1
|
Tran NT, Vo TV, Nguyen VP, Nguyen M, Le-Phuoc MT, Nguyen PLM, Nguyen TTT, Nguyen NT, Pham LH, Le THP, Nguyen TTT, Tran TTV, Nguyen DM, Hoang D. Advanced hybrid nanomaterials based on carboxymethyl-modified biopolymer: Green synthesis and application in sustainable antimicrobial products. Int J Biol Macromol 2024; 281:136633. [PMID: 39419150 DOI: 10.1016/j.ijbiomac.2024.136633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/01/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
The utilization of agricultural by-products for the synthesis of hybrid nanomaterials represents an environmentally sustainable approach. This research aims to comprehensively investigate high-performance silver and copper nanoparticles hybrid materials based on carboxymethyl-modified cellulose / lignin derived from rice husks (CMC / CML-AgNPs and CMC / CML-CuONPs) and apply them for antimicrobial activities. CMC / CML was used to reduce Ag / Cu cations to the atomic level and then efficiently stabilize Ag / CuO nanoparticles, an eco-friendly method and sustainable development. The hybrid nanomaterials were successfully synthesized with spherical shapes and particle sizes ranging from 4 to 16 nm. The diffraction peaks at 38.46°, 46.57°, 64.93°, and 77.55° were ascribed to the face-centered cubic crystal lattice (111), (200), (220), and (311) of silver nanoparticles in the CMC / CML-AgNPs. The peaks were 32.26°, 46.06°, 52.16°, 61.71°, 63.80°, and 71.23° associating with the (110,20-2), (112), (11-3), (310), and (221) plane orientations of CuO nanoparticles. The proposed materials demonstrated highly efficient antimicrobial performances. Particularly, CMC-AgNPs and CML-CuONPs exhibited an inhibitory capability of up to 100 % against E. coli and S. aureus within 72 h. Simultaneously, the antifungal results showed that hybrid nanomaterials have a better ability to inhibit the A. niger than A. flavus fungus. When experimenting on peanut seeds, hybrid nanomaterials showed an inhibitory capability of up to 99.0 % against A. niger. IC50 values of the hybrid nanomaterials range from 0.872 mg/mL to 1.188 mg/mL, confirming that these materials are non-cytotoxic. These materials exhibit significant stability and enduring antimicrobial efficacy, making them ideal for sustainable development of various antibacterial and antifungal blocks for the near future.
Collapse
Affiliation(s)
- Nhat Thong Tran
- University of Science, Vietnam National University, Ho Chi Minh City 700000, Viet Nam; Vietnam National University, Ho Chi Minh City 700000, Viet Nam
| | - Tuan Vu Vo
- University of Science, Vietnam National University, Ho Chi Minh City 700000, Viet Nam; Vietnam National University, Ho Chi Minh City 700000, Viet Nam
| | - Vinh Phu Nguyen
- Faculty of Basic Sciences, University of Medicine and Pharmacy, Hue University, Hue City 530000, Viet Nam
| | - MyTrinh Nguyen
- University of Science, Vietnam National University, Ho Chi Minh City 700000, Viet Nam; Vietnam National University, Ho Chi Minh City 700000, Viet Nam
| | - Minh Tri Le-Phuoc
- University of Science, Vietnam National University, Ho Chi Minh City 700000, Viet Nam; Vietnam National University, Ho Chi Minh City 700000, Viet Nam
| | - Phi Long My Nguyen
- University of Science, Vietnam National University, Ho Chi Minh City 700000, Viet Nam; Vietnam National University, Ho Chi Minh City 700000, Viet Nam.
| | - Trang Thi Thu Nguyen
- University of Science, Vietnam National University, Ho Chi Minh City 700000, Viet Nam; Vietnam National University, Ho Chi Minh City 700000, Viet Nam
| | - Ngoc Thuy Nguyen
- University of Science, Vietnam National University, Ho Chi Minh City 700000, Viet Nam; Vietnam National University, Ho Chi Minh City 700000, Viet Nam
| | - Lam H Pham
- University of Science, Vietnam National University, Ho Chi Minh City 700000, Viet Nam; Vietnam National University, Ho Chi Minh City 700000, Viet Nam
| | - Thi Hong Phong Le
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Ha Noi City 100000, Viet Nam
| | | | - Thi Thanh Van Tran
- University of Science, Vietnam National University, Ho Chi Minh City 700000, Viet Nam; Vietnam National University, Ho Chi Minh City 700000, Viet Nam
| | - Dang Mao Nguyen
- Université de Lorraine, LERMAB, 186 rue de Lorraine, 54400 Cosnes-et-Romain, France
| | - DongQuy Hoang
- University of Science, Vietnam National University, Ho Chi Minh City 700000, Viet Nam; Vietnam National University, Ho Chi Minh City 700000, Viet Nam.
| |
Collapse
|
2
|
Rossos AK, Banti CN, Raptis PK, Papachristodoulou C, Sainis I, Zoumpoulakis P, Mavromoustakos T, Hadjikakou SK. Silver Nanoparticles Using Eucalyptus or Willow Extracts (AgNPs) as Contact Lens Hydrogel Components to Reduce the Risk of Microbial Infection. Molecules 2021; 26:5022. [PMID: 34443612 PMCID: PMC8400931 DOI: 10.3390/molecules26165022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 12/31/2022] Open
Abstract
Eucalyptus leaves (ELE) and willow bark (WBE) extracts were utilized towards the formation of silver nanoparticles (AgNPs(ELE), AgNPs(WBE)). AgNPs(ELE) and AgNPs(WBE) were dispersed in polymer hydrogels to create pHEMA@AgNPs(ELE)_2 and pHEMA@AgNPs(WBE)_2 using hydroxyethyl-methacrylate (HEMA). The materials were characterized in a solid state by X-ray fluorescence (XRF) spectroscopy, X-ray powder diffraction analysis (XRPD), thermogravimetric differential thermal analysis (TG-DTA), differential scanning calorimetry (DTG/DSC) and attenuated total reflection spectroscopy (ATR-FTIR) and ultraviolet visible (UV-vis) spectroscopy in solution. The antimicrobial potential of the materials was investigated against the Gram-negative bacterial strain Pseudomonas aeruginosa (P. aeruginosa) and the Gram-positive bacterial strain of the genus Staphylococcus epidermidis (S. epidermidis) and Staphylococcus aureus (S. aureus), which are involved in microbial keratitis. The percentage of bacterial viability of P. aeruginosa and S. epidermidis upon their incubation over the pHEMA@AgNPs(ELE)_2 discs is interestingly low (28.3 and 6.8% respectively), while the inhibition zones (IZ) formed are 12.3 ± 1.7 and 13.2 ± 1.2 mm, respectively. No in vitro toxicity of this material towards human corneal epithelial cells (HCEC) was detected. Despite its low performance against S. aureus, pHEMA@AgNPs(ELE)_2 could be an efficient candidate towards the development of contact lenses that reduces microbial infection risk.
Collapse
Affiliation(s)
- Andreas K. Rossos
- Section of Inorganic and Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (A.K.R.); (P.K.R.)
| | - Christina N. Banti
- Section of Inorganic and Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (A.K.R.); (P.K.R.)
| | - Panagiotis K. Raptis
- Section of Inorganic and Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (A.K.R.); (P.K.R.)
| | | | - Ioannis Sainis
- Cancer Biobank Center, University of Ioannina, 45110 Ioannina, Greece;
| | - Panagiotis Zoumpoulakis
- Laboratory of Chemistry, Analysis and Design of Food Processes, Department of Food Science and Technology, University of West Attica, 12243 Attica, Greece;
| | - Thomas Mavromoustakos
- Organic Chemistry Laboratory, Department of Chemistry, University of Athens Greece, 15571 Athens, Greece;
| | - Sotiris K. Hadjikakou
- Section of Inorganic and Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (A.K.R.); (P.K.R.)
- University Research Center of Ioannina (URCI), Institute of Materials Science and Computing, 45110 Ioannina, Greece
| |
Collapse
|
3
|
Meretoudi A, Banti CN, Raptis PK, Papachristodoulou C, Kourkoumelis N, Ikiades AA, Zoumpoulakis P, Mavromoustakos T, Hadjikakou SK. Silver Nanoparticles from Oregano Leaves' Extracts as Antimicrobial Components for Non-Infected Hydrogel Contact Lenses. Int J Mol Sci 2021; 22:3539. [PMID: 33805476 PMCID: PMC8037402 DOI: 10.3390/ijms22073539] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 01/15/2023] Open
Abstract
The oregano leaves' extract (ORLE) was used for the formation of silver nanoparticles (AgNPs(ORLE)). ORLE and AgNPs(ORLE) (2 mg/mL) were dispersed in polymer hydrogels to give the pHEMA@ORLE_2 and pHEMA@AgNPs(ORLE)_2 using hydroxyethyl-methacrylate (HEMA). The materials were characterized by X-ray fluorescence (XRF) spectroscopy, X-ray powder diffraction analysis (XRPD), thermogravimetric differential thermal analysis (TG-DTA), derivative thermogravimetry/differential scanning calorimetry (DTG/DSC), ultraviolet (UV-Vis), and attenuated total reflection mode (ATR-FTIR) spectroscopies in solid state and UV-Vis in solution. The crystallite size value, analyzed with XRPD, was determined at 20 nm. The antimicrobial activity of the materials was investigated against Gram-negative bacterial strains Pseudomonas aeruginosa (P. aeruginosa) and Escherichia coli (E. coli). The Gram-positive ones of the genus of Staphylococcus epidermidis (S. epidermidis) and Staphylococcus aureus (S. aureus) are known to be involved in microbial keratitis by the means of inhibitory zone (IZ), minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC). The IZs, which developed upon incubation of P. aeruginosa, E. coli, S. epidermidis, and S. aureus with paper discs soaked in 2 mg/mL of AgNPs(ORLE), were 11.7 ± 0.7, 13.5 ± 1.9, 12.7 ± 1.7, and 14.3 ± 1.7 mm. When the same dose of ORLE was administrated, the IZs were 10.2 ± 0.7, 9.2 ± 0.5, 9.0 ± 0.0, and 9.0 ± 0.0 mm. The percent of bacterial viability when they were incubated over the polymeric hydrogel discs of pHEMA@AgNPs(ORLE)_2 was interestingly low (66.5, 88.3, 77.7, and 59.6%, respectively, against of P. aeruginosa, E. coli, S. epidermidis, and S. aureus) and those of pHEMA@ORLE_2 were 89.3, 88.1, 92.8, and 84.6%, respectively. Consequently, pHEMA@AgNPs(ORLE)_2 could be an efficient candidate toward the development of non-infectious contact lenses.
Collapse
Affiliation(s)
- Anastasia Meretoudi
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (A.M.); (P.K.R.)
| | - Christina N. Banti
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (A.M.); (P.K.R.)
| | - Panagiotis K. Raptis
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (A.M.); (P.K.R.)
| | | | - Nikolaos Kourkoumelis
- Medical Physics Laboratory, Medical School, University of Ioannina, 45110 Ioannina, Greece;
| | - Aris A. Ikiades
- Department of Physics, University of Ioannina, 45110 Ioannina, Greece; (C.P.); (A.A.I.)
| | - Panagiotis Zoumpoulakis
- Laboratory of Chemistry, Analysis & Design of Food Processes, Department of Food Science and Technology, University of West Attica, 11635 Attica, Greece;
| | - Thomas Mavromoustakos
- Organic Chemistry Laboratory, Department of Chemistry, University of Athens Greece, 15571 Athens, Greece;
| | - Sotiris K. Hadjikakou
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (A.M.); (P.K.R.)
- Institute of Materials Science and Computing, University Research Center of Ioannina (URCI), 45110 Ioannina, Greece
| |
Collapse
|
4
|
Fekri HS, Ranjbar M, Noudeh GD, Ziasistani N. Green synthesis of strontium nanoparticles self‐assembled in the presence of carboxymethyl cellulose: an
in vivo
imaging study. LUMINESCENCE 2019; 34:870-876. [DOI: 10.1002/bio.3684] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/13/2019] [Accepted: 06/24/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Hojjat Samareh Fekri
- Neuroscience Research Center, Institute of NeuropharmacologyKerman University of Medical Sciences Kerman Iran
| | - Mehdi Ranjbar
- Pharmaceutics Research Center, Institute of NeuropharmacologyKerman University of Medical Sciences Kerman Iran
| | - Gholamreza Dehghan Noudeh
- Neuroscience Research Center, Institute of NeuropharmacologyKerman University of Medical Sciences Kerman Iran
| | - Nazanin Ziasistani
- Neuroscience Research Center, Institute of NeuropharmacologyKerman University of Medical Sciences Kerman Iran
| |
Collapse
|
5
|
Tangsongcharoen W, Punyamoonwongsa P, Chaiyasat P. High performance biocompatible cellulose‐based microcapsules encapsulating gallic acid prepared by inverse microsuspension polymerization. POLYM INT 2019. [DOI: 10.1002/pi.5757] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Wichsuda Tangsongcharoen
- Department of Chemistry, Faculty of Science and TechnologyRajamangala University of Technology Thanyaburi Pathum Thani Thailand
| | | | - Preeyaporn Chaiyasat
- Department of Chemistry, Faculty of Science and TechnologyRajamangala University of Technology Thanyaburi Pathum Thani Thailand
- Advanced Materials Design and Development (AMDD) Research Unit, Faculty of Science and TechnologyRajamangala University of Technology Thanyaburi Pathum Thani Thailand
| |
Collapse
|
6
|
Maiti PK, Ghosh A, Parveen R, Saha A, Choudhury MG. Preparation of carboxy-methyl cellulose-capped nanosilver particles and their antimicrobial evaluation by an automated device. APPLIED NANOSCIENCE 2018. [DOI: 10.1007/s13204-018-0914-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Kumar H, Gaur A, Kumar S, Park JW. Development of silver nanoparticles-loaded CMC hydrogel using bamboo as a raw material for special medical applications. CHEMICAL PAPERS 2018. [DOI: 10.1007/s11696-018-0650-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
8
|
Stathopoulou MEK, Banti CN, Kourkoumelis N, Hatzidimitriou AG, Kalampounias AG, Hadjikakou SK. Silver complex of salicylic acid and its hydrogel-cream in wound healing chemotherapy. J Inorg Biochem 2018; 181:41-55. [PMID: 29407907 DOI: 10.1016/j.jinorgbio.2018.01.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/24/2017] [Accepted: 01/07/2018] [Indexed: 01/06/2023]
Abstract
The known metallotherapeutic [Ag(salH)]2 (AGSAL-1) of salicylic acid (salH2), was used for the development of new efficient silver based material for wounds healing. AGSAL-1 was characterized by spectroscopic techniques and X-ray crystallography. The wound healing epithelialization of AGSAL-1 was investigated by the means of scratch assay against immortalized human keratinocytes (HaCaT) cells. The anti-inflammatory activity of AGSAL-1 was evaluated by monitoring the catalytic peroxidation of linoleic acid to hydroperoxylinoleic acid by the enzyme lipoxygenase (LOX). The antibacterial activity of AGSAL-1 was evaluated against bacterial species which colonize wounds, such as: Pseudomonas aeruginosa (PAO1), Staphylococcus epidermidis and Staphylococcus aureus, by the means of Minimum Inhibitory Concentration (MIC), Minimum Bactericidal Concentration (MBC) and their Inhibition Zone (IZ). Moreover, the influence of AGSAL-1 against the formation of biofilm of PAO1 and St. aureus was also evaluated by the mean of Biofilm Elimination Concentration (ΒΕC). A hydrogel material CMC@AGSAL-1, based on the dispersion of AGSAL-1 in to carboxymethyl cellulose (CMC) was tested for its antimicrobial activity. Molecular Docking was performed, to explore the molecular interaction of AGSAL-1 with (i) the transcriptional regulator of PAO1, LasR. (ii) the mevalonate pathway for the biosynthesis of isoprenoids which is essential for gram-positive bacteria St. epidermidis and St. aureus. The toxicity of AGSAL-1 was examined against the HaCaT cells. Its genotoxicity was evaluated using Allium cepa model, in vivo. No genotoxicity was detected, indicating that AGSAL-1 is a candidate towards the development on a new efficient medication of the silver based metallodrugs.
Collapse
Affiliation(s)
| | - Christina N Banti
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece.
| | - Nikolaos Kourkoumelis
- Medical Physics Laboratory, Medical School, University of Ioannina, Ioannina, Greece.
| | | | | | - Sotiris K Hadjikakou
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece.
| |
Collapse
|
9
|
Sathiyanarayanan G, Dineshkumar K, Yang YH. Microbial exopolysaccharide-mediated synthesis and stabilization of metal nanoparticles. Crit Rev Microbiol 2017; 43:731-752. [DOI: 10.1080/1040841x.2017.1306689] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ganesan Sathiyanarayanan
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, South Korea
| | - Krishnamoorthy Dineshkumar
- Department of Plant Science, School of Biological Sciences, Central University of Kerala, Kasaragod, India
- Marine and Lake Biogeochemistry Group, Institute F.-A. Forel, Earth and Environmental Sciences, University of Geneva, Geneva, Switzerland
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, South Korea
- Microbial Carbohydrate Resource Bank, Konkuk University, Seoul, South Korea
| |
Collapse
|
10
|
Polysaccharides templates for assembly of nanosilver. Carbohydr Polym 2016; 135:300-7. [DOI: 10.1016/j.carbpol.2015.08.095] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 08/19/2015] [Accepted: 08/30/2015] [Indexed: 01/27/2023]
|
11
|
Abdel-Halim E, Alanazi HH, Al-Deyab SS. Utilization of olive tree branch cellulose in synthesis of hydroxypropyl carboxymethyl cellulose. Carbohydr Polym 2015; 127:124-34. [DOI: 10.1016/j.carbpol.2015.03.037] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 03/18/2015] [Accepted: 03/19/2015] [Indexed: 11/29/2022]
|