1
|
Pang X, Xu W, Liang J, Liu Y, Li H, Chen L. Research progress and perspectives of dual-target inhibitors. Eur J Med Chem 2025; 289:117453. [PMID: 40024166 DOI: 10.1016/j.ejmech.2025.117453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Abstract
The occurrence and development of diseases are complex, and single-target drugs that affect only a single target or pathway often fail to achieve the expected therapeutic effect. The simultaneous effect on two key targets could not only increase patient tolerance but also accelerate disease remission. Dual-target inhibitors have already been studied the most intensively in the development of dual-target drugs. This article briefly introduces the function of drug therapy targets, and mainly summarizes the design strategies and research progress of dual-target inhibitors in neurodegenerative diseases, infectious diseases, metabolic diseases and cardiovascular diseases.
Collapse
Affiliation(s)
- Xiaojing Pang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Wen Xu
- Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Jing Liang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yang Liu
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
2
|
Utama K, Khamto N, Janthong A, Thiraphatchotiphum C, Roytrakul S, Kantapan J, Meepowpan P, Sangthong P. Discovery of Cinnamoyl-Flavonoid Hybrid Derivatives as Inhibitors of SARS-CoV-2 M pro and Anti-inflammatory Agents: Experimental and In Silico Insights into their Efficacy against Lipopolysaccharide-Induced Lung Injury. Eur J Pharmacol 2025:177636. [PMID: 40252899 DOI: 10.1016/j.ejphar.2025.177636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 04/03/2025] [Accepted: 04/15/2025] [Indexed: 04/21/2025]
Abstract
The chemical structures of the parental compounds of flavonoids from Boesenbergia rotunda were modified by conjugation with cinnamic acid to form cinnamoyl-flavonoid hybrid derivatives with enhanced anti-inflammatory and SARS-CoV-2 Mpro-inhibitory properties. Cinnamoyl-flavonoid hybrid derivatives 6 and 10 showed the potential to inhibit SARS-CoV-2 Mpro with IC50 values of 52.49 and 22.62 μM. Compounds 6 and 10 showed lower cytotoxicity in the human lung cell lines MRC-5 and A549 at concentrations greater than 50 μM. The effects of compounds 6 and 10 on cell viability were studied in a 3D co-culture model of A549 and MRC-5 treated with lipopolysaccharide (LPS) and observed through confocal microscopy. Compounds 6 and 10 downregulated p65 mRNA expression, resulting in a reduction of pro-inflammatory cytokines, including Interleukin 8 (IL-8) and Monocyte Chemoattractant Protein-1 (MCP-1/CCL2), leading to an anti-inflammatory response through Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signalling pathways. Compound 6 showed potential anti-inflammatory activity, downregulating Bcl-2 Associated X gene (BAX), which resulted in inhibition of apoptotic cell death when compared to compound 10. In silico molecular dynamic simulation shed light on how these cinnamoyl-flavonoid hybrid derivatives interact with myeloid differentiation factor 2 (MD-2), which is involved in the inflammatory response. Our findings suggest that cinnamoyl-flavonoid hybrid derivatives show potential as anti-inflammatory drugs and anti-SARS-CoV-2 drugs.
Collapse
Affiliation(s)
- Kraikrit Utama
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nopawit Khamto
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Atchara Janthong
- Program in Biotechnology, Multidisciplinary and Interdisciplinary School, Chiang Mai University, Chiang Mai, 50200, Thailand
| | | | - Sittiruk Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok, 12120, Thailand
| | - Jiraporn Kantapan
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Puttinan Meepowpan
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Materials Science and Technology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, 239 Huay Kaew Road, Chiang Mai 50200, Thailand
| | - Padchanee Sangthong
- Center of Excellence in Materials Science and Technology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand; Division of Biochemistry and Biochemical Innovation, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
3
|
Sabadini G, Mellado M, Morales C, Mella J. Arylamines QSAR-Based Design and Molecular Dynamics of New Phenylthiophene and Benzimidazole Derivatives with Affinity for the C111, Y268, and H73 Sites of SARS-CoV-2 PLpro Enzyme. Pharmaceuticals (Basel) 2024; 17:606. [PMID: 38794177 PMCID: PMC11124164 DOI: 10.3390/ph17050606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
A non-structural SARS-CoV-2 protein, PLpro, is involved in post-translational modifications in cells, allowing the evasion of antiviral immune response mechanisms. In this study, potential PLpro inhibitory drugs were designed using QSAR, molecular docking, and molecular dynamics. A combined QSAR equation with physicochemical and Free-Wilson descriptors was formulated. The r2, q2, and r2test values were 0.833, 0.770, and 0.721, respectively. From the equation, it was found that the presence of an aromatic ring and a basic nitrogen atom is crucial for obtaining good antiviral activity. Then, a series of structures for the binding sites of C111, Y268, and H73 of PLpro were created. The best compounds were found to exhibit pIC50 values of 9.124 and docking scoring values of -14 kcal/mol. The stability of the compounds in the cavities was confirmed by molecular dynamics studies. A high number of stable contacts and good interactions over time were exhibited by the aryl-thiophenes Pred14 and Pred15, making them potential antiviral candidates.
Collapse
Affiliation(s)
- Gianfranco Sabadini
- Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Av. Gran Bretaña 1111, Valparaíso 2360102, Chile;
| | - Marco Mellado
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8330507, Chile
| | - César Morales
- Laboratorio de Materiales Funcionales, Centro Integrativo de Biología y Química Aplicada (CIBQA), Facultad de Ciencias de la Salud, Universidad Bernardo OHiggins, General Gana 1702, Santiago 8320000, Chile;
| | - Jaime Mella
- Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Av. Gran Bretaña 1111, Valparaíso 2360102, Chile;
- Centro de Investigación, Desarrollo e Innovación de Productos Bioactivos (CInBIO), Universidad de Valparaíso, Av. Gran Bretaña 1111, Valparaíso 2360102, Chile
| |
Collapse
|
4
|
Zhang R, Zhou J, Yan H, Liu X, Chen Y. Chrysin 7-O-β-D-glucuronide is not a potential inhibitor against SARS-CoV-2 main protease. Int J Antimicrob Agents 2024; 63:107136. [PMID: 38460738 DOI: 10.1016/j.ijantimicag.2024.107136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/05/2024] [Accepted: 03/01/2024] [Indexed: 03/11/2024]
Affiliation(s)
- Rui Zhang
- Institute for Drug Screening and Evaluation, Wannan Medical College, Wuhu, China
| | - Jiahao Zhou
- Institute for Drug Screening and Evaluation, Wannan Medical College, Wuhu, China
| | - Haohao Yan
- Institute for Drug Screening and Evaluation, Wannan Medical College, Wuhu, China
| | - Xiaoping Liu
- Institute for Drug Screening and Evaluation, Wannan Medical College, Wuhu, China
| | - Yunyu Chen
- Institute for Drug Screening and Evaluation, Wannan Medical College, Wuhu, China.
| |
Collapse
|