1
|
Srivastava N, Khare SK. Advances in Microbial Alkaline Proteases: Addressing Industrial Bottlenecks Through Genetic and Enzyme Engineering. Appl Biochem Biotechnol 2025:10.1007/s12010-025-05270-9. [PMID: 40372653 DOI: 10.1007/s12010-025-05270-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2025] [Indexed: 05/16/2025]
Abstract
Microbial alkaline proteases are versatile enzymes chiefly employed in various industrial sectors, viz., food processing, detergents, leather, textile, pharmaceutical industries. However, the existing bottlenecks, such as lower enzyme yields, stability, purification, specificity, and catalytic rates, bring resistance toward their industrial suitability. The robust microbes are prominent sources of stable enzymes. However, further challenges may exist, such as low yield, difficult purification, and lesser enzymatic efficiency. With the advent of advanced genomic and enzyme engineering approaches, such bottlenecks can be overcome. Initially, the microbial genomes can be used as novel repositories for stable enzyme sequences for further heterologous production with higher enzymatic yields and an easier purification process. Moreover, enzyme improvement through directed evolution and rational engineering could enhance enzyme stability and efficiency. Currently, conventional enzyme improvement methods are increasingly replaced by Artificial Intelligence-Machine Learning (AI-ML) and computational data-driven tools that provide precise information for tailoring enzymes for industrial endeavors. Hence, the current review encompasses a deliberate study of microbial alkaline proteases, their major industrial applications, and the bottlenecks in their commercial implementations. Further, it presents in-detailed solutions, including genetic and enzyme engineering, and insights toward incorporating advanced tools like AI-ML and de novo enzyme engineering to subside the existing challenges.
Collapse
Affiliation(s)
- Nitin Srivastava
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Sunil Kumar Khare
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India.
| |
Collapse
|
2
|
Irazoqui JM, Santiago GM, Mainez ME, Amadio AF, Eberhardt MF. Enzymes for production of whey protein hydrolysates and other value-added products. Appl Microbiol Biotechnol 2024; 108:354. [PMID: 38819482 PMCID: PMC11142983 DOI: 10.1007/s00253-024-13117-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/08/2024] [Accepted: 03/19/2024] [Indexed: 06/01/2024]
Abstract
Whey is a byproduct of dairy industries, the aqueous portion which separates from cheese during the coagulation of milk. It represents approximately 85-95% of milk's volume and retains much of its nutrients, including functional proteins and peptides, lipids, lactose, minerals, and vitamins. Due to its composition, mainly proteins and lactose, it can be considered a raw material for value-added products. Whey-derived products are often used to supplement food, as they have shown several physiological effects on the body. Whey protein hydrolysates are reported to have different activities, including antihypertensive, antioxidant, antithrombotic, opioid, antimicrobial, cytomodulatory, and immuno-modulatory. On the other hand, galactooligosaccharides obtained from lactose can be used as prebiotic for beneficial microorganisms for the human gastrointestinal tract. All these compounds can be obtained through physicochemical, microbial, or enzymatic treatments. Particularly, enzymatic processes have the advantage of being highly selective, more stable than chemical transformations, and less polluting, making that the global enzyme market grow at accelerated rates. The sources and different products associated with the most used enzymes are particularly highlighted in this review. Moreover, we discuss metagenomics as a tool to identify novel proteolytic enzymes, from both cultivable and uncultivable microorganisms, which are expected to have new interesting activities. Finally enzymes for the transformation of whey sugar are reviewed. In this sense, carbozymes with ß-galactosidase activity are capable of lactose hydrolysis, to obtain free monomers, and transgalactosylation for prebiotics production. KEY POINTS: • Whey can be used to obtain value-added products efficiently through enzymatic treatments • Proteases transform whey proteins into biopeptides with physiological activities • Lactose can be transformed into prebiotic compounds using ß-galactosidases.
Collapse
Affiliation(s)
- José Matías Irazoqui
- Instituto de Investigación de La Cadena Láctea (CONICET-INTA), 2300, Rafaela, Argentina
| | | | | | - Ariel Fernando Amadio
- Instituto de Investigación de La Cadena Láctea (CONICET-INTA), 2300, Rafaela, Argentina
| | | |
Collapse
|
3
|
Thakrar FJ, Koladiya GA, Singh SP. Heterologous Expression and Structural Elucidation of a Highly Thermostable Alkaline Serine Protease from Haloalkaliphilic Actinobacterium, Nocardiopsis sp. Mit-7. Appl Biochem Biotechnol 2023; 195:7583-7602. [PMID: 37060510 DOI: 10.1007/s12010-023-04472-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2023] [Indexed: 04/16/2023]
Abstract
A highly thermostable alkaline serine protease gene (SPSPro, MN429015) obtained from haloalkaliphilic actinobacteria, Nocardiopsis sp. Mit-7 (NCIM-5746), was successfully cloned and overexpressed in Escherichia coli BL21 under the control of the T7 promoter in the pET Blue1 vector leading to a 20-kDa gene product. The molecular weight of the recombinant alkaline protease, as determined by SDS-PAGE and the Mass Spectrometer (MALDI-TOF), was 34 kDa. The structural and functional attributes of the recombinant thermostable alkaline serine protease were analyzed by Bioinformatic tools. 3D Monomeric Model and Molecular Docking established the role of the amino acid residues, aspartate, serine, and tryptophan, in the active site of thealkaline protease.The activity of the recombinant alkaline protease was optimal at 65 °C, 5 °C higher than its native protease. The recombinant protease was also active over a wide range of pH 7.0-13.0, with a maximal activity of 6050.47 U/mg at pH 9. Furthermore, the thermodynamic parameters of the immobilized recombinant alkaline protease suggested its reduced vulnerability against adverse conditions under which the enzyme has to undergo varied applications.
Collapse
Affiliation(s)
- Foram J Thakrar
- Department of Biosciences, Saurashtra University, Rajkot, Gujarat, India
| | - Gopi A Koladiya
- Department of Biosciences, Saurashtra University, Rajkot, Gujarat, India
| | - Satya P Singh
- Department of Biosciences, Saurashtra University, Rajkot, Gujarat, India.
| |
Collapse
|
4
|
Yao H, Liu S, Liu T, Ren D, Zhou Z, Yang Q, Mao J. Microbial-derived salt-tolerant proteases and their applications in high-salt traditional soybean fermented foods: a review. BIORESOUR BIOPROCESS 2023; 10:82. [PMID: 38647906 PMCID: PMC10992980 DOI: 10.1186/s40643-023-00704-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/31/2023] [Indexed: 04/25/2024] Open
Abstract
Different microorganisms can produce different proteases, which can adapt to different industrial requirements such as pH, temperature, and pressure. Salt-tolerant proteases (STPs) from microorganisms exhibit higher salt tolerance, wider adaptability, and more efficient catalytic ability under extreme conditions compared to conventional proteases. These unique enzymes hold great promise for applications in various industries including food, medicine, environmental protection, agriculture, detergents, dyes, and others. Scientific studies on microbial-derived STPs have been widely reported, but there has been little systematic review of microbial-derived STPs and their application in high-salt conventional soybean fermentable foods. This review presents the STP-producing microbial species and their selection methods, and summarizes and analyzes the salt tolerance mechanisms of the microorganisms. It also outlines various techniques for the isolation and purification of STPs from microorganisms and discusses the salt tolerance mechanisms of STPs. Furthermore, this review demonstrates the contribution of modern biotechnology in the screening of novel microbial-derived STPs and their improvement in salt tolerance. It highlights the potential applications and commercial value of salt-tolerant microorganisms and STPs in high-salt traditional soy fermented foods. The review ends with concluding remarks on the challenges and future directions for microbial-derived STPs. This review provides valuable insights into the separation, purification, performance enhancement, and application of microbial-derived STPs in traditional fermented foods.
Collapse
Affiliation(s)
- Hongli Yao
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Department of Biology and Food Engineering, Bozhou University, Bozhou, 236800, Anhui, China
| | - Shuangping Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, Guangdong, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, 31200, Zhejiang, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing, 646000, Zhejiang, China
| | - Tiantian Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, 31200, Zhejiang, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing, 646000, Zhejiang, China
| | - Dongliang Ren
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Zhilei Zhou
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, Guangdong, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, 31200, Zhejiang, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing, 646000, Zhejiang, China
| | - Qilin Yang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Jian Mao
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, Guangdong, China.
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, 31200, Zhejiang, China.
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing, 646000, Zhejiang, China.
| |
Collapse
|
5
|
Irazoqui JM, Eberhardt MF, Santiago GM, Amadio AF. Characterization of novel proteases identified by metagenomic analysis from dairy stabilization ponds. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12591-4. [PMID: 37231159 DOI: 10.1007/s00253-023-12591-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023]
Abstract
Cheese whey is the main by-product of dairy industries. It is used as a raw material for other value-added products, like whey protein concentrate. By using enzymes, this product can be further treated to obtain new higher value products, like whey protein hydrolysates. Proteases (EC: 3.4) represent a large segment of industrial enzymes, since they are used in several industries, including food. In this work, we describe three novel enzymes identified using a metagenomic approach. Metagenomic DNA from dairy industry stabilization ponds were sequenced, and the predicted genes were compared against the MEROPS database, focusing on families commercially used to produce whey protein hydrolysates. From a total of 849 candidates, 10 were selected for cloning and expression and three showed activities with both the chromogenic substrate, azocasein, and whey proteins. Particularly, Pr05, an enzyme from the yet uncultured phylum Patescibacteria, showed activity that is comparable to a commercial protease. All these novel enzymes could represent an alternative for dairy industries to produce value-added products from industrial by-products. KEY POINTS: • Over 19,000 proteases were predicted in a sequence-based metagenomic analysis. • Three proteases were successfully expressed and showed activity with whey proteins. • The enzyme Pr05 showed hydrolysis profiles of interest for food industry.
Collapse
Affiliation(s)
- José Matías Irazoqui
- Instituto de Investigación de La Cadena Láctea (CONICET-INTA), 2300, Rafaela, Argentina
| | | | | | - Ariel Fernando Amadio
- Instituto de Investigación de La Cadena Láctea (CONICET-INTA), 2300, Rafaela, Argentina
| |
Collapse
|
6
|
Purohit MK, Rathore DS, Koladiya G, Pandey S, Singh SP. Comparative analysis of the catalysis and stability of the native, recombinant and metagenomic alkaline proteases in organic solvents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:80968-80982. [PMID: 35725880 DOI: 10.1007/s11356-022-21411-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
The effect of organic solvents on alkaline proteases was assessed for native, recombinant, and metagenomically derived alkaline proteases. Their stability and the effects of physicochemical parameters were studied in the presence of hexane. The native enzyme was comparatively more resistant against the organic solvents than the recombinant counterparts. On the other hand, the metagenomically derived alkaline protease was minimally resistant against solvents. A similar trend was apparent for the stability of enzyme in organic solvents. The novelty of this study lies in the fact that the majority of the studies on the solvent tolerance have focused on the mesophilic enzymes, while those from the haloalkaliphilic bacteria have received little attention. The comparative tolerance of the native, recombinant, and metagenomic alkaline proteases against the organic solvent has practical importance. The phylogenetic relatedness among the various protease sequences will be described.
Collapse
Affiliation(s)
- Megha K Purohit
- Department of Biosciences, UGC-CAS, Saurashtra University, Rajkot, 360 005, India
- Current Address: DNA Investigating Laboratory, Toronto, ON, Canada
| | - Dalip Singh Rathore
- Department of Biosciences, UGC-CAS, Saurashtra University, Rajkot, 360 005, India
| | - Gopi Koladiya
- Department of Biosciences, UGC-CAS, Saurashtra University, Rajkot, 360 005, India
| | | | - Satya P Singh
- Department of Biosciences, UGC-CAS, Saurashtra University, Rajkot, 360 005, India.
| |
Collapse
|
7
|
Raval VH, Rathore DS, Singh SP. Comparative Studies of the Characteristics of Two Alkaline Proteases from Haloalkaliphilic bacterium D-15-9 and Oceanobacillus onchorynchii Mi-10-54. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822050131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Ariaeenejad S, Kavousi K, Mamaghani ASA, Ghasemitabesh R, Hosseini Salekdeh G. Simultaneous hydrolysis of various protein-rich industrial wastes by a naturally evolved protease from tannery wastewater microbiota. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152796. [PMID: 34986419 DOI: 10.1016/j.scitotenv.2021.152796] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Elimination of protein-rich waste materials is one of the vital environmental protection requirements. Using of non-naturally occurring chemicals for their remediation properties can potentially induce new pollutants. Therefore, enzymes encoded in the genomes of microorganisms evolved in the same environment can be considered suitable alternatives to chemicals. Identification of efficient proteases that can hydrolyze recalcitrant, protein-rich wastes produced by various industrial processes has been widely welcomed as an eco-friendly waste management strategy. In this direction, we attempted to screen a thermo-halo-alkali-stable metagenome-derived protease (PersiProtease1) from tannery wastewater. The PersiProtease1 exhibited high pH stability over a wide range and at 1 h in pH 11.0 maintained 87.59% activity. The enzyme possessed high thermal stability while retaining 76.64% activity after 1 h at 90 °C. Moreover, 65.34% of the initial activity of the enzyme remained in the presence of 6 M NaCl, showing tolerance against high salinity. The presence of various metal ions, inhibitors, and organic solvents did not remarkably inhibit the activity of the discovered protease. The PersiProtease1 was extracted from the tannery wastewater microbiota and efficiently applied for biodegradation of real sample tannery wastewater protein, chicken feathers, whey protein, dehairing sheepskins, and waste X-ray films. PersiProtease1 proved its enormous potential in simultaneous biodegradation of solid and liquid protein-rich industrial wastes based on the results.
Collapse
Affiliation(s)
- Shohreh Ariaeenejad
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran.
| | - Kaveh Kavousi
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Atefeh Sheykh Abdollahzadeh Mamaghani
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Rezvaneh Ghasemitabesh
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Ghasem Hosseini Salekdeh
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran; Department of Molecular Sciences, Macquarie University, Sydney 2109, NSW, Australia.
| |
Collapse
|
9
|
Microbial Peptidase in Food Processing: Current State of the Art and Future Trends. Catal Letters 2022. [DOI: 10.1007/s10562-022-03965-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
10
|
Kikani BA, Singh SP. Amylases from thermophilic bacteria: structure and function relationship. Crit Rev Biotechnol 2021; 42:325-341. [PMID: 34420464 DOI: 10.1080/07388551.2021.1940089] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Amylases hydrolyze starch to diverse products including dextrins and progressively smaller polymers of glucose units. Thermally stable amylases account for nearly 25% of the enzyme market. This review highlights the structural attributes of the α-amylases from thermophilic bacteria. Heterologous expression of amylases in suitable hosts is discussed in detail. Further, specific value maximization approaches, such as protein engineering and immobilization of the amylases are discussed in order to improve its suitability for varied applications on a commercial scale. The review also takes into account of the immobilization of the amylases on nanomaterials to increase the stability and reusability of the enzymes. The function-based metagenomics would provide opportunities for searching amylases with novel characteristics. The review is expected to explore novel amylases for future potential applications.
Collapse
Affiliation(s)
- Bhavtosh A Kikani
- UGC-CAS Department of Biosciences, Saurashtra University, Rajkot, India.,P.D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa, India
| | - Satya P Singh
- UGC-CAS Department of Biosciences, Saurashtra University, Rajkot, India
| |
Collapse
|
11
|
Isolation and biochemical characterization of a novel serine protease identified from solid tannery waste metagenome. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00832-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Sun J, Li P, Liu Z, Huang W, Mao X. A novel thermostable serine protease from a metagenomic library derived from marine sediments in the East China Sea. Appl Microbiol Biotechnol 2020; 104:9229-9238. [PMID: 32965562 DOI: 10.1007/s00253-020-10879-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 08/07/2020] [Accepted: 09/02/2020] [Indexed: 01/01/2023]
Abstract
Thermal activity and stability are important characteristics for proteases applied in the detergent, pharmaceutical, food, and other green industries. With the intent to discover thermostable novel proteases, we constructed a fosmid metagenomic library from marine sediments in the East China Sea and isolated a clone endowed with high proteolytic activity from this library. Sequence analysis of the positive subclones allowed the identification of a coding region of 1254 bp related to protease activity. The unrooted phylogenetic tree and alignment results revealed that the sequence might be derived from Anaerolineaceae bacterium and encodes a new member of the peptidase S8A subfamily with the typical catalytic triad Asp119/His150/Ser325. The fusion protein, named pF1AL2, was expressed in Escherichia coli and showed a molecular weight of 35 kDa. pF1AL2 was active in the pH range of 5.0-11.0 with an optimal pH at 10.0 and had high stability under alkaline conditions, retaining more than 95% of its activity after 24 h at pH 11.0. The optimal temperature of pF1AL2 was 80 °C, and it retained nearly 80% of its activity after 6 h at 70 °C, showing great thermal activity and stability. In addition, the enzyme had great salt tolerance (the residual activity when kept in 3 M NaCl was 40%). Its thermal activity and stability, along with its halotolerance and pH-tolerance, indicate the high potential value of pF1AL2 in industrial applications. The exploitation of pF1AL2 could lay the foundation for the development and utilization of proteases with special features from marine resources by a metagenomic strategy. KEY POINTS: • A novel protease, pF1AL2, from marine sediments, was screened out by a metagenomic strategy. • The protease pF1AL2 analyzed in silico, cloned, and characterized. • pF1AL2 had an optimal temperature of 80 °C and retained nearly 80% of activity after 6 h at 70 °C. • pF1AL2 had great tolerance for high-temperature and acid, alkaline, and high salt environments.
Collapse
Affiliation(s)
- Jianan Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Ping Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Zhen Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Wencan Huang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China. .,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
13
|
Bhatt HB, Singh SP. Cloning, Expression, and Structural Elucidation of a Biotechnologically Potential Alkaline Serine Protease From a Newly Isolated Haloalkaliphilic Bacillus lehensis JO-26. Front Microbiol 2020; 11:941. [PMID: 32582046 PMCID: PMC7283590 DOI: 10.3389/fmicb.2020.00941] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/20/2020] [Indexed: 12/14/2022] Open
Abstract
An alkaline protease gene of Bacillus lehensis JO-26 from saline desert, Little Rann of Kutch, was cloned and expressed in Escherichia coli BL21 (DE3). A 1,014-bp ORF encoded 337 amino acids. The recombinant protease (APrBL) with Asp 97, His 127, and Ser 280 forming catalytic triad belongs to the subtilase S8 protease family. The gene was optimally expressed in soluble fraction with 0.2 mM isopropyl β-D-thiogalactopyranoside (IPTG), 2% (w/v) NaCl at 28°C. APrBL, a monomer with a molecular mass of 34.6 kDa was active over pH 8–11 and 30°C−70°C, optimally at pH 10 and 50°C. The enzyme was highly thermostable and retained 73% of the residual activity at 80°C up to 3 h. It was significantly stimulated by sodium dodecyl sulfate (SDS), Ca2+, chloroform, toluene, n-butanol, and benzene while completely inhibited by phenylmethylsulfonyl fluoride (PMSF) and Hg2+. The serine nature of the protease was confirmed by its strong inhibition by PMSF. The APrBL gene was phylogenetically close to alkaline elastase YaB (P20724) and was distinct from the well-known commercial proteases subtilisin Carlsberg (CAB56500) and subtilisin BPN′ (P00782). The structural elucidation revealed 31.75% α-helices, 22.55% β-strands, and 45.70% coils. Although high glycine and fewer proline residues are a characteristic feature of the cold-adapted enzymes, the similar observation in thermally active APrBL suggests that this feature cannot be solely responsible for thermo/cold adaptation. The APrBL protease was highly effective as a detergent additive and in whey protein hydrolysis.
Collapse
Affiliation(s)
- Hitarth B Bhatt
- UGC-CAS Department of Biosciences, Saurashtra University, Rajkot, India
| | - Satya P Singh
- UGC-CAS Department of Biosciences, Saurashtra University, Rajkot, India
| |
Collapse
|
14
|
Salwan R, Sharma V. Trends in extracellular serine proteases of bacteria as detergent bioadditive: alternate and environmental friendly tool for detergent industry. Arch Microbiol 2019; 201:863-877. [PMID: 31025057 DOI: 10.1007/s00203-019-01662-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/20/2018] [Accepted: 04/15/2019] [Indexed: 02/07/2023]
Abstract
Proteases, one of the largest groups of industrial enzymes occupy a major share in detergent industry. To meet the existing demands, proteases with efficient catalytic properties are being explored from bacteria residing in extreme habitats. Alkaline proteases are also considered as promising candidates for industrial sectors due to the activity and stability under alkaline and harsh environment. Therefore, a systematic review on experimental studies of bacterial proteases was conducted with emphasis on purification, characterization, cloning and expression and their suitability as detergent additive. Relevant searches using a combination of filters/keywords were performed in the online databases; PubMed, Science Direct, Scopus and Web of Science. Over thousands of research papers, 71 articles in Scopus, 48 articles in Science Direct, 18 articles in PubMed and 8 articles in Web of Science were selected with regard to bacterial extracellular proteases till date. Selected articles revealed majority of the studies conducted between the years 2015 and 17 and were focused on purification of proteases from bacteria. Among microbes, a total of 41 bacterial genera have been explored with limited studies from extreme habitats. Majority of the studies have reported the involvement of subtilisin-like serine proteases with effective properties for detergent industries. The studies revealed shifting of trend from purification to cloning to genetic engineering to meet the industrial demands. The present systematic review describes the proteases from extremophilic bacteria and use of biotechnological techniques such as site-directed mutagenesis and codon optimization to engineer enzymes with better hot spots in the active sites to meet industrial challenges.
Collapse
Affiliation(s)
- Richa Salwan
- College of Horticulture and Forestry, Dr. YSP- University of Horticulture and Forestry, Neri, Hamirpur, HP, 177 001, India. .,University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, PB, 140 413, India.
| | - Vivek Sharma
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, PB, 140 413, India.
| |
Collapse
|
15
|
Shamim K, Sharma J, Mutnale M, Dubey SK, Mujawar S. Characterization of a metagenomic serine metalloprotease and molecular docking studies. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.05.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
16
|
Jiang C, Zhang L, Li F, Meng C, Zeng R, Deng J, Shen P, Ou Q, Wu B. Characterization of a metagenome-derived protease from contaminated agricultural soil microorganisms and its random mutagenesis. Folia Microbiol (Praha) 2017; 62:499-508. [PMID: 28382524 DOI: 10.1007/s12223-017-0522-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 03/17/2017] [Indexed: 12/28/2022]
Abstract
Proteases are typical key enzymes that hydrolyze proteins into amino acids and peptides. Numerous proteases have been studied, but the discovery of metagenome-derived proteases is still significant for both commercial applications and basic research. An unexplored protease gene sep1A was identified by function-based screening from a plasmid metagenomic library derived from uncultured contaminated agricultural soil microorganisms. The putative protease gene was subcloned into pET-32a (+) vector and overexpressed in E. coli BL21(DE3) pLysS, then the recombinant protein was purified to homogeneity. The detailed biochemical characterization of the Sep1A protein was performed, including its molecular characterization, specific activity, pH-activity profile, metal ion-activity profile, and enzyme kinetic assays. Furthermore, the protein engineering approach of random mutagenesis via error-prone PCR was applied on the original Sep1A protein. Biochemical characterization demonstrated that the purified recombinant Ep48 protein could hydrolyze casein. Compared with the original Sep1A protein, the best variant of Ep48 in the random mutagenesis library, with the Gln307Leu and Asp391Gly changes, exhibited 2.62-fold activity at the optimal reaction conditions of 50 °C and pH 9.0. These results are the first step toward a better understanding of the properties of Sep1A protein. Protein engineering with error-prone PCR paves the way toward the metagenome-derived genes for biotechnological applications.
Collapse
Affiliation(s)
- Chengjian Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue East Road, Nanning, Guangxi, 530004, China.
- Key Laboratory of Marine Bioactive Substance and Modern Analytical Techniques, SOA, 6 Xianxialing Road, Qingdao, Shandong, 266061, China.
| | - Liang Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue East Road, Nanning, Guangxi, 530004, China
| | - Fajia Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue East Road, Nanning, Guangxi, 530004, China
| | - Can Meng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue East Road, Nanning, Guangxi, 530004, China
| | - Rong Zeng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue East Road, Nanning, Guangxi, 530004, China
| | - Jie Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue East Road, Nanning, Guangxi, 530004, China
| | - Peihong Shen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue East Road, Nanning, Guangxi, 530004, China
| | - Qian Ou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue East Road, Nanning, Guangxi, 530004, China
| | - Bo Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue East Road, Nanning, Guangxi, 530004, China
| |
Collapse
|
17
|
Gong BL, Mao RQ, Xiao Y, Jia ML, Zhong XL, Liu Y, Xu PL, Li G. Improvement of enzyme activity and soluble expression of an alkaline protease isolated from oil-polluted mud flat metagenome by random mutagenesis. Enzyme Microb Technol 2017; 106:97-105. [DOI: 10.1016/j.enzmictec.2017.06.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 06/19/2017] [Accepted: 06/28/2017] [Indexed: 11/16/2022]
|
18
|
Khan M, Sathya TA. Extremozymes from metagenome: Potential applications in food processing. Crit Rev Food Sci Nutr 2017; 58:2017-2025. [PMID: 28605203 DOI: 10.1080/10408398.2017.1296408] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The long-established use of enzymes for food processing and product formulation has resulted in an increased enzyme market compounding to 7.0% annual growth rate. Advancements in molecular biology and recognition that enzymes with specific properties have application for industrial production of infant, baby and functional foods boosted research toward sourcing the genes of microorganisms for enzymes with distinctive properties. In this regard, functional metagenomics for extremozymes has gained attention on the premise that such enzymes can catalyze specific reactions. Hence, metagenomics that can isolate functional genes of unculturable extremophilic microorganisms has expanded attention as a promising tool. Developments in this field of research in relation to food sector are reviewed.
Collapse
Affiliation(s)
- Mahejibin Khan
- a CSIR-Central Food Technological Research Institute-Resource Centre Lucknow , India.,c Academy of Scientific and Innovative Research , New Delhi , India
| | - T A Sathya
- b CSIR-Central Food Technological Research Institute , Mysore , India.,c Academy of Scientific and Innovative Research , New Delhi , India
| |
Collapse
|
19
|
Kumar S, Arumugam N, Permaul K, Singh S. Chapter 5 Thermostable Enzymes and Their Industrial Applications. Microb Biotechnol 2016. [DOI: 10.1201/9781315367880-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
|
20
|
Ghosh S, Kuisiene N, Cheeptham N. The cave microbiome as a source for drug discovery: Reality or pipe dream? Biochem Pharmacol 2016; 134:18-34. [PMID: 27867014 DOI: 10.1016/j.bcp.2016.11.018] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/15/2016] [Indexed: 01/04/2023]
Abstract
This review highlights cave habitats, cave microbiomes and their potential for drug discovery. Such studies face many challenges, including access to remote and pristine caves, and sample collection and transport. Inappropriate physical and chemical growth conditions in the laboratory for the isolation and cultivation of cave microorganisms pose many complications including length of cultivation; some cave microorganisms can take weeks and even months to grow. Additionally, DNA extraction from cave environmental samples may be difficult due to the high concentration of various minerals that are natural DNA blocking agents. Once cave microorganisms are grown in the lab, other problems often arise, such as maintenance of pure culture, consistency of antimicrobial activity and fermentation conditions for antimicrobial production. In this review, we suggest that, although based on what has been done in the field, there is potential in using cave microorganisms to produce antimicrobial agents, one needs to be highly committed and prepared.
Collapse
Affiliation(s)
- Soumya Ghosh
- Department of Biological Sciences, Faculty of Science, Thompson Rivers University, Kamloops, BC, Canada
| | - Nomeda Kuisiene
- Department of Microbiology and Biotechnology, Vilnius University, Lithuania
| | - Naowarat Cheeptham
- Department of Biological Sciences, Faculty of Science, Thompson Rivers University, Kamloops, BC, Canada.
| |
Collapse
|
21
|
Apolinar-Hernández MM, Peña-Ramírez YJ, Pérez-Rueda E, Canto-Canché BB, De Los Santos-Briones C, O'Connor-Sánchez A. Identification and in silico characterization of two novel genes encoding peptidases S8 found by functional screening in a metagenomic library of Yucatán underground water. Gene 2016; 593:154-161. [PMID: 27522038 DOI: 10.1016/j.gene.2016.08.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/19/2016] [Accepted: 08/04/2016] [Indexed: 01/19/2023]
Abstract
Metagenomics is a culture-independent technology that allows access to novel and potentially useful genetic resources from a wide range of unknown microorganisms. In this study, a fosmid metagenomic library of tropical underground water was constructed, and clones were functionally screened for extracellular proteolytic activity. One of the positive clones, containing a 41,614-bp insert, had two genes with 60% and 68% identity respectively with a peptidase S8 of Chitinimonas koreensis. When these genes were individually sub-cloned, in both cases their sub-clones showed proteolytic phenotype, confirming that they both encode functional proteases. These genes -named PrAY5 and PrAY6- are next to each other. They are similar in size (1845bp and 1824bp respectively) and share 66.5% identity. An extensive in silico characterization showed that their ORFs encode complex zymogens having a signal peptide at their 5' end, followed by a pro-peptide, a catalytic region, and a PPC domain at their 3' end. Their translated sequences were classified as peptidases S8A by sequence comparisons against the non-redundant database and corroborated by Pfam and MEROPS. Phylogenetic analysis of the catalytic region showed that they encode novel proteases that clustered with the sub-family S8_13, which according to the CDD database at NCBI, is an uncharacterized subfamily. They clustered in a clade different from the other three proteases S8 found so far by functional metagenomics, and also different from proteases S8 found in sequenced environmental samples, thereby expanding the range of potentially useful proteases that have been identified by metagenomics. I-TASSER modeling corroborated that they may be subtilases, thus possibly they participate in the hydrolysis of proteins with broad specificity for peptide bonds, and have a preference for a large uncharged residue in P1.
Collapse
Affiliation(s)
- Max M Apolinar-Hernández
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán A.C., Calle 43 No. 130, Chuburná de Hidalgo, Mérida, Yucatán CP 97200, Mexico
| | - Yuri J Peña-Ramírez
- El Colegio de la Frontera Sur (ECOSUR) Unidad Campeche, Avenida Rancho Polígono 2A, Ciudad Industrial Lerma, Campeche, Campeche CP 24500, Mexico
| | - Ernesto Pérez-Rueda
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, Cuernavaca, Morelos CP 62210, Mexico
| | - Blondy B Canto-Canché
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán A.C., Calle 43 No. 130, Chuburná de Hidalgo, Mérida, Yucatán CP 97200, Mexico
| | - César De Los Santos-Briones
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán A.C., Calle 43 No. 130, Chuburná de Hidalgo, Mérida, Yucatán CP 97200, Mexico
| | - Aileen O'Connor-Sánchez
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán A.C., Calle 43 No. 130, Chuburná de Hidalgo, Mérida, Yucatán CP 97200, Mexico.
| |
Collapse
|
22
|
Gupta SK, Shukla P. Advanced technologies for improved expression of recombinant proteins in bacteria: perspectives and applications. Crit Rev Biotechnol 2015; 36:1089-1098. [DOI: 10.3109/07388551.2015.1084264] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Sanjeev K. Gupta
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India and
- Advanced Biotech Lab (Centre for Research & Development), Ipca Laboratories Ltd., Kandivli (west), Mumbai, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India and
| |
Collapse
|
23
|
Yuan H, Peng L, Han Z, Xie JJ, Liu XP. Recombinant expression library of Pyrococcus furiosus constructed by high-throughput cloning: a useful tool for functional and structural genomics. Front Microbiol 2015; 6:943. [PMID: 26441878 PMCID: PMC4566052 DOI: 10.3389/fmicb.2015.00943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/25/2015] [Indexed: 11/28/2022] Open
Abstract
Hyperthermophile Pyrococcus furiosus grows optimally near 100°C and is an important resource of many industrial and molecular biological enzymes. To study the structure and function of P. furiosus proteins at whole genome level, we constructed expression plasmids of each P. furiosus gene using a ligase-independent cloning method, which was based on amplifying target gene and vector by PCR using phosphorothioate-modified primers and digesting PCR products by λ exonuclease. Our cloning method had a positive clone percentage of ≥ 80% in 96-well plate cloning format. Small-scale expression experiment showed that 55 out of 80 genes were efficiently expressed in Escherichia coli Strain Rosetta 2(DE3)pLysS. In summary, this recombinant expression library of P. furiosus provides a platform for functional and structural studies, as well as developing novel industrial enzymes. Our cloning scheme is adaptable to constructing recombinant expression library of other sequenced organisms.
Collapse
Affiliation(s)
- Hui Yuan
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai, China
| | - Li Peng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai, China
| | - Zhong Han
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai, China
| | - Juan-Juan Xie
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai, China
| | - Xi-Peng Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai, China
| |
Collapse
|
24
|
Morris LS, Marchesi JR. Current functional metagenomic approaches only expand the existing protease sequence space, but does not presently add any novelty to it. Curr Microbiol 2014; 70:19-26. [PMID: 25141963 DOI: 10.1007/s00284-014-0677-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 07/03/2014] [Indexed: 01/14/2023]
Abstract
Proteases are a fundamental function in many organisms and thus many ecosystems and yet they are rarely obtained in functional metagenomic screens. Here, we have isolated an active protease gene (M1-2; 613 amino acids) which resided in a 38.4 kb fosmid clone that showed a classical protease-positive phenotype. It was classified as a zinc-dependent metalloprotease, with the closest annotated sequence as a neutral protease from Collimonas fungivorans (62 % similarity and 72 % homology). Further characterisation showed that its optimum temperature and pH were 42 °C and 8.0, respectively. Activity was inhibited by EDTA, but inhibition started to be reversed by excess Zn(2+). A putative signal peptide was identified bioinformatically and this may be why this protease was successfully isolated using a functional metagenomic screen. Bioinformatic analysis shows that this does not represent a novel protease, but simply expands the current sequence space of known proteases.
Collapse
Affiliation(s)
- Laura S Morris
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK
| | | |
Collapse
|
25
|
Cloning, heterologous expression and structural characterization of an alkaline serine protease from sea water haloalkaliphilic bacterium. ANN MICROBIOL 2014. [DOI: 10.1007/s13213-014-0869-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
26
|
Cloning, over expression and functional attributes of serine proteases from Oceanobacillus iheyensis O.M.A18 and Haloalkaliphilic bacterium O.M.E12. Process Biochem 2014. [DOI: 10.1016/j.procbio.2013.07.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Park JW, Park JE, Choi HK, Jung TW, Yoon SM, Lee JS. Purification and characterization of three thermostable alkaline fibrinolytic serine proteases from the polychaete Cirriformia tentaculata. Process Biochem 2013. [DOI: 10.1016/j.procbio.2013.03.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|