1
|
Zhu M, Ou D, Khan MH, Zhao S, Zhu Z, Niu L. Structural insights into the formation of oligomeric state by a type I Hsp40 chaperone. Biochimie 2020; 176:45-51. [PMID: 32621942 DOI: 10.1016/j.biochi.2020.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/10/2020] [Accepted: 06/18/2020] [Indexed: 10/23/2022]
Abstract
Molecular chaperones can prevent and repair protein misfolding and aggregation to maintain protein homeostasis in cells. Hsp40 chaperones interact with unfolded client proteins via the dynamic multivalent interaction (DMI) mechanism with their multiple client-binding sites. Here we report that a type I Hsp40 chaperone from Streptococcus pneumonia (spHsp40) forms a concentration-independent polydispersity oligomer state in solution. The crystal structure of spHsp40 determined at 2.75 Å revealed that each monomer has a type I Hsp40 structural fold containing a zinc finger domain and C-terminal domains I and II (CTD I and CTD II). Subsequent quaternary structure analysis using a PISA server generated two dimeric models. The interface mutational analysis suggests the conserved C-terminal dimeric motif as a basis for dimer formation and that the novel dimeric interaction between a client-binding site in CTD I and the zinc finger domain promotes the formation of the spHsp40 oligomeric state. In vitro functional analysis demonstrated that spHsp40 oligomer is fully active and possess the optimal activity in stimulating the ATPase activity of spHsp70. The oligomer state of type I Hsp40 and its formation might be important in understanding Hsp40 function and its interaction with client proteins.
Collapse
Affiliation(s)
- Min Zhu
- School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China; Hefei National Laboratory for Physical Sciences at the Microscale, Division of Molecular and Cellular Biophysics, University of Science and Technology of China, Hefei, 230026, China
| | - Dingmin Ou
- School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China; Hefei National Laboratory for Physical Sciences at the Microscale, Division of Molecular and Cellular Biophysics, University of Science and Technology of China, Hefei, 230026, China
| | - Muhammad Hidayatullah Khan
- School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China; Hefei National Laboratory for Physical Sciences at the Microscale, Division of Molecular and Cellular Biophysics, University of Science and Technology of China, Hefei, 230026, China
| | - Shasha Zhao
- Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, China
| | - Zhongliang Zhu
- School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China; Hefei National Laboratory for Physical Sciences at the Microscale, Division of Molecular and Cellular Biophysics, University of Science and Technology of China, Hefei, 230026, China.
| | - Liwen Niu
- School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China; Hefei National Laboratory for Physical Sciences at the Microscale, Division of Molecular and Cellular Biophysics, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
2
|
Proteinaceous Transformers: Structural and Functional Variability of Human sHsps. Int J Mol Sci 2020; 21:ijms21155448. [PMID: 32751672 PMCID: PMC7432308 DOI: 10.3390/ijms21155448] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 02/04/2023] Open
Abstract
The proteostasis network allows organisms to support and regulate the life cycle of proteins. Especially regarding stress, molecular chaperones represent the main players within this network. Small heat shock proteins (sHsps) are a diverse family of ATP-independent molecular chaperones acting as the first line of defense in many stress situations. Thereby, the promiscuous interaction of sHsps with substrate proteins results in complexes from which the substrates can be refolded by ATP-dependent chaperones. Particularly in vertebrates, sHsps are linked to a broad variety of diseases and are needed to maintain the refractive index of the eye lens. A striking key characteristic of sHsps is their existence in ensembles of oligomers with varying numbers of subunits. The respective dynamics of these molecules allow the exchange of subunits and the formation of hetero-oligomers. Additionally, these dynamics are closely linked to the chaperone activity of sHsps. In current models a shift in the equilibrium of the sHsp ensemble allows regulation of the chaperone activity, whereby smaller oligomers are commonly the more active species. Different triggers reversibly change the oligomer equilibrium and regulate the activity of sHsps. However, a finite availability of high-resolution structures of sHsps still limits a detailed mechanistic understanding of their dynamics and the correlating recognition of substrate proteins. Here we summarize recent advances in understanding the structural and functional relationships of human sHsps with a focus on the eye-lens αA- and αB-crystallins.
Collapse
|
3
|
Wright MA, Aprile FA, Bellaiche MMJ, Michaels TCT, Müller T, Arosio P, Vendruscolo M, Dobson CM, Knowles TPJ. Cooperative Assembly of Hsp70 Subdomain Clusters. Biochemistry 2018; 57:3641-3649. [PMID: 29763298 PMCID: PMC6202011 DOI: 10.1021/acs.biochem.8b00151] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Many molecular chaperones exist as oligomeric complexes in their functional states, yet the physical determinants underlying such self-assembly behavior, as well as the role of oligomerization in the activity of molecular chaperones in inhibiting protein aggregation, have proven to be difficult to define. Here, we demonstrate direct measurements under native conditions of the changes in the average oligomer populations of a chaperone system as a function of concentration and time and thus determine the thermodynamic and kinetic parameters governing the self-assembly process. We access this self-assembly behavior in real time under native-like conditions by monitoring the changes in the micrometer-scale diffusion of the different complexes in time and space using a microfluidic platform. Using this approach, we find that the oligomerization mechanism of the Hsp70 subdomain occurs in a cooperative manner and involves structural constraints that limit the size of the species formed beyond the limits imposed by mass balance. These results illustrate the ability of microfluidic methods to probe polydisperse protein self-assembly in real time in solution and to shed light on the nature and dynamics of oligomerization processes.
Collapse
Affiliation(s)
- Maya A Wright
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , U.K.,Fluidic Analytics Ltd. , Cambridge , U.K
| | - Francesco A Aprile
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , U.K
| | - Mathias M J Bellaiche
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , U.K.,Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Thomas C T Michaels
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , U.K.,Paulson School of Engineering and Applied Sciences , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - Thomas Müller
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , U.K.,Fluidic Analytics Ltd. , Cambridge , U.K
| | - Paolo Arosio
- Institute for Chemical and Bioengineering , ETH Zurich , Vladimir-Prelog-Weg 1, ETH Hönggerberg, HCI F 105 , 8093 Zurich , Switzerland
| | - Michele Vendruscolo
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , U.K
| | - Christopher M Dobson
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , U.K
| | - Tuomas P J Knowles
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , U.K.,Cavendish Laboratory, Department of Physics , University of Cambridge , JJ Thomson Avenue , Cambridge CB3 0HE , U.K
| |
Collapse
|
4
|
Roman SG, Chebotareva NA, Kurganov BI. Anti-aggregation activity of small heat shock proteins under crowded conditions. Int J Biol Macromol 2016; 100:97-103. [PMID: 27234495 DOI: 10.1016/j.ijbiomac.2016.05.080] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/23/2016] [Accepted: 05/22/2016] [Indexed: 10/21/2022]
Abstract
It is becoming evident that small heat shock proteins (sHsps) are important players of protein homeostasis system. Their ability to bind misfolded proteins may play a crucial role in preventing protein aggregation in cells. The remarkable structural plasticity of sHsps is considered to underlie the mechanism of their activity. However, all our knowledge of the anti-aggregation functioning of sHsps is based on data obtained in vitro in media greatly different from the cellular highly crowded milieu. The present review highlights available data on the effect of crowding on the anti-aggregation activity of sHsps. There is some evidence that crowding affects conformation and dynamics of sHsps oligomers as well as their anti-aggregation properties. Crowding stimulates association of sHsp-client protein complexes into large-sized aggregates thus diminishing the apparent anti-aggregation activity of sHsps. Nevertheless, it is also shown that complexes between suboligomers (dissociated forms) of sHsps and client proteins may be stabilized and exist for longer period of time under crowded conditions. Moreover, crowding may retard the initial stages of aggregation which correspond to the formation of sHsp-containing nuclei and their clusters. Thus, dissociation of sHsps into suboligomers appears to be an important feature for the anti-aggregation activity of sHsps in crowded media.
Collapse
Affiliation(s)
- Svetlana G Roman
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky pr. 33, Moscow 119071, Russia.
| | - Natalia A Chebotareva
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky pr. 33, Moscow 119071, Russia
| | - Boris I Kurganov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky pr. 33, Moscow 119071, Russia
| |
Collapse
|
5
|
Wright MA, Aprile FA, Arosio P, Vendruscolo M, Dobson CM, Knowles TPJ. Biophysical approaches for the study of interactions between molecular chaperones and protein aggregates. Chem Commun (Camb) 2015; 51:14425-34. [PMID: 26328629 PMCID: PMC8597951 DOI: 10.1039/c5cc03689e] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 08/07/2015] [Indexed: 12/25/2022]
Abstract
Molecular chaperones are key components of the arsenal of cellular defence mechanisms active against protein aggregation. In addition to their established role in assisting protein folding, increasing evidence indicates that molecular chaperones are able to protect against a range of potentially damaging aspects of protein behaviour, including misfolding and aggregation events that can result in the generation of aberrant protein assemblies whose formation is implicated in the onset and progression of neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. The interactions between molecular chaperones and different amyloidogenic protein species are difficult to study owing to the inherent heterogeneity of the aggregation process as well as the dynamic nature of molecular chaperones under physiological conditions. As a consequence, understanding the detailed microscopic mechanisms underlying the nature and means of inhibition of aggregate formation remains challenging yet is a key objective for protein biophysics. In this review, we discuss recent results from biophysical studies on the interactions between molecular chaperones and protein aggregates. In particular, we focus on the insights gained from current experimental techniques into the dynamics of the oligomerisation process of molecular chaperones, and highlight the opportunities that future biophysical approaches have in advancing our understanding of the great variety of biological functions of this important class of proteins.
Collapse
Affiliation(s)
- Maya A. Wright
- Department of Chemistry, University of CambridgeLensfield RoadCambridge CB2 1EWUK+44 (0)1223 336300
| | - Francesco A. Aprile
- Department of Chemistry, University of CambridgeLensfield RoadCambridge CB2 1EWUK+44 (0)1223 336300
| | - Paolo Arosio
- Department of Chemistry, University of CambridgeLensfield RoadCambridge CB2 1EWUK+44 (0)1223 336300
| | - Michele Vendruscolo
- Department of Chemistry, University of CambridgeLensfield RoadCambridge CB2 1EWUK+44 (0)1223 336300
| | - Christopher M. Dobson
- Department of Chemistry, University of CambridgeLensfield RoadCambridge CB2 1EWUK+44 (0)1223 336300
| | - Tuomas P. J. Knowles
- Department of Chemistry, University of CambridgeLensfield RoadCambridge CB2 1EWUK+44 (0)1223 336300
| |
Collapse
|
6
|
Chebotareva NA, Filippov DO, Kurganov BI. Effect of crowding on several stages of protein aggregation in test systems in the presence of α-crystallin. Int J Biol Macromol 2015; 80:358-65. [PMID: 26144909 DOI: 10.1016/j.ijbiomac.2015.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 06/04/2015] [Accepted: 07/01/2015] [Indexed: 12/11/2022]
Abstract
Macromolecular crowding can facilitate protein-protein interactions in the cell, in particular aggregation processes. To characterize the anti-aggregation activity of chaperones under conditions mimicking the crowded environment in the cell, two basic test systems are used. Test systems of the first type are based on aggregation of target proteins undergoing unfolding under different factors. Dithithreitol-induced aggregation of α-lactalbumin is used as such a system. The increase in the duration of lag phase after the addition of the crowder (polyethylene glycol; PEG) to the system containing α-crystallin has been interpreted as a retardation of the stages that are the rate-limiting stages of the general process of aggregation (the nucleation stage and the stages of clusterization of nuclei). Test systems of the second type are based on aggregation of UV-irradiated proteins. Such test systems permit investigating the effects of different agents directly on the stages of aggregation of unfolded protein. UV-irradiated glycogen phosphorylase b (Phb) is used as a target protein. Analysis of the initial rate of aggregation after the addition of PEG at different points in time to the mixture of UV-irradiated Phb and α-crystallin allowed estimating the time of half-conversion for the structural rearrangement of the primary UV-irradiated Phb-α-crystallin complex.
Collapse
Affiliation(s)
- Natalia A Chebotareva
- Bach Institute of Biochemistry, Russian Academy of Sciences, Leninsky pr. 33, Moscow 119071, Russia.
| | - Dmitrii O Filippov
- Bach Institute of Biochemistry, Russian Academy of Sciences, Leninsky pr. 33, Moscow 119071, Russia
| | - Boris I Kurganov
- Bach Institute of Biochemistry, Russian Academy of Sciences, Leninsky pr. 33, Moscow 119071, Russia.
| |
Collapse
|
7
|
Haslbeck M, Peschek J, Buchner J, Weinkauf S. Structure and function of α-crystallins: Traversing from in vitro to in vivo. Biochim Biophys Acta Gen Subj 2015; 1860:149-66. [PMID: 26116912 DOI: 10.1016/j.bbagen.2015.06.008] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 06/10/2015] [Accepted: 06/22/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND The two α-crystallins (αA- and αB-crystallin) are major components of our eye lenses. Their key function there is to preserve lens transparency which is a challenging task as the protein turnover in the lens is low necessitating the stability and longevity of the constituent proteins. α-Crystallins are members of the small heat shock protein family. αB-crystallin is also expressed in other cell types. SCOPE OF THE REVIEW The review summarizes the current concepts on the polydisperse structure of the α-crystallin oligomer and its chaperone function with a focus on the inherent complexity and highlighting gaps between in vitro and in vivo studies. MAJOR CONCLUSIONS Both α-crystallins protect proteins from irreversible aggregation in a promiscuous manner. In maintaining eye lens transparency, they reduce the formation of light scattering particles and balance the interactions between lens crystallins. Important for these functions is their structural dynamics and heterogeneity as well as the regulation of these processes which we are beginning to understand. However, currently, it still remains elusive to which extent the in vitro observed properties of α-crystallins reflect the highly crowded situation in the lens. GENERAL SIGNIFICANCE Since α-crystallins play an important role in preventing cataract in the eye lens and in the development of diverse diseases, understanding their mechanism and substrate spectra is of importance. To bridge the gap between the concepts established in vitro and the in vivo function of α-crystallins, the joining of forces between different scientific disciplines and the combination of diverse techniques in hybrid approaches are necessary. This article is part of a Special Issue entitled Crystallin Biochemistry in Health and Disease.
Collapse
Affiliation(s)
- Martin Haslbeck
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstr. 4, D-85747 Garching, Germany
| | - Jirka Peschek
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstr. 4, D-85747 Garching, Germany
| | - Johannes Buchner
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstr. 4, D-85747 Garching, Germany.
| | - Sevil Weinkauf
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstr. 4, D-85747 Garching, Germany.
| |
Collapse
|
8
|
Boelens WC. Cell biological roles of αB-crystallin. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 115:3-10. [PMID: 24576798 DOI: 10.1016/j.pbiomolbio.2014.02.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/13/2014] [Accepted: 02/14/2014] [Indexed: 10/25/2022]
Abstract
αB-crystallin, also called HspB5, is a molecular chaperone able to interact with unfolding proteins. By interacting, it inhibits further unfolding, thereby preventing protein aggregation and allowing ATP-dependent chaperones to refold the proteins. αB-crystallin belongs to the family of small heat-shock proteins (sHsps), which in humans consists of 10 different members. The protein forms large oligomeric complexes, containing up to 40 or more subunits, which in vivo consist of heterooligomeric complexes formed by a mixture of αB-crystallin and other sHsps. αB-crystallin is highly expressed in the lens and to a lesser extent in several other tissues, among which heart, skeletal muscle and brain. αB-crystallin plays a role in several cellular processes, such as signal transduction, protein degradation, stabilization of cytoskeletal structures and apoptosis. Mutations in the αB-crystallin gene can have detrimental effects, leading to pathologies such as cataract and cardiomyopathy. This review describes the biological roles of αB-crystallin, with a special focus on its function in the eye lens, heart muscle and brain. In addition its therapeutic potential is discussed.
Collapse
Affiliation(s)
- Wilbert C Boelens
- Department of Biomolecular Chemistry, Institute for Molecules and Materials and Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| |
Collapse
|
9
|
King AM, Toxopeus J, MacRae TH. Functional differentiation of small heat shock proteins in diapause-destined Artemia embryos. FEBS J 2013; 280:4761-72. [PMID: 23879561 DOI: 10.1111/febs.12442] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 07/03/2013] [Accepted: 07/22/2013] [Indexed: 01/01/2023]
Abstract
Encysted embryos of Artemia franciscana cease development and enter diapause, a state of metabolic suppression and enhanced stress tolerance. The development of diapause-destined Artemia embryos is characterized by the coordinated synthesis of the small heat shock proteins (sHsps) p26, ArHsp21 and ArHsp22, with the latter being stress inducible in adults. The amounts of sHsp mRNA and protein varied in Artemia cysts, suggesting transcriptional and translational regulation. By contrast to p26, knockdown of ArHsp21 by RNA interference had no effect on embryo development. ArHsp21 provided limited protection against stressors such as desiccation and freezing but not heat. ArHsp21 may have a non-essential or unidentified role in cysts. Injection of Artemia adults with amounts of ArHsp22 double-stranded RNA less than those used for other sHsps killed females and males, curtailing the analysis of ArHsp22 function in developing embryos and cysts. The results indicate that diapause-destined Artemia embryos synthesize varying amounts of sHsps as a result of differential gene expression and mRNA translation and also suggest that these sHsps have distinctive functions.
Collapse
Affiliation(s)
- Allison M King
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | |
Collapse
|