1
|
Jiang H, Shi R, Li X, Tang J, Min D. Insight into the thrombolytic ability of an extracellular fibrinolytic enzyme from Bacillus amyloliquefaciens GXU-1 isolated from Sipunculus nudus. Protein Expr Purif 2024; 213:106371. [PMID: 37709210 DOI: 10.1016/j.pep.2023.106371] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/04/2023] [Accepted: 09/10/2023] [Indexed: 09/16/2023]
Abstract
Bacterial fibrinolytic enzymes have an important role in thrombolytic therapy due to their ability to dissolve fibrin. Therefore, purification, characterization and activity determination are of prime importance for bacterial fibrinolytic enzymes. In the current study, marine Bacillus amyloliquefaciens was first screened from Sipunculus nudus living in the Beibu Gulf of China and denoted as Guangxi University-1 (GXU-1). Then, an extracellular fibrinolytic enzyme (FEB-1) was purified from GXU-1 using ammonium sulfate precipitation, hydrophobic chromatography and gel filtration chromatography. The specific activity of FEB-1 was determined to be as high as 6789.74 U/mg. The relative molecular weight of FEB-1 was measured as 30 kDa through SDS‒PAGE. The optimum in vitro fibrinolytic activity of FEB-1 was identified at 37 °C and pH = 8. Furthermore, the activity of FEB-1 can be well preserved at 20-45 °C and pH = 6.0 to 9.0. The combination analysis of SDS‒PAGE and the molecular docking calculation revealed that FEB-1 can cleave more Aα- and Bβ-chains of fibrinogen than γ-chain. It is noteworthy that FEB-1 is comparatively stable under human-body environmental conditions, indicating its potential application in thrombosis therapy.
Collapse
Affiliation(s)
- Hongrui Jiang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Ruiyuan Shi
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Xiaomei Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Jiale Tang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Douyong Min
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
2
|
Muniasamy R, Balamurugan BS, Rajamahendran D, Rathnasamy S. Switchable deep eutectic solvent driven micellar extractive fermentation of ultrapure fibrin digesting enzyme from Bacillus subtilis. Sci Rep 2022; 12:903. [PMID: 35042908 PMCID: PMC8766521 DOI: 10.1038/s41598-022-04788-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 01/03/2022] [Indexed: 11/09/2022] Open
Abstract
Fibrinolytic protease (FLP) is a therapeutic enzyme used in the treatment of thrombolytic diseases. The present study proposed the concept of pH-driven swappable micellar two-phase extraction for the concurrent production and purification of FLP from Bacillus subtilis at cloud point extraction. Extractive fermentation was carried out with a pH swap mechanism and FLP was extracted to the top phase by surfactant deep eutectic solvents (SDES). Shrimp waste was chosen as a sustainable low-cost substrate that yielded a maximum protease of 185 U/mg. Six SDESs were synthesized with nonionic surfactants as hydrogen bond donors and quaternary ammonium salts as hydrogen bond acceptors and their association was confirmed by H1 NMR. Thermophysical investigation of the synthetic SDES was accomplished as a function of temperature. Response surface methodology for extractive fermentation was performed with the concentration of SADES (35% w/v), Na2SO4 (15% w/v) and pH (6.3) as variables and the enzyme activity (248 IU/mg) as a response. Furthermore, purification using gel filtration chromatography was used to quantify the amount of enzyme obtained in the extraction phase (849 IU/ml). After final purification with an anion exchange column, the maximum purity fold (22.32) with enzyme activity (1172 IU/ml) was achieved. The in-vitro fibrinolytic activity has been confirmed using a fibrin plate assay.
Collapse
Affiliation(s)
- Ramya Muniasamy
- Green Separation Engineering Laboratory, School of Chemical and Biotechnology, SASTRA Deemed To Be University, Thanjavur, Tamil Nadu, 613401, India
| | - Bhavani Sowndharya Balamurugan
- Green Separation Engineering Laboratory, School of Chemical and Biotechnology, SASTRA Deemed To Be University, Thanjavur, Tamil Nadu, 613401, India
| | - Devi Rajamahendran
- Green Separation Engineering Laboratory, School of Chemical and Biotechnology, SASTRA Deemed To Be University, Thanjavur, Tamil Nadu, 613401, India
| | - Senthilkumar Rathnasamy
- Green Separation Engineering Laboratory, School of Chemical and Biotechnology, SASTRA Deemed To Be University, Thanjavur, Tamil Nadu, 613401, India.
| |
Collapse
|
3
|
Parveen A, Devika R. Fibrinolytic Enzyme - An Overview. Curr Pharm Biotechnol 2022; 23:1336-1345. [PMID: 34983344 DOI: 10.2174/1389201023666220104143113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/21/2021] [Accepted: 10/13/2021] [Indexed: 11/22/2022]
Abstract
Cardiovascular diseases, like coronary heart disease or artery disorders (arteriosclerosis, including artery solidification), heart failure (myocardial infarction), arrhythmias, congestive heart condition, stroke, elevated vital signs (hypertension), rheumatic heart disorder, and other circulatory system dysfunctions are the most common causes of death worldwide. Cardiovascular disorders are treated with stenting, coronary bypass surgery grafting, anticoagulants, antiplatelet agents, and other pharmacological and surgical procedures; however, these have limitations due to their adverse effects. Fibrinolytic agents degrade fibrin through enzymatic and biochemical processes. There are various enzymes that are currently used as a treatment for CVDs, like Streptokinase, Nattokinase, Staphylokinase, Urokinase, etc. These enzymes are derived from various sources like bacteria, fungi, algae, marine organisms, plants, snakes, and other organisms. This review deals with the fibrinolytic enzymes, their mechanisms, sources, and their therapeutic potential.
Collapse
Affiliation(s)
- Parveen A
- Department of Biotechnology, Biotechnology, Aarupadai Institute of Technology, Vinayaka Missions University, Chennai, India
| | - Devika R
- Department of Biotechnology, Biotechnology, Aarupadai Institute of Technology, Vinayaka Missions University, Chennai, India
| |
Collapse
|
4
|
Dantas JMDM, Araújo NKD, Silva NSD, Torres-Rêgo M, Furtado AA, Assis CFD, Araújo RM, Teixeira JA, Ferreira LDS, Fernandes-Pedrosa MDF, Dos Santos ES. Purification of chitosanases produced by Bacillus toyonensis CCT 7899 and functional oligosaccharides production. Prep Biochem Biotechnol 2021; 52:443-451. [PMID: 34370621 DOI: 10.1080/10826068.2021.1961273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Chitooligosaccharides (COS) have a great potential to be used by pharmaceutical industry due to their many biological activities. The use of enzymes to produce them is very advantageous, however it still faces many challenges, such as discovering new strains capable to produce enzymes that are able to generate bioactive oligosaccharides. In the present study a purification protein protocol was performed to purify chitosanases produced by Bacillus toyonensis CCT 7899 for further chitosan hydrolysis. The produced chitooligosaccharides were characterized by mass spectroscopy (MS) and their antiedematogenic effect was investigated through carrageenan-induced paw edema model. The animals were treated previously to inflammation by intragastric route with COS at 30, 300 and 600 mg/kg. The purification protocol showed a good performance for the chitosanases purification using 0.20 M NaCl solution to elute it, with a 9.54-fold purification factor. The treatment with COS promoted a decrease of paw edema at all evaluated times and the AUC0-4h, proving that COS produced showed activity in acute inflammation like commercial anti-inflammatory Dexamethasone (corticosteroid). Therefore, the strategy used to purification was successfully applied and it was possible to generate bioactive oligosaccharides with potential pharmacological use.
Collapse
Affiliation(s)
| | | | | | - Manoela Torres-Rêgo
- Department of Phamarcy, Federal University of Rio Grande do Norte, Natal, Brazil.,Chemistry Institute, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | | | | | | | | | | | - Everaldo Silvino Dos Santos
- Department of Chemical Engineering, Technology Center, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
5
|
Zhao T, Xiong J, Chen W, Xu A, Zhu D, Liu J. Purification and Characterization of a Novel Fibrinolytic Enzyme from Cipangopaludina Cahayensis. IRANIAN JOURNAL OF BIOTECHNOLOGY 2021; 19:e2805. [PMID: 34179197 PMCID: PMC8217531 DOI: 10.30498/ijb.2021.2805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background: Cipangopaludina cahayensis contains active fibrinolytic proteins and has been considered a potential anti-cancer agent.
However, its anti-cancer characteristics and functions have yet to be elucidated Objectives: To study the fibrinolytic activity and anticancer activity of crude protein extracts from Cipangopaludina cahayensis. Materials and Methods: Crude proteases were separated and extracted from the Cipangopaludina cahayensis through homogenization,
desalting, ammonium sulfate fractionation, dialysis, and ion exchange chromatography. The fibrinolytic activity
of extracted proteins was assessed using the fiber plate method. Total protein concentrations of the crude proteases
were determined via BCA assay. Molecular weights (MWs) were determined through SDS-PAGE electrophoresis. Results: The crude extract had a MW of ~ 50 kDa, and the highest protein concentration was 3.026 mg.mL-1.
The optimum pH for fibrinolytic activity was 7.0. Cell culture assays demonstrated that the addition of the
crude enzyme extracts to the human ovary cancer cell line Ovcar-3 resulted in significant growth defects. Conclusions: Our data showed that crude proteins purified from Cipangopaludina cahayensis are novel fibrinolytic proteases
and have potential anti-cancer propertie
Collapse
Affiliation(s)
- Tian Zhao
- School of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Jinqi Xiong
- School of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Wen Chen
- School of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Ahui Xu
- School of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Du Zhu
- School of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Jiantao Liu
- School of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| |
Collapse
|
6
|
Purification and characterization of a novel fibrinolytic enzyme from Whitmania pigra Whitman. Protein Expr Purif 2020; 174:105680. [PMID: 32497576 DOI: 10.1016/j.pep.2020.105680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/02/2020] [Accepted: 05/21/2020] [Indexed: 11/22/2022]
Abstract
Developing an effective fibrinolytic drug for treating thrombolysis with minimal undesirable side effects is of great importance. In the current study, an optimum solvent was selected for the extraction of fibrinolytic active components. Furthermore, a strong fibrinolytic enzyme named WPI01 was purified from Whitmania pigra Whitman through various chromatographic steps. WPI01 has a molecular mass of 27044.297 Da, and the N-terminal 8 amino acid sequence was determined as VVGGVEAR. WPI01 was stable within the pH range of 6.0-10.0 and with maximum fibrinolytic activity at 40 °C and a pH of 8.0. At 500 U/mL, WPI01 induced 50.59% blood clot reduction in vitro within 6 h, which was higher than that induced by urokinase at 1000 U/mL. In an analysis of the plasminogen activator activity, WPI01 produced obvious halos on heated and unheated fibrin plates, suggesting that WPI01 may not only act as a plasminogen activator but also degrade fibrin clots directly, and more study is needed to support this. In conclusion, WPI01 is obviously different from known fibrinolytic enzymes in terms of substrate specificity and fibrinolytic mode of action, suggesting that it is a novel fibrinolytic enzyme with potential applications in the treatment and prevention of thrombosis.
Collapse
|
7
|
Hu Y, Yu D, Wang Z, Hou J, Tyagi R, Liang Y, Hu Y. Purification and characterization of a novel, highly potent fibrinolytic enzyme from Bacillus subtilis DC27 screened from Douchi, a traditional Chinese fermented soybean food. Sci Rep 2019; 9:9235. [PMID: 31239529 PMCID: PMC6592948 DOI: 10.1038/s41598-019-45686-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 05/30/2019] [Indexed: 01/16/2023] Open
Abstract
The highly fibrinolytic enzyme-producing bacterium was identified as Bacillus subtilis DC27 and isolated from Douchi, a traditional fermented soybean food. The DFE27 enzyme was purified from the fermentation broth of B. subtilis DC27 by using UNOsphere Q column chromatography, Sephadex G-75 gel filtration, and high-performance liquid chromatography. It was 29 kDa in molecular mass and showed the optimal reaction temperature and pH value of 45 °C and 7.0, respectively, with a stable fibrinolytic activity below 50 °C and within the pH range of 6.0 to 10.0. DFE27 was identified as a serine protease due to its complete inhibition by phenylmethysulfony fluoride. The first 24 amino acid residues of the N-terminal sequence of the enzyme were AQSVPYGVSQIKAPALHSQGFTGS. The enzyme displayed the highest specificity toward the substrate D-Val-Leu-Lys-pNA for plasmin and it could not only directly degrade but also hydrolyze fibrin by activating plasminogen into plasmin. Overall, the DFE27 enzyme was obviously different from other known fibrinolytic enzymes in the optimum substrate specificity or fibrinolytic action mode, suggesting that it is a novel fibrinolytic enzyme and may have potential applications in the treatment and prevention of thrombosis.
Collapse
Affiliation(s)
- Yuanliang Hu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Edible Wild Plants Conservation& Utilization, College of Life Sciences, Hubei Normal University, Huangshi, 435002, China
| | - Dan Yu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhaoting Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianjun Hou
- Hubei Key Laboratory of Edible Wild Plants Conservation& Utilization, College of Life Sciences, Hubei Normal University, Huangshi, 435002, China
| | - Rohit Tyagi
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yunxiang Liang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Collaborative Innovation Center for Industrial Fermentation, Wuhan, 430068, China.
| | - Yongmei Hu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
8
|
Chu F, Wang X, Sun Q, Liang H, Wang S, An D, Cui C, Chai Y, Li S, Song S, Ji A. Purification and characterization of a novel fibrinolytic enzyme from Whitmania pigra Whitman. Clin Exp Hypertens 2016; 38:594-601. [PMID: 27668456 DOI: 10.3109/10641963.2016.1174254] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A fibrinolytic enzyme was purified from the dry body of Whitmania pigra Whitman. The fibrinolytic enzyme was purified to homogeneity with a yield of 0.003% and a purification of 630.7 fold. The molecular weight of the enzyme was estimated to be 26.7 kDa by reduced sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The enzyme was tested by matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS) and it showed that the enzyme was a novel fibrinolytic enzyme. The optimal pH and temperature of the enzyme were 8.5 and 55°C, respectively. Enzyme activity was enhanced by Na+, Mg2+, and K+. On the contrary, the proteolytic activity was significantly inhibited by Mn2+, Fe2+, Fe3+, ethylenediaminetetraacetic acid (EDTA), and ethylenebis(oxyethylenenitrilo)tetraacetic acid (EGTA). Fibrinolytic and fibrinogenolytic assays showed that the enzyme preferentially hydrolyzed fibrinogen Aα-chains, followed by Bβ- and γ-chains. The α-, β-, and γ-γ-chains of fibrin were also degraded by the enzyme.
Collapse
Affiliation(s)
- Fulong Chu
- a Marine College, Shandong University , Weihai , China.,b Weihai International Biotechnology Research and Development Center, Shandong University , Weihai , China
| | - Xiaochen Wang
- a Marine College, Shandong University , Weihai , China.,b Weihai International Biotechnology Research and Development Center, Shandong University , Weihai , China
| | - Qianqian Sun
- a Marine College, Shandong University , Weihai , China.,b Weihai International Biotechnology Research and Development Center, Shandong University , Weihai , China
| | - Hao Liang
- a Marine College, Shandong University , Weihai , China.,b Weihai International Biotechnology Research and Development Center, Shandong University , Weihai , China
| | - Sijian Wang
- d Zaozhuang Mining Group Central Hospital , Zaozhuang , China
| | - Dengkun An
- a Marine College, Shandong University , Weihai , China.,b Weihai International Biotechnology Research and Development Center, Shandong University , Weihai , China
| | - Chao Cui
- a Marine College, Shandong University , Weihai , China.,b Weihai International Biotechnology Research and Development Center, Shandong University , Weihai , China
| | - Yuchao Chai
- a Marine College, Shandong University , Weihai , China.,b Weihai International Biotechnology Research and Development Center, Shandong University , Weihai , China
| | - Shuaishuai Li
- a Marine College, Shandong University , Weihai , China.,b Weihai International Biotechnology Research and Development Center, Shandong University , Weihai , China
| | - Shuliang Song
- a Marine College, Shandong University , Weihai , China.,b Weihai International Biotechnology Research and Development Center, Shandong University , Weihai , China
| | - Aiguo Ji
- a Marine College, Shandong University , Weihai , China.,b Weihai International Biotechnology Research and Development Center, Shandong University , Weihai , China.,c School of Pharmaceutical Sciences, Shandong University , Jinan , China
| |
Collapse
|
9
|
Sun Z, Liu P, Cheng G, Zhang B, Dong W, Su X, Huang Y, Cui Z, Kong Y. A fibrinolytic protease AfeE from Streptomyces sp. CC5, with potent thrombolytic activity in a mouse model. Int J Biol Macromol 2015; 85:346-54. [PMID: 26721382 DOI: 10.1016/j.ijbiomac.2015.12.059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 12/16/2015] [Accepted: 12/17/2015] [Indexed: 12/31/2022]
Abstract
Fibrinolytic proteases have potential applications in cardiovascular disease therapy. A novel fibrinolytic protease, AfeE, with strong thrombolytic activity was purified from Streptomyces sp. CC5. AfeE displayed maximum activity at 40°C in the pH range of 7.0-12.0. It was strongly inhibited by serine protease inhibitor phenylmethanesulfonylfluoride, soybean trypsin inhibitor, tosyl-l-lysine chloromethyl ketone and tosyl-l-phenylalanine chloromethyl ketone. The activity of the enzyme was partially inhibited by Cu(2+), Co(2+) and Zn(2+). AfeE exhibited higher substrate specificity for fibrin than fibrinogen, which has rarely been reported in fibrinolytic enzymes. AfeE also showed high thrombolytic activity in a carrageenan-induced mouse tail thrombosis model. AfeE prolonged prothrombin time, activated partial thromboplastin time, and thrombin time in rat blood. A bleeding time assay revealed that AfeE did not prolong bleeding time in mice at a dose of 1mg/kg. No acute cytotoxicity was observed for AfeE at 320μg/well in human umbilical vein endothelial cells. The afeE gene was cloned from the genome of Streptomyces sp. CC5. Full-length AFE-CC5E contained 434 amino acids and was processed into a mature form consisting 284 amino acids by posttranslational modification, as revealed by high-resolution mass spectrometry analysis. These results indicate that AfeE is a prospective candidate for antithrombotic drug development.
Collapse
Affiliation(s)
- Zhibin Sun
- Key Laboratory of Environmental Microbiology of Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Pingping Liu
- Key Laboratory of Environmental Microbiology of Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Guangyan Cheng
- College of Life Sciences and Technology, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Biying Zhang
- Key Laboratory of Environmental Microbiology of Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Weiliang Dong
- Key Laboratory of Environmental Microbiology of Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Xingli Su
- College of Life Sciences and Technology, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Yan Huang
- Key Laboratory of Environmental Microbiology of Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Zhongli Cui
- Key Laboratory of Environmental Microbiology of Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.
| | - Yi Kong
- College of Life Sciences and Technology, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| |
Collapse
|