1
|
Saito T, Qiao Y, Araki Y, Matsunaga N, Osugi W, Kondo K, Katahira M, Takeda M. Production of a cellulose-aminating polysaccharide from a filamentous sulfur-oxidizing bacterium, Thiothrix nivea, grown lithotrophically or mixotrophically. J Appl Microbiol 2024; 135:lxae288. [PMID: 39544130 DOI: 10.1093/jambio/lxae288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/25/2024] [Accepted: 11/13/2024] [Indexed: 11/17/2024]
Abstract
AIMS Glucosaminoglucan (β-1,4-linked glucose and glucosamine) produced by a mixotrophic sulfur-oxidizing bacterium, Thiothrix nivea, is a useful cellulose-aminating agent. Lithotrophic and mixotrophic glucosaminoglucan production were examined using fed-batch techniques. METHODS AND RESULTS A jar fermenter was used for the fed-batch cultivation. Glucosaminoglucan was extracted from T. nivea using diluted HCl. Lithotrophic growth was detected by feeding with Na2S as the energy source, and 12 mg l-1 of glucosaminoglucan was obtained. In contrast, no growth was observed with Na2S2O3. Similarly, mixotrophic growth in the presence of acetic acid was promoted by Na2S, whereas Na2S2O3 had no effect. When acetic acid and Na2S were added, 470 mg l-1 of glucosaminoglucan was obtained. CONCLUSIONS Thiothrix nivea was cultured, and glucosaminoglucan was produced lithotrophically using Na2S for feeding. Na2S is also indispensable for mixotrophic growth and glucosaminoglucan production, indicating that sulfide oxidation pathways control the TCA cycle. The involvement of the SOX pathway (for thiosulfate oxidation) in the activation of energy metabolism is doubtful because neither lithotrophic nor mixotrophic growth was promoted by Na2S2O3. Based on these results, we assumed that T. nivea is facultatively mixotrophic [lithotrophic growth is possible in addition to organotrophic growth in the presence of sulfide (Na2S)], rather than obligately mixotrophic.
Collapse
Affiliation(s)
- Tomoaki Saito
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya, Yokohama 240-8501, Japan
| | - Yunkun Qiao
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya, Yokohama 240-8501, Japan
| | - Yui Araki
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya, Yokohama 240-8501, Japan
| | - Naoki Matsunaga
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya, Yokohama 240-8501, Japan
| | - Wataru Osugi
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya, Yokohama 240-8501, Japan
| | - Keiko Kondo
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- Integrated Research Center for Carbon Negative Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Masato Katahira
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- Integrated Research Center for Carbon Negative Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- Biomass Product Tree Industry-Academia Collaborative Research Laboratory, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Minoru Takeda
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya, Yokohama 240-8501, Japan
| |
Collapse
|
2
|
Porous Pellicle Formation of a Filamentous Bacterium, Leptothrix. Appl Environ Microbiol 2022; 88:e0134122. [PMID: 36416549 PMCID: PMC9746318 DOI: 10.1128/aem.01341-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The bacterium Leptothrix cholodnii generates filaments encased in a sheath comprised of woven nanofibrils. In static liquid culture, L. cholodnii moves toward the air-liquid interface, where it forms porous pellicles. Observations of aggregation at the interface reveal that clusters consisting of only a few bacteria primarily grow by netting free cells. These growing clusters hierarchically enlarge through the random docking of other small clusters. We find that the bacteria swim using their polar flagellum toward the interface, where their sheath assists them in intertwining with others and thereby promotes the formation of small clusters. In contrast, sheathless hydrophobic mutant cells get stuck to the interface. We find that the nanofibril sheath is vital for robust pellicle formation as it lowers cell surface hydrophobicity by 60%, thereby reducing their adsorption and enabling cells to move toward and stick together at the air-liquid interface. IMPORTANCE Efficient and sustainable management of water resources is becoming a fundamental issue for supporting growing populations and for developing economic activity. Fundamental to this management is the treatment of wastewater. Microorganisms are the active component of activated sludge that is employed in the biodegradation process of many wastewater treatment facilities. However, uncontrolled growth of filamentous bacteria such as Sphaerotilus often results in filamentous bulking, lowering the efficiency of water treatment systems. To prevent this undesirable condition, strategies based on a fundamental understanding of the ecology of filamentous bacteria are required. Although the filamentous bacterium Leptothrix cholodnii, which is closely related to Sphaerotilus, is a minor inhabitant of activated sludge, its complete genome sequence is known, making gene manipulation relatively easy. Moreover, L. cholodnii generates porous pellicles under static conditions, which may be a characteristic of filamentous bulking. We show that both swimming motility and nanofibril-mediated air-liquid interface attachment are required for porous pellicle formation. These insights are critical for a better understanding of the characteristics of filamentous bulking and might improve strategies to control activated sludge.
Collapse
|
3
|
Faizan A, Takeda M, Yoshitake H. Effective adsorption of perrhenate ions on the filamentous sheath‐forming bacteria,
Sphaerotilus montanus
,
Sphaerotilus natans
and
Thiothrix fructosivorans. J Appl Microbiol 2022; 133:607-618. [DOI: 10.1111/jam.15590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Arshad Faizan
- Graduate School of Engineering Yokohama National University, 79‐5 Tokiwadai, 240‐8501, Hodogaya‐ku Yokohama
| | - Minoru Takeda
- Graduate School of Engineering Yokohama National University, 79‐5 Tokiwadai, 240‐8501, Hodogaya‐ku Yokohama
| | - Hideaki Yoshitake
- Graduate School of Engineering Yokohama National University, 79‐5 Tokiwadai, 240‐8501, Hodogaya‐ku Yokohama
| |
Collapse
|
4
|
Kunoh T, Morinaga K, Sugimoto S, Miyazaki S, Toyofuku M, Iwasaki K, Nomura N, Utada AS. Polyfunctional Nanofibril Appendages Mediate Attachment, Filamentation, and Filament Adaptability in Leptothrix cholodnii. ACS NANO 2020; 14:5288-5297. [PMID: 31804801 DOI: 10.1021/acsnano.9b04663] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Leptothrix is a species of Fe/Mn-oxidizing bacteria known to form long filaments composed of chains of cells that eventually produce a rigid tube surrounding the filament. Prior to the formation of this brittle microtube, Leptothrix cells secrete hair-like structures from the cell surface, called nanofibrils, which develop into a soft sheath that surrounds the filament. To clarify the role of nanofibrils in filament formation in L. cholodnii SP-6, we analyze the behavior of individual cells and multicellular filaments in high-aspect ratio microfluidic chambers using time-lapse and intermittent in situ fluorescent staining of nanofibrils, complemented with atmospheric scanning electron microscopy. We show that in SP-6 nanofibrils are important for attachment and their distribution on young filaments post-attachment is correlated to the directionality of filament elongation. Elongating filaments demonstrate a surprising ability to adapt to their physical environment by changing direction when they encounter obstacles: they bend or reverse direction depending on the angle of the collision. We show that the forces involved in the collision can be used to predict the behavior of filament. Finally, we show that as filaments grow in length, the older region becomes confined by the sheath, while the newly secreted nanofibrils at the leading edge of the filament form a loose, divergent, structure from which cells periodically escape.
Collapse
Affiliation(s)
| | | | - Shinya Sugimoto
- Department of Bacteriology and Jikei Center for Biofilm Research and Technology, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | | | | | | | | | | |
Collapse
|
5
|
Advanced biofilm analysis in streams receiving organic deicer runoff. PLoS One 2020; 15:e0227567. [PMID: 31968006 PMCID: PMC6975536 DOI: 10.1371/journal.pone.0227567] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 12/20/2019] [Indexed: 02/01/2023] Open
Abstract
Prolific heterotrophic biofilm growth is a common occurrence in airport receiving streams containing deicers and anti-icers, which are composed of low-molecular weight organic compounds. This study investigated biofilm spatiotemporal patterns and responses to concurrent and antecedent (i.e., preceding biofilm sampling) environmental conditions at stream sites upstream and downstream from Milwaukee Mitchell International Airport in Milwaukee, Wisconsin, during two deicing seasons (2009-2010; 2010-2011). Biofilm abundance and community composition were investigated along spatial and temporal gradients using field surveys and microarray analyses, respectively. Given the recognized role of Sphaerotilus in organically enriched environments, additional analyses were pursued to specifically characterize its abundance: a consensus sthA sequence was determined via comparison of whole metagenome sequences with a previously identified sthA sequence, the primers developed for this gene were used to characterize relative Sphaerotilus abundance using quantitative real-time PCR, and a Sphaerotilus strain was isolated to validate the determined sthA sequence. Results indicated that biofilm abundance was stimulated by elevated antecedent chemical oxygen demand concentrations, a surrogate for deicer concentrations, with minimal biofilm volumes observed when antecedent chemical oxygen demand concentrations remained below 48 mg/L. Biofilms were composed of diverse communities (including sheathed bacterium Thiothrix) whose composition appeared to shift in relation to antecedent temperature and chemical oxygen demand. The relative abundance of sthA correlated most strongly with heterotrophic biofilm volume (positive) and dissolved oxygen (negative), indicating that Sphaerotilus was likely a consistent biofilm member and thrived under low oxygen conditions. Additional investigations identified the isolate as a new strain of Sphaerotilus montanus (strain KMKE) able to use deicer components as carbon sources and found that stream dissolved oxygen concentrations related inversely to biofilm volume as well as to antecedent temperature and chemical oxygen demand. The airport setting provides insight into potential consequences of widescale adoption of organic deicers for roadway deicing.
Collapse
|
6
|
Identification and characterization of the S-layer formed on the sheath of Thiothrix nivea. Arch Microbiol 2018; 200:1257-1265. [PMID: 29934786 DOI: 10.1007/s00203-018-1543-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 06/03/2018] [Accepted: 06/16/2018] [Indexed: 10/28/2022]
Abstract
Thiothrix nivea is a filamentous sulfur-oxidizing bacterium common in activated sludge and its filament is covered with a polysaccharide layer called sheath. In this study, we found that T. nivea aggregates under acidic conditions. A hexagonal lattice pattern, a typical morphological feature of proteinaceous S-layers, was newly observed on the surface of the sheath by transmission electron microscopy. The pattern and the acid-dependent aggregation were not observed in T. fructosivorans, a relative sheath-forming bacterium of T. nivea. The putative S-layer of T. nivea was detached by washing with unbuffered tris(hydroxymethyl)aminomethane base (Tris) solution and a protein of 160 kDa was detected by electrophoresis. Based on partial amino acid sequences of the protein, its structural gene was identified. The gene encodes an acidic protein which has a putative secretion signal and a Ca2+-binding domain. The protein was solubilized with urea followed by dialysis in the presence of calcium. A hexagonal lattice pattern was observed in the aggregates formed during dialysis, revealing that the protein is responsible for S-layer formation. Biosorption ability of copper, zinc, and cadmium onto the T. nivea filament decreased upon pretreatment with Tris, demonstrating that the S-layer was involved in metal adsorption. Moreover, aggregation of Escherichia coli was promoted by acidification in the presence of the S-layer protein, suggesting that the protein is potentially applicable as an acid-driven flocculant for other bacteria.
Collapse
|
7
|
Kawasaki Y, Endo T, Fujiwara A, Kondo K, Katahira M, Nittami T, Sato M, Takeda M. Elongation pattern and fine structure of the sheaths formed by Thiothrix nivea and Thiothrix fructosivorans. Int J Biol Macromol 2017; 95:1280-1288. [DOI: 10.1016/j.ijbiomac.2016.11.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/08/2016] [Accepted: 11/08/2016] [Indexed: 10/20/2022]
|
8
|
Kawasaki Y, Kondo K, Narizuka R, Endo T, Katahira M, Kawamura I, Sato M, Takeda M. Presence of N-l-lactyl-d-perosamine residue in the sheath-forming polysaccharide of Thiothrix fructosivorans. Int J Biol Macromol 2016; 82:772-9. [DOI: 10.1016/j.ijbiomac.2015.10.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/21/2015] [Accepted: 10/08/2015] [Indexed: 10/22/2022]
|
9
|
Lv G, Hu D, Zhao J, Li S. Quality control of sweet medicines based on gas chromatography-mass spectrometry. Drug Discov Ther 2015; 9:94-106. [DOI: 10.5582/ddt.2015.01020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Guangping Lv
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau
| | - Dejun Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau
| | - Jing Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau
| | - Shaoping Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau
| |
Collapse
|