSA: status and prospects for therapy? An evaluation of key papers on the topic of MRSA and antibiotic resistance. Expert Opin Ther Targets 2005; 8:515-9. [PMID: 15584858 DOI: 10.1517/14728222.8.6.515] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a serious nosocomial pathogen, and a related community-sourced MRSA is emerging. MRSA has evolved to become the major S. aureus phenotype in the hospital, emerging from just 30 to over 60% of the S. aureus population over the past 15 years. Together with its beta-lactam resistance, MRSA possesses multi-drug resistance genotype, including quinolones, macrolides and sulfonamides. MRSA has now emerged as the predominant nosocomial Gram-positive pathogen, and it has a high rate of mortality. Action must be taken to contain and eradicate MRSA through a combination of infection control and the development of novel anti-MRSA agents and vaccines.
Collapse
Affiliation(s)
- John F Barrett
- Merck Research Laboratories, 126 E. Lincoln Avenue, Rahway, NJ 07650, USA.
| |
Collapse
|