1
|
Bhushan V, Bharti SK, Krishnan S, Kumar A, Kumar A. Antidiabetic effectiveness of Phyllanthus niruri bioactive compounds via targeting DPP-IV. Nat Prod Res 2024:1-7. [PMID: 38590294 DOI: 10.1080/14786419.2024.2337108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 03/21/2024] [Indexed: 04/10/2024]
Abstract
Phyllanthus niruri Linn. (Euphorbiaceae) is a small herb and is categorised as one of the rich medicinal plants throughout the world. This study aimed to evaluate the P. niruri L. whole plant extract (PNE) for secondary metabolite assay (total phenolic and terpenoid content) followed by the potential antioxidant activity (ABTS diammonium salt radical assay, DPPH· activity, superoxide anion (O2-) radicals' assay, and nitric oxide (NO) radical generation) and antidiabetic activity in vivo and in vitro in streptozotocin (STZ) induced albino mice. PNE showed good scavenging activity with a value of 286.45 ± 6.55 mg TE/g and 194.54 ± 4.64 mg TE/g in ABTS and DPPH assays respectively. In the superoxide anion assay, the PNE caused a dose-dependent inhibition at the lowest IC25 value of 0.17 ± 0.00 mg/mL compared to ascorbic acid (IC25 of 0.25 ± 0.02 mg/mL). The scavenging ability of PNE against nitric oxide showed an IC25 of 1.13 ± 0.04 mg/mL compared to ascorbic acid (IC25 4.78 ± 0.09 mg/mL). Unlike diabetic control mice, the PNE-treated diabetic mice presented significant amelioration of glycaemia and lipid dysmetabolism. Phytochemicals like Astragalin, Gallocatechin, Ellagic acid, Gallic acid, Brevifolin carboxylic acid, Phyllnirurin, and Hypophyllanthin showed significant docking score (> -4) of inhibitory potential with DPP-IV protein. Results indicated that PNE phytochemicals could be a promising antidiabetic agent by targeting DPP-IV.
Collapse
Affiliation(s)
- Vinay Bhushan
- Department of Biochemistry, Patna University, Patna, India
- Department of Botany, T.P.S. College, Patliputra University, Patna, India
| | | | - Supriya Krishnan
- Department of Personnel Management and Industrial Relations, Patna University, Patna, India
| | - Amit Kumar
- National Institute of Cancer Prevention and Research, Noida, India
- ICMR Computational Genomics Centre, Biomedical Informatics Division, Indian Council of Medical Research (ICMR), New Delhi, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, India
| |
Collapse
|
2
|
Akim EL, Pekarets AA, Rosova EY, Kuryndin IS, Elyashevich GK. New Film Composite Materials Based on Arabinogalactan. POLYMER SCIENCE SERIES A 2022. [DOI: 10.1134/s0965545x22700080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
3
|
Bezerra IDL, Caillot ARC, Oliveira AFD, Santana-Filho AP, Sassaki GL. Cabernet Sauvignon wine polysaccharides attenuate sepsis inflammation and lethality in mice. Carbohydr Polym 2019; 210:254-263. [DOI: 10.1016/j.carbpol.2019.01.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 01/08/2019] [Accepted: 01/08/2019] [Indexed: 01/09/2023]
|
4
|
Structure characterization and anti-leukemia activity of a novel polysaccharide from Angelica sinensis (Oliv.) Diels. Int J Biol Macromol 2019; 121:161-172. [DOI: 10.1016/j.ijbiomac.2018.09.213] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/27/2018] [Accepted: 09/30/2018] [Indexed: 12/17/2022]
|
5
|
He TB, Huang YP, Huang Y, Wang XJ, Hu JM, Sheng J. Structural elucidation and antioxidant activity of an arabinogalactan from the leaves of Moringa oleifera. Int J Biol Macromol 2018; 112:126-133. [DOI: 10.1016/j.ijbiomac.2018.01.110] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 12/28/2017] [Accepted: 01/17/2018] [Indexed: 12/16/2022]
|
6
|
do Nascimento GE, Iacomini M, Cordeiro LMC. New findings on green sweet pepper (Capsicum annum) pectins: Rhamnogalacturonan and type I and II arabinogalactans. Carbohydr Polym 2017; 171:292-299. [PMID: 28578966 DOI: 10.1016/j.carbpol.2017.05.029] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 04/20/2017] [Accepted: 05/08/2017] [Indexed: 01/21/2023]
Abstract
Polysaccharides were extracted from sweet pepper (Capsicum annum) with hot water and named ANW (9% yield). Starch was precipitated by freeze-thaw treatment, while pectic polysaccharides (8% yield) remained soluble and consisted of GalA (67.0%), Rha (1.6%), Ara (6.4%), Xyl (0.3%), Gal (6.7%) and Glc (4.4%). A highly methoxylated homogalacturonan (HG, degree of methylesterification of 85% and degree of acetylation of 5%), and type I and type II arabinogalactans (AG-I and AG-II) were observed in NMR analyses. These were fractionated with Fehling's solution to give HG (5.5% yield) and AG fractions (0.6% yield). AG-I and AG-II were further separated by ultrafiltration. AG-II (0.2% yield) consisted of Ara (17.1%), Gal (36.0%), Rha (5.6%) and GalA (12.0%), had a molecular weight of 5.3×104g/mol and methylation and 1H/13C HSQC-DEPT-NMR analyses showed that it was anchored in type I rhamnogalacturonan. This is the first study that reports the presence of AG-I and AG-II in sweet pepper fruits.
Collapse
Affiliation(s)
- Georgia Erdmann do Nascimento
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, CP 19.046, CEP 81.531-980, Curitiba, PR, Brazil
| | - Marcello Iacomini
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, CP 19.046, CEP 81.531-980, Curitiba, PR, Brazil
| | - Lucimara M C Cordeiro
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, CP 19.046, CEP 81.531-980, Curitiba, PR, Brazil.
| |
Collapse
|
7
|
Zahid A, Despres J, Benard M, Nguema-Ona E, Leprince J, Vaudry D, Rihouey C, Vicré-Gibouin M, Driouich A, Follet-Gueye ML. Arabinogalactan Proteins From Baobab and Acacia Seeds Influence Innate Immunity of Human Keratinocytes In Vitro. J Cell Physiol 2017; 232:2558-2568. [PMID: 27736003 DOI: 10.1002/jcp.25646] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 10/10/2016] [Indexed: 12/23/2022]
Abstract
Plant derived arabinogalactan proteins (AGP) were repeatedly confirmed as immunologically as well as dermatologically active compounds. However, little is currently known regarding their potential activity toward skin innate immunity. Here, we extracted and purified AGP from acacia (Acacia senegal) and baobab (Adansonia digitata) seeds to investigate their biological effects on the HaCaT keratinocyte cell line in an in vitro system. While AGP from both sources did not exhibit any cytotoxic effect, AGP from acacia seeds enhanced cell viability. Moreover, real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis showed that AGP extracted from both species induced a substantial overexpression of hBD-2, TLR-5, and IL1-α genes. These data suggest that plant AGP, already known to control plant defensive processes, could also modulate skin innate immune responses. J. Cell. Physiol. 232: 2558-2568, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Abderrakib Zahid
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, Normandie Université, UNIROUEN, Institute for Research and Innovation in Biomedicine (IRIB), Végétal, Agronomie, Sol, et Innovation (VASI), GDR CNRS 3711 COSM'ACTIFS, Mont-Saint-Aignan, France
| | - Julie Despres
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, Normandie Université, UNIROUEN, Institute for Research and Innovation in Biomedicine (IRIB), Végétal, Agronomie, Sol, et Innovation (VASI), GDR CNRS 3711 COSM'ACTIFS, Mont-Saint-Aignan, France.,BioEurope, Groupe SOLABIA, Anet, France
| | - Magalie Benard
- Cell Imaging Platform (PRIMACEN-IRIB), Normandie Université, UNIROUEN, Mont-Saint-Aignan, France
| | - Eric Nguema-Ona
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, Normandie Université, UNIROUEN, Institute for Research and Innovation in Biomedicine (IRIB), Végétal, Agronomie, Sol, et Innovation (VASI), GDR CNRS 3711 COSM'ACTIFS, Mont-Saint-Aignan, France
| | - Jerome Leprince
- Cell Imaging Platform (PRIMACEN-IRIB), Normandie Université, UNIROUEN, Mont-Saint-Aignan, France.,Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine INSERM U982, IRIB, Normandie Université, UNIROUEN, Mont-Saint-Aignan, France
| | - David Vaudry
- Cell Imaging Platform (PRIMACEN-IRIB), Normandie Université, UNIROUEN, Mont-Saint-Aignan, France.,Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine INSERM U982, IRIB, Normandie Université, UNIROUEN, Mont-Saint-Aignan, France
| | - Christophe Rihouey
- Unite Mixte de Recherche 6270 CNRS-Laboratory "Polymères, Biopolymères, Surfaces", Normandie Université, UNIROUEN, Mont-Saint-Aignan, France
| | - Maité Vicré-Gibouin
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, Normandie Université, UNIROUEN, Institute for Research and Innovation in Biomedicine (IRIB), Végétal, Agronomie, Sol, et Innovation (VASI), GDR CNRS 3711 COSM'ACTIFS, Mont-Saint-Aignan, France
| | - Azeddine Driouich
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, Normandie Université, UNIROUEN, Institute for Research and Innovation in Biomedicine (IRIB), Végétal, Agronomie, Sol, et Innovation (VASI), GDR CNRS 3711 COSM'ACTIFS, Mont-Saint-Aignan, France.,Cell Imaging Platform (PRIMACEN-IRIB), Normandie Université, UNIROUEN, Mont-Saint-Aignan, France
| | - Marie-Laure Follet-Gueye
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, Normandie Université, UNIROUEN, Institute for Research and Innovation in Biomedicine (IRIB), Végétal, Agronomie, Sol, et Innovation (VASI), GDR CNRS 3711 COSM'ACTIFS, Mont-Saint-Aignan, France.,Cell Imaging Platform (PRIMACEN-IRIB), Normandie Université, UNIROUEN, Mont-Saint-Aignan, France
| |
Collapse
|
8
|
Stipp MC, Bezerra IDL, Corso CR, Dos Reis Livero FA, Lomba LA, Caillot ARC, Zampronio AR, Queiroz-Telles JE, Klassen G, Ramos EAS, Sassaki GL, Acco A. Necroptosis mediates the antineoplastic effects of the soluble fraction of polysaccharide from red wine in Walker-256 tumor-bearing rats. Carbohydr Polym 2017; 160:123-133. [PMID: 28115086 DOI: 10.1016/j.carbpol.2016.12.047] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 12/07/2016] [Accepted: 12/18/2016] [Indexed: 12/29/2022]
Abstract
Polysaccharides are substances that modify the biological response to several stressors. The present study investigated the antitumor activity of the soluble fraction of polysaccharides (SFP), extracted from cabernet franc red wine, in Walker-256 tumor-bearing rats. The monosaccharide composition had a complex mixture, suggesting the presence of arabinoglactans, mannans, and pectins. Treatment with SFP (30 and 60mg/kg, oral) for 14days significantly reduced the tumor weight and volume compared with controls. Treatment with 60mg/kg SFP reduced blood monocytes and neutrophils, reduced the tumor activity of N-acetylglucosaminidase, myeloperoxidase, and nitric oxide, increased blood lymphocytes, and increased the levels of tumor necrosis factor α (TNF-α) in tumor tissue. Treatment with SFP also induced the expression of the cell necroptosis-related genes Rip1 and Rip3. The antineoplastic effect of SFP appears to be attributable to its action on the immune system by controlling the tumor microenvironment and stimulating TNF-α production, which may trigger the necroptosis pathway.
Collapse
Affiliation(s)
| | | | - Claudia Rita Corso
- Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil
| | | | | | | | | | | | - Giseli Klassen
- Department of Basic Pathology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Edneia A S Ramos
- Department of Basic Pathology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Guilherme Lanzi Sassaki
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Alexandra Acco
- Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil.
| |
Collapse
|
9
|
Du LL, Fu QY, Xiang LP, Zheng XQ, Lu JL, Ye JH, Li QS, Polito CA, Liang YR. Tea Polysaccharides and Their Bioactivities. Molecules 2016; 21:E1449. [PMID: 27809221 PMCID: PMC6274327 DOI: 10.3390/molecules21111449] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 10/27/2016] [Accepted: 10/28/2016] [Indexed: 01/17/2023] Open
Abstract
Tea (Camellia sinensis) is a beverage beneficial to health and is also a source for extracting bioactive components such as theanine, tea polyphenols (TPP) and tea polysaccharides (TPS). TPS is a group of heteropolysaccharides bound with proteins. There is evidence showing that TPS not only improves immunity but also has various bioactivities, such as antioxidant, antitumor, antihyperglycemia, and anti-inflammation. However, inconsistent results concerning chemical composition and bioactivity of TPS have been published in recent years. The advances in chemical composition and bioactivities of TPS are reviewed in the present paper. The inconsistent and controversial results regarding composition and bioactivities of TPS are also discussed.
Collapse
Affiliation(s)
- Ling-Ling Du
- Tea Research Institute, Zhejiang University, # 866 Yuhangtang Road, Hangzhou 310058, China.
- National Tea and Tea product Quality Supervision and Inspection Center (Guizhou), Zunyi 563100, China.
| | - Qiu-Yue Fu
- Tea Research Institute, Zhejiang University, # 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Li-Ping Xiang
- National Tea and Tea product Quality Supervision and Inspection Center (Guizhou), Zunyi 563100, China.
| | - Xin-Qiang Zheng
- Tea Research Institute, Zhejiang University, # 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Jian-Liang Lu
- Tea Research Institute, Zhejiang University, # 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Jian-Hui Ye
- Tea Research Institute, Zhejiang University, # 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Qing-Sheng Li
- Tea Research Institute, Zhejiang University, # 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Curt Anthony Polito
- Tea Research Institute, Zhejiang University, # 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Yue-Rong Liang
- Tea Research Institute, Zhejiang University, # 866 Yuhangtang Road, Hangzhou 310058, China.
| |
Collapse
|
10
|
Peng Q, Liu H, Lei H, Wang X. Relationship between structure and immunological activity of an arabinogalactan from Lycium ruthenicum. Food Chem 2016; 194:595-600. [DOI: 10.1016/j.foodchem.2015.08.087] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 08/07/2015] [Accepted: 08/20/2015] [Indexed: 10/23/2022]
|
11
|
Bochek AM, Zabivalova NM, Gofman IV, Lebedeva MF, Popova EN, Lavrent’ev VK. Properties of composite films of methylcellulose with arabinogalactan. POLYMER SCIENCE SERIES A 2015. [DOI: 10.1134/s0965545x15040021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
|
13
|
do Rosário MMT, Kangussu-Marcolino MM, do Amaral AE, Noleto GR, Petkowicz CLDO. Storage xyloglucans: Potent macrophages activators. Chem Biol Interact 2011; 189:127-33. [DOI: 10.1016/j.cbi.2010.09.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 09/22/2010] [Accepted: 09/23/2010] [Indexed: 10/19/2022]
|
14
|
Gronhaug TE, Ghildyal P, Barsett H, Michaelsen TE, Morris G, Diallo D, Inngjerdingen M, Paulsen BS. Bioactive arabinogalactans from the leaves of Opilia celtidifolia Endl. ex Walp. (Opiliaceae). Glycobiology 2010; 20:1654-64. [DOI: 10.1093/glycob/cwq120] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|