1
|
Geraldes C, Tavares L, Gil S, Oliveira M. Antibiotic heteroresistance and persistence: an additional aid in hospital acquired infections by Enterococcus spp.? Future Microbiol 2024; 19:1407-1418. [PMID: 39229839 PMCID: PMC11552482 DOI: 10.1080/17460913.2024.2393003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/13/2024] [Indexed: 09/05/2024] Open
Abstract
Enterococcus, particularly E. faecium and E. faecalis, are responsible for many hospital-acquired infections. With their intrinsic antibiotic resistance and ability to form biofilms, enterococcal infections are already challenging to manage. However, when heterogenous populations are present, such as those exhibiting heteroresistance and persistence, the complexity of these infections increases exponentially not only due to their treatment but also due to their difficult diagnosis. In this study, we provide a summary of the current understanding of both heteroresistance and persistence in terms of mechanisms, diagnosis and treatment and subsequently review recent literature pertaining to these susceptibility types specifically in enterococci.
Collapse
Affiliation(s)
- Catarina Geraldes
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- AL4AnimalS - Associate Laboratory for Animal & Veterinary Sciences, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - Luís Tavares
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- AL4AnimalS - Associate Laboratory for Animal & Veterinary Sciences, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - Solange Gil
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- AL4AnimalS - Associate Laboratory for Animal & Veterinary Sciences, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- BICU - Biological Isolation & Containment Unit, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - Manuela Oliveira
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- AL4AnimalS - Associate Laboratory for Animal & Veterinary Sciences, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- cE3c - Centre for Ecology, Evolution & Environmental Changes & CHANGE—Global Change & Sustainability Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
2
|
Li YT, Chen XD, Guo YY, Lin SW, Wang MZ, Xu JB, Wang XH, He GH, Tan XX, Zhuo C, Lin ZW. Emergence of eravacycline heteroresistance in carbapenem-resistant Acinetobacter baumannii isolates in China. Front Cell Infect Microbiol 2024; 14:1356353. [PMID: 38601741 PMCID: PMC11004246 DOI: 10.3389/fcimb.2024.1356353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/06/2024] [Indexed: 04/12/2024] Open
Abstract
Carbapenem-resistant Acinetobacter baumannii (CRAB) is resistant to almost all antibiotics. Eravacycline, a newer treatment option, has the potential to treat CRAB infections, however, the mechanism by which CRAB isolates develop resistance to eravacycline has yet to be clarified. This study sought to investigate the features and mechanisms of eravacycline heteroresistance among CRAB clinical isolates. A total of 287 isolates were collected in China from 2020 to 2022. The minimum inhibitory concentration (MIC) of eravacycline and other clinically available agents against A. baumannii were determined using broth microdilution. The frequency of eravacycline heteroresistance was determined by population analysis profiling (PAP). Mutations and expression levels of resistance genes in heteroresistant isolates were determined by polymerase chain reaction (PCR) and quantitative real-time PCR (qRT-PCR), respectively. Antisense RNA silencing was used to validate the function of eravacycline heteroresistant candidate genes. Twenty-five eravacycline heteroresistant isolates (17.36%) were detected among 144 CRAB isolates with eravacycline MIC values ≤4 mg/L while no eravacycline heteroresistant strains were detected in carbapenem-susceptible A. baumannii (CSAB) isolates. All eravacycline heteroresistant strains contained OXA-23 carbapenemase and the predominant multilocus sequence typing (MLST) was ST208 (72%). Cross-resistance was observed between eravacycline, tigecycline, and levofloxacin in the resistant subpopulations. The addition of efflux pump inhibitors significantly reduced the eravacycline MIC in resistant subpopulations and weakened the formation of eravacycline heteroresistance in CRAB isolates. The expression levels of adeABC and adeRS were significantly higher in resistant subpopulations than in eravacycline heteroresistant parental strains (P < 0.05). An ISAba1 insertion in the adeS gene was identified in 40% (10/25) of the resistant subpopulations. Decreasing the expression of adeABC or adeRS by antisense RNA silencing significantly inhibited eravacycline heteroresistance. In conclusion, this study identified the emergence of eravacycline heteroresistance in CRAB isolates in China, which is associated with high expression of AdeABC and AdeRS.
Collapse
Affiliation(s)
- Yi-tan Li
- Key Laboratory of Respiratory Disease, People’s Hospital of Yangjiang, Yangjiang, China
| | - Xian-di Chen
- Key Laboratory of Respiratory Disease, People’s Hospital of Yangjiang, Yangjiang, China
| | - Ying-yi Guo
- Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shan-wen Lin
- Key Laboratory of Respiratory Disease, People’s Hospital of Yangjiang, Yangjiang, China
| | - Ming-zhen Wang
- Key Laboratory of Respiratory Disease, People’s Hospital of Yangjiang, Yangjiang, China
| | - Jian-bo Xu
- Key Laboratory of Respiratory Disease, People’s Hospital of Yangjiang, Yangjiang, China
| | - Xiao-hu Wang
- Key Laboratory of Respiratory Disease, People’s Hospital of Yangjiang, Yangjiang, China
| | - Guo-hua He
- Key Laboratory of Respiratory Disease, People’s Hospital of Yangjiang, Yangjiang, China
| | - Xi-xi Tan
- Key Laboratory of Respiratory Disease, People’s Hospital of Yangjiang, Yangjiang, China
| | - Chao Zhuo
- Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhi-wei Lin
- Key Laboratory of Respiratory Disease, People’s Hospital of Yangjiang, Yangjiang, China
| |
Collapse
|
3
|
Longshaw C, Santerre Henriksen A, Dressel D, Malysa M, Silvestri C, Takemura M, Yamano Y, Baba T, Slover CM. Heteroresistance to cefiderocol in carbapenem-resistant Acinetobacter baumannii in the CREDIBLE-CR study was not linked to clinical outcomes: a post hoc analysis. Microbiol Spectr 2023; 11:e0237123. [PMID: 37966262 PMCID: PMC10714777 DOI: 10.1128/spectrum.02371-23] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/09/2023] [Indexed: 11/16/2023] Open
Abstract
IMPORTANCE The population analysis profiling (PAP) test is considered the "gold standard" method to detect heteroresistance. It exposes bacteria to increasing concentrations of antibiotics at high cell densities to detect any minority resistant subpopulations that might be missed by the low inoculums used for reference susceptibility tests. However, its clinical relevance has not been well established. In the CREDIBLE-CR study, a numerically increased all-cause mortality was observed in the cefiderocol arm relative to the best available therapy arm for patients with Acinetobacter spp. infections. Heteroresistance has independently been proposed by another research group as a potential explanation of the mortality difference. An analysis of the baseline carbapenem-resistant Acinetobacter calcoaceticus-baumannii complex isolates from patients treated with cefiderocol in the CREDIBLE-CR study showed the highest clinical cure rate and the lowest mortality for patients with PAP-heteroresistant isolates compared with PAP-susceptible or PAP-resistant isolates. These findings contradict the abovementioned hypothesis that heteroresistance contributed to the increased mortality.
Collapse
Affiliation(s)
| | | | | | | | | | - Miki Takemura
- Laboratory for Drug Discovery and Disease Research, Shionogi & Co., Ltd., Osaka, Japan
| | - Yoshinori Yamano
- Laboratory for Drug Discovery and Disease Research, Shionogi & Co., Ltd., Osaka, Japan
| | - Takamichi Baba
- Biostatistics Center, Shionogi & Co., Ltd., Osaka, Japan
| | | |
Collapse
|
4
|
Prevalence of Carbapenemase and Extended-Spectrum β-Lactamase Producing Enterobacteriaceae: A Cross-Sectional Study. Antibiotics (Basel) 2023; 12:antibiotics12010148. [PMID: 36671350 PMCID: PMC9854900 DOI: 10.3390/antibiotics12010148] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Enterobacteriaceae have been classified as severely drug resistant bacteria by the World Health Organization due to their extensive production and dissemination of carbapenemases (CPs) and extended-spectrum β-lactamases (ESBL). The current study was conducted with the aim to determine the prevalence of CP- and ESBL-producing Enterobacteriaceae, as well as their antibiotic susceptibility profiles. For this, a hospital-based study was conducted which included 384 participants with bacterial infections. The collection and processing of specimens was conducted per standard microbiological protocol. The samples were inoculated on agar media plates to obtain the bacterial growths, and if they were positive for any bacterial growth, the antibiotic susceptibility testing was performed using disk diffusion method to check their antibiotic susceptibility patterns. The double disc diffusion as well as carbapenem inhibition techniques were used to examine the CP enzymes. Multiplex real-time PCR technique was performed to identify three distinct genetic types of CPs that have been identified in the Enterobacteriaceae (KPC, NDM, and OXA-48). A majority of participants (58.3%) in the current study were living in urban areas. A total of 227 (59.1%) patients were hospitalized. Furthermore, 26.04% of the patients were determined to be suffering from infections with Enterobacteriaceae. Escherichia coli was the most prevalent (9.1%) isolate overall, followed by Klebsiella pneumoniae (8.07%), Acinetobacter baumannii (2.6%), Pseudomonas aeruginosa (3.1%), Enterobacter cloacae (1.3%), Proteus spp. (1.3%), and Morganella spp. (0.5%). The studied patients were suffering from urinary tract infections (48.6%), blood stream infections (32.2%), wounds infection (11.9%), and respiratory infections (7.03%), confirmed with bacterial cultures. The resistance against carbapenems was seen in 31.4% of E. coli isolates, 25.8% in K. pneumoniae, 50% in P. aeruginosa, 25% in A. baumannii, and 20% in E. cloacae isolates. Such high rates of CP- and ESBL-producing Enterobacteriaceae are alarming, suggesting high spread in the study area. It is advised to implement better infection prevention and control strategies and conduct further nationwide screening of the carriers of these pathogens. This might help in reducing the burden of highly resistant bugs.
Collapse
|
5
|
Abe R. [Regional dissemination of carbapenem-resistant Enterobacteriaceae accompanying with enhanced resistance in Northern Osaka, Japan]. Nihon Saikingaku Zasshi 2022; 77:129-138. [PMID: 36288954 DOI: 10.3412/jsb.77.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
With the rapid spread of multidrug-resistant bacteria, carbapenem-resistant Enterobacteriaceae (CRE) has been reported worldwide as a major concern because of limited treatment options. Carbapenem resistance is mainly due to carbapenem-ase, a carbapenem-degrading enzyme, which is mainly encoded on a plasmid to spread across bacterial species. However, there have been only small-scale attempts to determine the similarities or accommodations of the plasmids disseminating regionwide. We analysed the 230 CRE isolates carrying blaIMP from 43 medical facilities in the northern Osaka area focusing on the plasmids, the main carriers of the drug resistance genes. Combination of whole genome sequencing and Southern blotting revealed the predominant dissemination of blaIMP-6 by the pKPI-6 plasmid among genetically distinct isolates, as well as the emergences of derivatives that acquired various advantages. We iden-tified heteroresistance likely causing stealth transmissions, which was generated by the transcriptional regu-lation of blaIMP-6, stabilization of blaIMP-6 through chromosomal integration, enhanced carbapenem resistance through plasmid multimerization, or broadened antimicrobial resistance due to a single point mutation in blaIMP-6. In this article, I dis-cussed the mechanisms of regional spread of CRE and enhancement of carbapenem resistance providing the insights to prevent their disseminations.
Collapse
Affiliation(s)
- Ryuichiro Abe
- Japan-Thailand Research Collaboration Center on Emerging and Re-emerging Infections, Research Institute for Microbial Diseases, Osaka University
| |
Collapse
|