1
|
da Silva JR, Castro-Amorim J, Mukherjee AK, Ramos MJ, Fernandes PA. The application of snake venom in anticancer drug discovery: an overview of the latest developments. Expert Opin Drug Discov 2025:1-19. [PMID: 40012249 DOI: 10.1080/17460441.2025.2465364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 02/07/2025] [Indexed: 02/28/2025]
Abstract
INTRODUCTION Snake venom is a rich source of toxins with great potential for therapeutic applications. In addition to its efficacy in treating hypertension, acute coronary syndrome, and other heart conditions, research has shown that this potent enzymatic cocktail is capable of selectively targeting and destroying cancer cells in many cases while sparing healthy cells. AREAS COVERED The authors begin by acknowledging the emerging trends in snake-derived targeted therapies in battling cancer. An extensive literature review examining the effects of various snake venom toxins on cancer cell lines, highlighting the specific cancer hallmarks each toxin targets is presented. Furthermore, the authors emphasize the emerging potential of artificial intelligence in accelerating snake venom-based drug discovery for cancer treatment, showcasing several innovative software applications in this field. EXPERT OPINION Research on snake venom toxins indicates promising potential for cancer treatment as many of the discussed toxins can specifically target cancer cells. Nevertheless, variations in the composition of venoms, ethical issues, and delivery barriers limit their development into effective therapies. Thus, advances in biotechnology, molecular engineering, in silico methods are crucial for the refinement of venom-derived compounds, improving their specificity, and overcoming these challenges, ultimately enhancing their therapeutic potential in cancer therapy.
Collapse
Affiliation(s)
- Joana R da Silva
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Juliana Castro-Amorim
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Ashis K Mukherjee
- Vigyan Path Garchuk, Paschim Boragaon institution, Institute of Advanced Study in Science and Technology, Guwahati, India
| | - Maria João Ramos
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Pedro A Fernandes
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| |
Collapse
|
2
|
Guo X, Fu Y, Peng J, Fu Y, Dong S, Ding RB, Qi X, Bao J. Emerging anticancer potential and mechanisms of snake venom toxins: A review. Int J Biol Macromol 2024; 269:131990. [PMID: 38704067 DOI: 10.1016/j.ijbiomac.2024.131990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/13/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
Animal-derived venom, like snake venom, has been proven to be valuable natural resources for the drug development. Previously, snake venom was mainly investigated in its pharmacological activities in regulating coagulation, vasodilation, and cardiovascular function, and several marketed cardiovascular drugs were successfully developed from snake venom. In recent years, snake venom fractions have been demonstrated with anticancer properties of inducing apoptotic and autophagic cell death, restraining proliferation, suppressing angiogenesis, inhibiting cell adhesion and migration, improving immunity, and so on. A number of active anticancer enzymes and peptides have been identified from snake venom toxins, such as L-amino acid oxidases (LAAOs), phospholipase A2 (PLA2), metalloproteinases (MPs), three-finger toxins (3FTxs), serine proteinases (SPs), disintegrins, C-type lectin-like proteins (CTLPs), cell-penetrating peptides, cysteine-rich secretory proteins (CRISPs). In this review, we focus on summarizing these snake venom-derived anticancer components on their anticancer activities and underlying mechanisms. We will also discuss their potential to be developed as anticancer drugs in the future.
Collapse
Affiliation(s)
- Xijun Guo
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Yuanfeng Fu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Junbo Peng
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Ying Fu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Shuai Dong
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Ren-Bo Ding
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Xingzhu Qi
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China.
| | - Jiaolin Bao
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China.
| |
Collapse
|
3
|
Bittenbinder MA, van Thiel J, Cardoso FC, Casewell NR, Gutiérrez JM, Kool J, Vonk FJ. Tissue damaging toxins in snake venoms: mechanisms of action, pathophysiology and treatment strategies. Commun Biol 2024; 7:358. [PMID: 38519650 PMCID: PMC10960010 DOI: 10.1038/s42003-024-06019-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 03/07/2024] [Indexed: 03/25/2024] Open
Abstract
Snakebite envenoming is an important public health issue responsible for mortality and severe morbidity. Where mortality is mainly caused by venom toxins that induce cardiovascular disturbances, neurotoxicity, and acute kidney injury, morbidity is caused by toxins that directly or indirectly destroy cells and degrade the extracellular matrix. These are referred to as 'tissue-damaging toxins' and have previously been classified in various ways, most of which are based on the tissues being affected (e.g., cardiotoxins, myotoxins). This categorisation, however, is primarily phenomenological and not mechanistic. In this review, we propose an alternative way of classifying cytotoxins based on their mechanistic effects rather than using a description that is organ- or tissue-based. The mechanisms of toxin-induced tissue damage and their clinical implications are discussed. This review contributes to our understanding of fundamental biological processes associated with snakebite envenoming, which may pave the way for a knowledge-based search for novel therapeutic options.
Collapse
Affiliation(s)
- Mátyás A Bittenbinder
- Naturalis Biodiversity Center, 2333 CR, Leiden, The Netherlands
- AIMMS, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV, Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1098 XH, Amsterdam, The Netherlands
| | - Jory van Thiel
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, Liverpool, United Kingdom
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
- Howard Hughes Medical Institute and Department of Biology, University of Maryland, College Park, MD, 20742, USA
| | - Fernanda C Cardoso
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
- Centre for Innovations in Peptide and Protein Science, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Nicholas R Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, Liverpool, United Kingdom
| | - José-María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, 11501, Costa Rica.
| | - Jeroen Kool
- AIMMS, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV, Amsterdam, The Netherlands.
- Centre for Analytical Sciences Amsterdam (CASA), 1098 XH, Amsterdam, The Netherlands.
| | - Freek J Vonk
- Naturalis Biodiversity Center, 2333 CR, Leiden, The Netherlands
- AIMMS, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV, Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Almeida JR, Gomes A, Mendes B, Aguiar L, Ferreira M, Brioschi MBC, Duarte D, Nogueira F, Cortes S, Salazar-Valenzuela D, Miguel DC, Teixeira C, Gameiro P, Gomes P. Unlocking the potential of snake venom-based molecules against the malaria, Chagas disease, and leishmaniasis triad. Int J Biol Macromol 2023; 242:124745. [PMID: 37150376 DOI: 10.1016/j.ijbiomac.2023.124745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/30/2023] [Accepted: 05/01/2023] [Indexed: 05/09/2023]
Abstract
Malaria, leishmaniasis and Chagas disease are vector-borne protozoal infections with a disproportionately high impact on the most fragile societies in the world, and despite malaria-focused research gained momentum in the past two decades, both trypanosomiases and leishmaniases remain neglected tropical diseases. Affordable effective drugs remain the mainstay of tackling this burden, but toxicicty, inneficiency against later stage disease, and drug resistance issues are serious shortcomings. One strategy to overcome these hurdles is to get new therapeutics or inspiration in nature. Indeed, snake venoms have been recognized as valuable sources of biomacromolecules, like peptides and proteins, with antiprotozoal activity. This review highlights major snake venom components active against at least one of the three aforementioned diseases, which include phospholipases A2, metalloproteases, L-amino acid oxidases, lectins, and oligopeptides. The relevance of this repertoire of biomacromolecules and the bottlenecks in their clinical translation are discussed considering approaches that should increase the success rate in this arduous task. Overall, this review underlines how venom-derived biomacromolecules could lead to pioneering antiprotozoal treatments and how the drug landscape for neglected diseases may be revolutionized by a closer look at venoms. Further investigations on poorly studied venoms is needed and could add new therapeutics to the pipeline.
Collapse
Affiliation(s)
- José Rafael Almeida
- Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Tena 150150, Ecuador.
| | - Ana Gomes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, P-4169-007 Porto, Portugal.
| | - Bruno Mendes
- Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Tena 150150, Ecuador
| | - Luísa Aguiar
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, P-4169-007 Porto, Portugal
| | - Mariana Ferreira
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, P-4169-007 Porto, Portugal.
| | | | - Denise Duarte
- Departamento de Biologia Animal, Instituto de Biologia, UNICAMP, Campinas, São Paulo 13083-862, Brazil.
| | - Fátima Nogueira
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Rua Junqueira 100, P-1349-008 Lisboa, Portugal.
| | - Sofia Cortes
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Rua Junqueira 100, P-1349-008 Lisboa, Portugal.
| | - David Salazar-Valenzuela
- Centro de Investigación de la Biodiversidad y Cambio Climático (BioCamb) e Ingeniería en Biodiversidad y Recursos Genéticos, Facultad de Ciencias de Medio Ambiente, Universidad Indoamérica, Quito 170103, Ecuador.
| | - Danilo C Miguel
- Centro de Investigación de la Biodiversidad y Cambio Climático (BioCamb) e Ingeniería en Biodiversidad y Recursos Genéticos, Facultad de Ciencias de Medio Ambiente, Universidad Indoamérica, Quito 170103, Ecuador.
| | - Cátia Teixeira
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, P-4169-007 Porto, Portugal
| | - Paula Gameiro
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, P-4169-007 Porto, Portugal.
| | - Paula Gomes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, P-4169-007 Porto, Portugal.
| |
Collapse
|
5
|
Diniz-Sousa R, Silva CCA, Pereira SS, da Silva SL, Fernandes PA, Teixeira LMC, Zuliani JP, Soares AM. Therapeutic applications of snake venoms: An invaluable potential of new drug candidates. Int J Biol Macromol 2023; 238:124357. [PMID: 37028634 DOI: 10.1016/j.ijbiomac.2023.124357] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023]
Abstract
Animal venoms and their chemical compounds have aroused both empirical and scientific attention for ages. However, there has been a significant increase in scientific investigations in recent decades, allowing the production of various formulations that are helping in the development of many important tools for biotechnological, diagnostic, or therapeutic use, both in human and animal health, as well as in plants. Venoms are composed of biomolecules and inorganic compounds that may have physiological and pharmacological activities that are not related to their principal actions (prey immobilization, digestion, and defense). Snake venom toxins, mainly enzymatic and non-enzymatic proteins, and peptides have been identified as potential prototypes for new drugs and/or models for the development of pharmacologically active structural domains for the treatment of cancer, cardiovascular diseases, neurodegenerative and autoimmune diseases, pain, and infectious-parasitic diseases. This minireview aims to provide an overview of the biotechnological potential of animal venoms, with a focus on snakes, and to introduce the reader to the fascinating world of Applied Toxinology, where animal biodiversity can be used to develop therapeutic and diagnostic applications for humans.
Collapse
Affiliation(s)
- Rafaela Diniz-Sousa
- Laboratório de Biotecnologia de Proteínas e Compostos Bioativos Aplicados à Saúde (LABIOPROT), Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia, Porto Velho, Rondônia, Brazil; Centro Universitário São Lucas (UniSL), Porto Velho, Rondônia, Brazil
| | - Cleópatra C A Silva
- Laboratório de Biotecnologia de Proteínas e Compostos Bioativos Aplicados à Saúde (LABIOPROT), Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia, Porto Velho, Rondônia, Brazil; Instituto Nacional de Ciência e Tecnologia de Epidemiologia da Amazônia Ocidental (INCT-EpiAmO), Porto Velho, Rondônia, Brazil
| | - Soraya S Pereira
- Laboratório de Engenharia de Anticorpos, Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia, Porto Velho, Rondônia, Brazil
| | - Saulo L da Silva
- LAQV/Requimte, University of Porto, Rua do Campo Alegre s/n, Porto, Portugal; Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, Porto, Portugal; Faculty of Chemical Sciences, University of Cuenca, Cuenca, Azuay, Ecuador
| | - Pedro A Fernandes
- LAQV/Requimte, University of Porto, Rua do Campo Alegre s/n, Porto, Portugal; Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, Porto, Portugal
| | - Luís M C Teixeira
- LAQV/Requimte, University of Porto, Rua do Campo Alegre s/n, Porto, Portugal; Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, Porto, Portugal
| | - Juliana P Zuliani
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia, Porto Velho, Rondônia, Brazil
| | - Andreimar M Soares
- Laboratório de Biotecnologia de Proteínas e Compostos Bioativos Aplicados à Saúde (LABIOPROT), Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia, Porto Velho, Rondônia, Brazil; Centro Universitário São Lucas (UniSL), Porto Velho, Rondônia, Brazil; Instituto Nacional de Ciência e Tecnologia de Epidemiologia da Amazônia Ocidental (INCT-EpiAmO), Porto Velho, Rondônia, Brazil; Faculdade Católica de Rondônia (FCR), Porto Velho, Rondônia, Brazil.
| |
Collapse
|
6
|
Zhang Z, Zheng P, Qi C, Cui Y, Qi Y, Xue K, Yan G, Liu J. Platycodon grandiflorus Polysaccharides Alleviate Cr(VI)-Induced Apoptosis in DF-1 Cells via ROS-Drp1 Signal Pathway. Life (Basel) 2022; 12:2144. [PMID: 36556509 PMCID: PMC9788446 DOI: 10.3390/life12122144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/20/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Hexavalent chromium (Cr(VI)) is a widespread heavy metal that has been identified as a human carcinogen, and acute or chronic exposure to Cr(VI) can cause organ damage. Platycodon grandiflorus polysaccharide (PGPS) is a constituent extracted from the Chinese herb Platycodon grandiflorus, which has various pharmacological effects. Therefore, the author investigated the role of PGPSt in Cr(VI)-induced apoptosis in chicken embryo fibroblast cell lines (DF-1 cells). Firstly, this study infected DF-1 cells using Cr(VI) to set up a model for cytotoxicity and then added PGPSt. Then, the intracellular reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and apoptosis rate were evaluated. The results showed that PGPSt could inhibit Cr(VI)-induced mitochondrial damage and increase the apoptosis rate. For further exploration of the mechanism of regulation of PGPSt, the ROS-Drp1 pathway was investigated. The antioxidant N-acetyl-L-cysteine (NAC) and mitochondrial division inhibitor 1(Mdivi-1) were added, respectively. The results showed that the NAC and Mdivi-1 restored abnormal mitochondrial fission and cell apoptosis. Thus, PGPSt can alleviate Cr(VI)-induced apoptosis of DF-1 cells through the ROS-Drp1 signaling pathway, which may suggest new research ideas for developing new drugs to alleviate Cr(VI) toxicity.
Collapse
Affiliation(s)
- Zhuanglong Zhang
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
| | - Pimiao Zheng
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai’an 271018, China
| | - Changxi Qi
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
| | - Yuehui Cui
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
| | - Yijian Qi
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai’an 271018, China
| | - Kun Xue
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai’an 271018, China
| | - Guangwei Yan
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai’an 271018, China
| | - Jianzhu Liu
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
| |
Collapse
|
7
|
Rosini E, Pollegioni L. Reactive oxygen species as a double-edged sword: The role of oxidative enzymes in antitumor therapy. Biofactors 2022; 48:384-399. [PMID: 34608689 DOI: 10.1002/biof.1789] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 09/20/2021] [Indexed: 12/18/2022]
Abstract
A number of approaches have been developed over the years to manage cancer, such as chemotherapy using low-molecular-mass molecules and radiotherapy. Here, enzymes can also find useful applications. Among them, oxidases have attracted attention because of their ability to produce reactive oxygen species (ROS, especially hydrogen peroxide) in tumors and potentially modulate the production of this cytotoxic compound when enzymes active on substrates present in low amounts are used, such as the d-amino acid oxidase and d-amino acid couple system. These treatments have been also developed for additional cancer treatment approaches, such as phototherapy, nutrient starvation, and metal-induced hydroxyl radical production. In addition, to improve tumor specificity and decrease undesired side effects, oxidases have been targeted by means of nanotechnologies and protein engineering (i.e., by designing chimeric proteins able to accumulate in the tumor). The most recent advances obtained by using six different oxidases (i.e., the FAD-containing enzymes glucose oxidase, d- and l-amino acid oxidases, cholesterol oxidase and xanthine oxidase, and the copper-containing amine oxidase) have been reported. Anticancer therapy based on oxidase-based ROS production has now reached maturity and can be applied in the clinic.
Collapse
Affiliation(s)
- Elena Rosini
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Loredano Pollegioni
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| |
Collapse
|
8
|
Kasai K, Nakano M, Ohishi M, Nakamura T, Miura T. Antimicrobial properties of L-amino acid oxidase: biochemical features and biomedical applications. Appl Microbiol Biotechnol 2021; 105:4819-4832. [PMID: 34106313 PMCID: PMC8188536 DOI: 10.1007/s00253-021-11381-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/17/2021] [Accepted: 05/28/2021] [Indexed: 12/19/2022]
Abstract
Abstract Mucus layer that covers the body surface of various animal functions as a defense barrier against microbes, environmental xenobiotics, and predators. Previous studies have reported that L-amino acid oxidase (LAAO), present in several animal fluids, has potent properties against pathogenic bacteria, viruses, and parasites. LAAO catalyzes the oxidative deamination of specific L-amino acids with the generation of hydrogen peroxide and L-amino acid metabolites. Further, the generated hydrogen peroxide is involved in oxidation (direct effect) while the metabolites activate immune responses (indirect effect). Therefore, LAAO exhibits two different mechanisms of bioactivation. Previously, we described the selective, specific, and local oxidative and potent antibacterial actions of various LAAOs as potential therapeutic strategies. In this review, we focus on their biochemical features, enzymatic regulations, and biomedical applications with a view of describing their probable role as biochemical agents and biomarkers for microbial infections, cancer, and autoimmune-mediated diseases. We consider that LAAOs hold implications in biomedicine owing to their antimicrobial activity wherein they can be used in treatment of infectious diseases and as diagnostic biomarkers in the above-mentioned diseased conditions. Key points •Focus on biochemical features, enzymatic regulation, and biomedical applications of LAAOs. •Mechanisms of antimicrobial activity, inflammatory regulation, and immune responses of LAAOs. •Potential biomedical application as an antimicrobial and anti-infection agent, and disease biomarker.
Collapse
Affiliation(s)
- Kosuke Kasai
- Department of Biomedical Sciences, Division of Medical Life Sciences, Graduate School of Health Sciences, Hirosaki University, 66-1, Hon-cho, 036-8564, Hirosaki, Aomori, Japan
| | - Manabu Nakano
- Department of Biomedical Sciences, Division of Medical Life Sciences, Graduate School of Health Sciences, Hirosaki University, 66-1, Hon-cho, 036-8564, Hirosaki, Aomori, Japan
| | | | - Toshiya Nakamura
- Department of Biomedical Sciences, Division of Medical Life Sciences, Graduate School of Health Sciences, Hirosaki University, 66-1, Hon-cho, 036-8564, Hirosaki, Aomori, Japan
| | - Tomisato Miura
- Department of Risk Analysis and Biodosimetry, Institute of Radiation Emergency Medicine, Hirosaki University, 66-1, Hon-cho, 036-8564, Hirosaki, Aomori, Japan.
| |
Collapse
|
9
|
Giribaldi J, Smith JJ, Schroeder CI. Recent developments in animal venom peptide nanotherapeutics with improved selectivity for cancer cells. Biotechnol Adv 2021; 50:107769. [PMID: 33989705 DOI: 10.1016/j.biotechadv.2021.107769] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 02/07/2023]
Abstract
Animal venoms are a rich source of bioactive peptides that efficiently modulate key receptors and ion channels involved in cellular excitability to rapidly neutralize their prey or predators. As such, they have been a wellspring of highly useful pharmacological tools for decades. Besides targeting ion channels, some venom peptides exhibit strong cytotoxic activity and preferentially affect cancer over healthy cells. This is unlikely to be driven by an evolutionary impetus, and differences in tumor cells and the tumor microenvironment are probably behind the serendipitous selectivity shown by some venom peptides. However, strategies such as bioconjugation and nanotechnologies are showing potential to improve their selectivity and potency, thereby paving the way to efficiently harness new anticancer mechanisms offered by venom peptides. This review aims to highlight advances in nano- and chemotherapeutic tools and prospective anti-cancer drug leads derived from animal venom peptides.
Collapse
Affiliation(s)
- Julien Giribaldi
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Jennifer J Smith
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Christina I Schroeder
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA.
| |
Collapse
|
10
|
Burin SM, Cacemiro MDC, Cominal JG, Grandis RAD, Machado ART, Donaires FS, Cintra ACO, Ambrosio L, Antunes LMG, Sampaio SV, de Castro FA. Bothrops moojeni L-amino acid oxidase induces apoptosis and epigenetic modulation on Bcr-Abl + cells. J Venom Anim Toxins Incl Trop Dis 2020; 26:e20200123. [PMID: 33354202 PMCID: PMC7737401 DOI: 10.1590/1678-9199-jvatitd-2020-0123] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Background: Resistance to apoptosis in chronic myeloid leukemia (CML) is associated with
constitutive tyrosine kinase activity of the Bcr-Abl oncoprotein. The
deregulated expression of apoptosis-related genes and alteration in
epigenetic machinery may also contribute to apoptosis resistance in CML.
Tyrosine kinase inhibitors target the Bcr-Abl oncoprotein and are used in
CML treatment. The resistance of CML patients to tyrosine kinase inhibitors
has guided the search for new compounds that may induce apoptosis in
Bcr-Abl+ leukemic cells and improve the disease
treatment. Methods: In the present study, we investigated whether the L-amino acid oxidase
isolated from Bothrops moojeni snake venom (BmooLAAO-I) (i)
was cytotoxic to Bcr-Abl+ cell lines (HL-60.Bcr-Abl, K562-S, and
K562-R), HL-60 (acute promyelocytic leukemia) cells, the non-tumor cell line
HEK-293, and peripheral blood mononuclear cells (PBMC); and (ii) affected
epigenetic mechanisms, including DNA methylation and microRNAs expression
in vitro. Results: BmooLAAO-I induced ROS production, apoptosis, and differential DNA
methylation pattern of regulatory apoptosis genes. The toxin upregulated
expression of the pro-apoptotic genes BID and
FADD and downregulated DFFA expression
in leukemic cell lines, as well as increased miR-16 expression - whose major
predicted target is the anti-apoptotic gene BCL2 - in
Bcr-Abl+ cells. Conclusion: BmooLAAO-I exerts selective antitumor action mediated by
H2O2 release and induces apoptosis, and
alterations in epigenetic mechanisms. These results support future
investigations on the effect of BmooLAAO-I on in vivo
models to determine its potential in CML therapy.
Collapse
Affiliation(s)
- Sandra Mara Burin
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Maira da Costa Cacemiro
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Juçara Gastaldi Cominal
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Rone Aparecido De Grandis
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Ana Rita Thomazela Machado
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Flavia Sacilotto Donaires
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Adelia Cristina Oliveira Cintra
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Luciana Ambrosio
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Lusânia Maria Greggi Antunes
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Suely Vilela Sampaio
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Fabíola Attié de Castro
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| |
Collapse
|
11
|
Urra FA, Araya-Maturana R. Putting the brakes on tumorigenesis with snake venom toxins: New molecular insights for cancer drug discovery. Semin Cancer Biol 2020; 80:195-204. [PMID: 32428714 DOI: 10.1016/j.semcancer.2020.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 05/04/2020] [Accepted: 05/11/2020] [Indexed: 01/09/2023]
Abstract
Cancer cells exhibit molecular characteristics that confer them different proliferative capacities and survival advantages to adapt to stress conditions, such as deregulation of cellular bioenergetics, genomic instability, ability to promote angiogenesis, invasion, cell dormancy, immune evasion, and cell death resistance. In addition to these hallmarks of cancer, the current cytostatic drugs target the proliferation of malignant cells, being ineffective in metastatic disease. These aspects highlight the need to identify promising therapeutic targets for new generations of anti-cancer drugs. Toxins isolated from snake venoms are a natural source of useful molecular scaffolds to obtain agents with a selective effect on cancer cells. In this article, we discuss the recent advances in the molecular mechanisms of nine classes of snake toxins that suppress the hallmarks of cancer by induction of oxidative phosphorylation dysfunction, reactive oxygen species-dependent DNA damage, blockage of extracellular matrix-integrin signaling, disruption of cytoskeleton network and inhibition of growth factor-dependent signaling. The possible therapeutic implications of toxin-based anti-cancer drug development are also highlighted.
Collapse
Affiliation(s)
- Félix A Urra
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago 7800003, Chile; Network for Snake Venom Research and Drug Discovery, Santiago 7800003, Chile.
| | - Ramiro Araya-Maturana
- Network for Snake Venom Research and Drug Discovery, Santiago 7800003, Chile; Instituto de Química de Recursos Naturales, Universidad de Talca, Talca 3460000, Chile; Programa de Investigación Asociativa en Cáncer Gástrico, Universidad de Talca, Talca 3460000, Chile.
| |
Collapse
|
12
|
Wiezel GA, Rustiguel JK, Morgenstern D, Zoccal KF, Faccioli LH, Nonato MC, Ueberheide B, Arantes EC. Insights into the structure, function and stability of bordonein-L, the first L-amino acid oxidase from Crotalus durissus terrificus snake venom. Biochimie 2019; 163:33-49. [DOI: 10.1016/j.biochi.2019.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/06/2019] [Indexed: 01/18/2023]
|
13
|
Bezerra PHA, Ferreira IM, Franceschi BT, Bianchini F, Ambrósio L, Cintra ACO, Sampaio SV, de Castro FA, Torqueti MR. BthTX-I from Bothrops jararacussu induces apoptosis in human breast cancer cell lines and decreases cancer stem cell subpopulation. J Venom Anim Toxins Incl Trop Dis 2019; 25:e20190010. [PMID: 31384244 PMCID: PMC6665320 DOI: 10.1590/1678-9199-jvatitd-2019-0010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 06/04/2019] [Indexed: 12/25/2022] Open
Abstract
Background: Breast cancer is the neoplasm with both the highest incidence and mortality
rate among women worldwide. Given the known snake venom cytotoxicity towards
several tumor types, we evaluated the effects of BthTX-I from
Bothrops jararacussu on MCF7, SKBR3, and MDAMB231
breast cancer cell lines. Methods: BthTX-I cytotoxicity was determined via MTT
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazoliumbromide assay. Cell
death was measured by a hypotonic fluorescent solution method,
annexin-V-FITC/propidium iodide staining and by apoptotic/autophagic protein
expression. Cancer stem cells (CSCs) were quantified by flow cytometry using
anti-CD24-FITC and anti-CD44-APC antibodies and propidium iodide. Results: BthTX-I at 102 µg/mL induced cell death in all cell lines. The toxin induced
apoptosis in MCF7, SKBR3, and MDAMB231 in a dose-dependent manner, as
confirmed by the increasing number of hypodiploid nuclei. Expression of
pro-caspase 3, pro-caspase 8 and Beclin-1 proteins were increased, while the
level of the antiapoptotic protein Bcl-2 was diminished in MCF7 cells.
BthTX-I changed the staining pattern of CSCs in MDAMB231 cells by increasing
expression of CD24 receptors, which mediated cell death. Conclusions: BthTX-I induces apoptosis and autophagy in all breast cancer cell lines
tested and also reduces CSCs subpopulation, which makes it a promising
therapeutic alternative for breast cancer.
Collapse
Affiliation(s)
- Patrícia Heloise Alves Bezerra
- Laboratory of Clinical Cytology, Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Isadora Marques Ferreira
- Laboratory of Clinical Cytology, Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Beatriz Tinoco Franceschi
- Laboratory of Clinical Cytology, Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Francine Bianchini
- Laboratory of Clinical Cytology, Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Luciana Ambrósio
- Laboratory of Hematology, Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Adélia Cristina O Cintra
- Laboratory of Toxinology, Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Suely Vilela Sampaio
- Laboratory of Toxinology, Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Fabíola Attié de Castro
- Laboratory of Hematology, Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Maria Regina Torqueti
- Laboratory of Clinical Cytology, Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| |
Collapse
|
14
|
Bedoya-Medina J, Mendivil-Perez M, Rey-Suarez P, Jimenez-Del-Rio M, Núñez V, Velez-Pardo C. L-amino acid oxidase isolated from Micrurus mipartitus snake venom (MipLAAO) specifically induces apoptosis in acute lymphoblastic leukemia cells mostly via oxidative stress-dependent signaling mechanism. Int J Biol Macromol 2019; 134:1052-1062. [PMID: 31129208 DOI: 10.1016/j.ijbiomac.2019.05.174] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/06/2019] [Accepted: 05/14/2019] [Indexed: 12/27/2022]
Abstract
The effect of Micrurus mipartitus snake venom as a therapeutic alternative for T-acute lymphoblastic leukemia (ALL) is still unknown. This study was aimed to evaluate the cytotoxic effect of M. mipartitus snake venom and a new L-amino acid oxidase (LAAO), named MipLAAO, on human peripheral blood lymphocytes (PBL) and on T-ALL cells (Jurkat), and its mechanism of action. PBL and Jurkat cells were treated with venom and MipLAAO, and morphological changes in the cell nucleus/DNA, mitochondrial membrane potential, levels of intracellular reactive oxygen species and cellular apoptosis markers were determined by fluorescence microscopy, flow cytometry and pharmacological inhibition. Venom and MipLAAO induced apoptotic cell death in Jurkat cells, but not in PBL, in a dose-response manner. Additionally, venom and MipLAAO increased dichlorofluorescein fluorescence intensity, indicative of H2O2 production, increased DJ-1 Cys106-sulfonate, as a marker of intracellular stress and induced the up-regulation of PUMA, p53 and phosphorylation of c-JUN. Additionally, it increased the expression of apoptotic CASPASE-3. In conclusion, M. mipartitus venom and MipLAAO selectively induces apoptosis in Jurkat cells through a H2O2-mediated signaling pathway dependent mostly on CASPASE-3 pathway. Our findings support the potential use of M. mipartitus snake venom compounds as a potential treatment for T-ALL.
Collapse
Affiliation(s)
- Jesus Bedoya-Medina
- Programa de Ofidismo y Escorpionismo, Universidad de Antioquia, Medellín, Colombia
| | - Miguel Mendivil-Perez
- Grupo de Neurociencias, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, and Calle 62 # 52-59, bloque 1, laboratorio 412, SIU, Medellín, Colombia
| | - Paola Rey-Suarez
- Programa de Ofidismo y Escorpionismo, Universidad de Antioquia, Medellín, Colombia
| | - Marlene Jimenez-Del-Rio
- Grupo de Neurociencias, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, and Calle 62 # 52-59, bloque 1, laboratorio 412, SIU, Medellín, Colombia
| | - Vitelbina Núñez
- Programa de Ofidismo y Escorpionismo, Universidad de Antioquia, Medellín, Colombia; Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia
| | - Carlos Velez-Pardo
- Grupo de Neurociencias, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, and Calle 62 # 52-59, bloque 1, laboratorio 412, SIU, Medellín, Colombia.
| |
Collapse
|
15
|
Machado A, Aissa A, Ribeiro D, Costa T, Ferreira Jr. R, Sampaio S, Antunes L. Cytotoxic, genotoxic, and oxidative stress-inducing effect of an l-amino acid oxidase isolated from Bothrops jararacussu venom in a co-culture model of HepG2 and HUVEC cells. Int J Biol Macromol 2019; 127:425-432. [DOI: 10.1016/j.ijbiomac.2019.01.059] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 12/18/2018] [Accepted: 01/12/2019] [Indexed: 12/21/2022]
|
16
|
Machado ART, Aissa AF, Ribeiro DL, Ferreira RS, Sampaio SV, Antunes LMG. BjussuLAAO-II induces cytotoxicity and alters DNA methylation of cell-cycle genes in monocultured/co-cultured HepG2 cells. J Venom Anim Toxins Incl Trop Dis 2019; 25:e147618. [PMID: 31131003 PMCID: PMC6527400 DOI: 10.1590/1678-9199-jvatitd-1476-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/22/2018] [Indexed: 12/18/2022] Open
Abstract
Background: The use of animal venoms and their toxins as material sources for
biotechnological applications has received much attention from the
pharmaceutical industry. L-amino acid oxidases from snake venoms (SV-LAAOs)
have demonstrated innumerous biological effects and pharmacological
potential against different cancer types. Hepatocellular carcinoma has
increased worldwide, and the aberrant DNA methylation of liver cells is a
common mechanism to promote hepatic tumorigenesis. Moreover, tumor
microenvironment plays a major role in neoplastic transformation. To
elucidate the molecular mechanisms responsible for the cytotoxic effects of
SV-LAAO in human cancer cells, this study aimed to evaluate the cytotoxicity
and the alterations in DNA methylation profiler in the promoter regions of
cell-cycle genes induced by BjussuLAAO-II, an LAAO from Bothrops
jaracussu venom, in human hepatocellular carcinoma (HepG2)
cells in monoculture and co-culture with endothelial (HUVEC) cells. Methods: BjussuLAAO-II concentrations were 0.25, 0.50, 1.00 and 5.00 μg/mL. Cell
viability was assessed by MTT assay and DNA methylation of the promoter
regions of 22 cell-cycle genes by EpiTect Methyl II PCR array. Results: BjussuLAAO-II decreased the cell viability of HepG2 cells in monoculture at
all concentrations tested. In co-culture, 1.00 and 5.00 μg/mL induced
cytotoxicity (p < 0.05). BjussuLAAO-II increased the
methylation of CCND1 and decreased the methylation of
CDKN1A in monoculture and GADD45A in
both cell-culture models (p < 0.05). Conclusion: Data showed BjussuLAAO-II induced cytotoxicity and altered DNA methylation of
the promoter regions of cell-cycle genes in HepG2 cells in monoculture and
co-culture models. We suggested the analysis of DNA methylation profile of
GADD45A as a potential biomarker of the cell cycle
effects of BjussuLAAO-II in cancer cells. The tumor microenvironment should
be considered to comprise part of biotechnological strategies during the
development of snake-toxin-based novel drugs.
Collapse
Affiliation(s)
- Ana Rita Thomazela Machado
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, SP, Brazil
| | - Alexandre Ferro Aissa
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, SP, Brazil
| | - Diego Luis Ribeiro
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo - USP, Ribeirão Preto, SP, Brazil
| | - Rui Seabra Ferreira
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University - UNESP, Botucatu, SP, Brazil
| | - Suely Vilela Sampaio
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, SP, Brazil
| | - Lusânia Maria Greggi Antunes
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, SP, Brazil
| |
Collapse
|
17
|
Estevão-Costa MI, Sanz-Soler R, Johanningmeier B, Eble JA. Snake venom components in medicine: From the symbolic rod of Asclepius to tangible medical research and application. Int J Biochem Cell Biol 2018; 104:94-113. [PMID: 30261311 DOI: 10.1016/j.biocel.2018.09.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/03/2018] [Accepted: 09/19/2018] [Indexed: 12/21/2022]
Abstract
Both mythologically and logically, snakes have always fascinated man. Snakes have attracted both awe and fear not only because of the elegant movement of their limbless bodies, but also because of the potency of their deadly venoms. Practically, in 2017, the world health organization (WHO) listed snake envenomation as a high priority neglected disease, as snakes inflict up to 2.7 million poisonous bites, around 100.000 casualties, and about three times as many invalidities on man. The venoms of poisonous snakes are a cocktail of potent compounds which specifically and avidly target numerous essential molecules with high efficacy. The individual effects of all venom toxins integrate into lethal dysfunctions of almost any organ system. It is this efficacy and specificity of each venom component, which after analysis of its structure and activity may serve as a potential lead structure for chemical imitation. Such toxin mimetics may help in influencing a specific body function pharmaceutically for the sake of man's health. In this review article, we will give some examples of snake venom components which have spurred the development of novel pharmaceutical compounds. Moreover, we will provide examples where such snake toxin-derived mimetics are in clinical use, trials, or consideration for further pharmaceutical exploitation, especially in the fields of hemostasis, thrombosis, coagulation, and metastasis. Thus, it becomes clear why a snake captured its symbolic place at the Asclepius rod with good reason still nowadays.
Collapse
Affiliation(s)
- Maria-Inacia Estevão-Costa
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149, Münster, Germany
| | - Raquel Sanz-Soler
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149, Münster, Germany
| | - Benjamin Johanningmeier
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149, Münster, Germany
| | - Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149, Münster, Germany.
| |
Collapse
|
18
|
Zainal Abidin SA, Rajadurai P, Chowdhury MEH, Ahmad Rusmili MR, Othman I, Naidu R. Cytotoxic, Antiproliferative and Apoptosis-inducing Activity of L-Amino Acid Oxidase from MalaysianCalloselasma rhodostomaon Human Colon Cancer Cells. Basic Clin Pharmacol Toxicol 2018; 123:577-588. [DOI: 10.1111/bcpt.13060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 06/11/2018] [Indexed: 02/04/2023]
Affiliation(s)
- Syafiq Asnawi Zainal Abidin
- Jeffrey Cheah School of Medicine and Health Sciences; Monash University Malaysia; Bandar Sunway Selangor Darul Ehsan Malaysia
| | - Pathmanathan Rajadurai
- Jeffrey Cheah School of Medicine and Health Sciences; Monash University Malaysia; Bandar Sunway Selangor Darul Ehsan Malaysia
| | - Md. Ezharul Hoque Chowdhury
- Jeffrey Cheah School of Medicine and Health Sciences; Monash University Malaysia; Bandar Sunway Selangor Darul Ehsan Malaysia
| | | | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Sciences; Monash University Malaysia; Bandar Sunway Selangor Darul Ehsan Malaysia
| | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Sciences; Monash University Malaysia; Bandar Sunway Selangor Darul Ehsan Malaysia
| |
Collapse
|
19
|
Costa TR, Amstalden MK, Ribeiro DL, Menaldo DL, Sartim MA, Aissa AF, Antunes LMG, Sampaio SV. CR-LAAO causes genotoxic damage in HepG2 tumor cells by oxidative stress. Toxicology 2018; 404-405:42-48. [PMID: 29738841 DOI: 10.1016/j.tox.2018.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/23/2018] [Accepted: 05/04/2018] [Indexed: 12/28/2022]
Abstract
Snake venom L-amino acid oxidases (SV-LAAOs) are enzymes of great interest in research due to their many biological effects with therapeutic potential. CR-LAAO, an L-amino acid oxidase from Calloselasma rhodostoma snake venom, is a well described SV-LAAO with immunomodulatory, antiparasitic, microbicidal, and antitumor effects. In this study, we evaluated the genotoxic potential of this enzyme in human peripheral blood mononuclear cells (PBMC) and HepG2 tumor cells, as well as its interaction with these cells, its impact on the expression of DNA repair and antioxidant pathway genes, and reactive oxygen species (ROS)-induced intracellular production. Flow cytometry analysis of FITC-labelled CR-LAAO showed higher specificity of interaction with HepG2 cells than PBMC. Moreover, CR-LAAO significantly increased intracellular levels of ROS only in HepG2 tumor cells, as assessed by fluorescence. CR-LAAO also induced genotoxicity in HepG2 cells and PBMC after 4 h of stimulus, with DNA damages persisting in HepG2 cells after 24 h. To investigate the molecular basis underlying the genotoxicity attributed to CR-LAAO, we analyzed the expression profile (mRNA levels) of 44 genes involved in DNA repair and antioxidant pathways in HepG2 cells by RT2 Profiler polymerase chain reaction array. CR-LAAO altered the tumor cell expression of DNA repair genes, with two downregulated (XRCC4 and TOPBP1) and three upregulated (ERCC6, RAD52 and CDKN1) genes. In addition, two genes of the antioxidant pathway were upregulated (GPX3 and MPO), probably in an attempt to protect tumor cells from oxidative damage. In conclusion, our data suggest that CR-LAAO possesses higher binding affinity to HepG2 tumor cells than to PBMC, its genotoxic mechanism is possibly caused by the oxidative stress related to the production of H2O2, and is also capable of modulating genes related to the DNA repair system and antioxidant pathways.
Collapse
Affiliation(s)
- Tássia R Costa
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café s/no, CEP 14040-903, Ribeirão Preto, São Paulo, Brazil.
| | - Martin K Amstalden
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café s/no, CEP 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - Diego L Ribeiro
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes, 3900, CEP 14049-900, Ribeirão Preto, São Paulo, Brazil
| | - Danilo L Menaldo
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café s/no, CEP 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - Marco A Sartim
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café s/no, CEP 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - Alexandre F Aissa
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café s/no, CEP 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - Lusânia M G Antunes
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café s/no, CEP 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - Suely V Sampaio
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café s/no, CEP 14040-903, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
20
|
Burin SM, Menaldo DL, Sampaio SV, Frantz FG, Castro FA. An overview of the immune modulating effects of enzymatic toxins from snake venoms. Int J Biol Macromol 2018; 109:664-671. [DOI: 10.1016/j.ijbiomac.2017.12.101] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 12/15/2017] [Accepted: 12/19/2017] [Indexed: 12/09/2022]
|
21
|
Tan KK, Bay BH, Gopalakrishnakone P. L-amino acid oxidase from snake venom and its anticancer potential. Toxicon 2018; 144:7-13. [DOI: 10.1016/j.toxicon.2018.01.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 01/22/2018] [Accepted: 01/24/2018] [Indexed: 12/13/2022]
|
22
|
The toxin BjussuLAAO-II induces oxidative stress and DNA damage, upregulates the inflammatory cytokine genes TNF and IL6, and downregulates the apoptotic-related genes BAX, BCL2 and RELA in human Caco-2 cells. Int J Biol Macromol 2017; 109:212-219. [PMID: 29222016 DOI: 10.1016/j.ijbiomac.2017.12.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 12/01/2017] [Accepted: 12/04/2017] [Indexed: 12/21/2022]
Abstract
Colorectal carcinoma is one of the most common cancers in adults. As chemotherapy, the first-choice treatment for colorectal carcinoma, is often infeasible due to acquired tumor resistance and several adverse effects, it is important to discover and explore new molecules with better therapeutic action. Snake venom toxins have shown promising results with high cytotoxicity against tumor cells, but their mechanisms of action remain unclear. Here we examined how BjussuLAAO-II, an L-amino acid oxidase isolated from Bothrops jararacussu snake venom, exerts cytotoxicity towards colorectal adenocarcinoma human cells (Caco-2) and human umbilical vein endothelial cell line (HUVEC). A 24-h treatment with BjussuLAAO-II at 0.25 - 5.00 μg/mL diminished cell viability by decreasing (i) mitochondrial activity, assessed by reduction of 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide and resazurin; (ii) the activity of acid phosphatases; and (iii) lysosomal function, assessed by neutral red uptake. BjussuLAAO-II also increased intracellular levels of reactive oxygen species and DNA damage, as assessed by fluorescence and the comet assay, respectively. BjussuLAAO-II altered the expression of cell proliferation-related genes, as determined by RT-qPCR: it elevated the expression of the inflammatory cytokine genes TNF and IL6, and lowered the expression of the apoptotic-related genes BAX, BCL2, and RELA. Therefore, BjussuLAAO-II induces Caco-2 cells death by acting on multiple intracellular targets, providing important data for further studies to assess whether these effects are seen in both tumor and normal cells, with the aim of selecting this drug for possible therapeutic purposes in the future.
Collapse
|
23
|
Tan KK, Ler SG, Gunaratne J, Bay BH, Ponnampalam G. In vitro cytotoxicity of L-amino acid oxidase from the venom of Crotalus mitchellii pyrrhus. Toxicon 2017; 139:20-30. [DOI: 10.1016/j.toxicon.2017.09.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/20/2017] [Accepted: 09/21/2017] [Indexed: 12/21/2022]
|
24
|
A new l -amino acid oxidase from Bothrops jararacussu snake venom: Isolation, partial characterization, and assessment of pro-apoptotic and antiprotozoal activities. Int J Biol Macromol 2017; 103:25-35. [DOI: 10.1016/j.ijbiomac.2017.05.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 05/04/2017] [Accepted: 05/05/2017] [Indexed: 11/22/2022]
|
25
|
Costa TR, Menaldo DL, Zoccal KF, Burin SM, Aissa AF, Castro FAD, Faccioli LH, Greggi Antunes LM, Sampaio SV. CR-LAAO, an L-amino acid oxidase from Calloselasma rhodostoma venom, as a potential tool for developing novel immunotherapeutic strategies against cancer. Sci Rep 2017; 7:42673. [PMID: 28205610 PMCID: PMC5311993 DOI: 10.1038/srep42673] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 01/11/2017] [Indexed: 12/22/2022] Open
Abstract
L-amino acid oxidases from snake venoms have been described to possess various biological functions. In this study, we investigated the inflammatory responses induced in vivo and in vitro by CR-LAAO, an L-amino acid oxidase isolated from Calloselasma rhodostoma venom, and its antitumor potential. CR-LAAO induced acute inflammatory responses in vivo, with recruitment of neutrophils and release of IL-6, IL-1β, LTB4 and PGE2. In vitro, IL-6 and IL-1β production by peritoneal macrophages stimulated with CR-LAAO was dependent of the activation of the Toll-like receptors TLR2 and TLR4. In addition, CR-LAAO promoted apoptosis of HL-60 and HepG2 tumor cells mediated by the release of hydrogen peroxide and activation of immune cells, resulting in oxidative stress and production of IL-6 and IL-1β that triggered a series of events, such as activation of caspase 8, 9 and 3, and the expression of the pro-apoptotic gene BAX. We also observed that CR-LAAO modulated the cell cycle of these tumor cells, promoting delay in the G0/G1 and S phases. Taken together, our results suggest that CR-LAAO could serve as a potential tool for the development of novel immunotherapeutic strategies against cancer, since this toxin promoted apoptosis of tumor cells and also activated immune cells against them.
Collapse
Affiliation(s)
- Tássia R Costa
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, FCFRP-USP, Ribeirão Preto, SP, Brazil
| | - Danilo L Menaldo
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, FCFRP-USP, Ribeirão Preto, SP, Brazil
| | - Karina F Zoccal
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, FCFRP-USP, Ribeirão Preto, SP, Brazil
| | - Sandra M Burin
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, FCFRP-USP, Ribeirão Preto, SP, Brazil
| | - Alexandre F Aissa
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, FCFRP-USP, Ribeirão Preto, SP, Brazil
| | - Fabíola A de Castro
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, FCFRP-USP, Ribeirão Preto, SP, Brazil
| | - Lúcia H Faccioli
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, FCFRP-USP, Ribeirão Preto, SP, Brazil
| | - Lusânia M Greggi Antunes
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, FCFRP-USP, Ribeirão Preto, SP, Brazil
| | - Suely V Sampaio
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, FCFRP-USP, Ribeirão Preto, SP, Brazil
| |
Collapse
|
26
|
Burin SM, Berzoti-Coelho MG, Cominal JG, Ambrosio L, Torqueti MR, Sampaio SV, de Castro FA. The L-amino acid oxidase from Calloselasma rhodostoma snake venom modulates apoptomiRs expression in Bcr-Abl-positive cell lines. Toxicon 2016; 120:9-14. [PMID: 27421670 DOI: 10.1016/j.toxicon.2016.07.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 05/31/2016] [Accepted: 07/10/2016] [Indexed: 12/19/2022]
Abstract
Anti-apoptotic genes and apoptomiRs deregulated expression contribute to apoptosis resistance in chronic myeloid leukemia (CML) Bcr-Abl(+) cells. Here, the L-amino acid oxidase from Calloselasma rhodostoma (CR-LAAO) venom altered the apoptotic machinery regulation by modulating the expression of the miR-145, miR-26a, miR-142-3p, miR-21, miR-130a, and miR-146a, and of the apoptosis-related proteins Bid, Bim, Bcl-2, Ciap-2, c-Flip, and Mcl-1 in Bcr-Abl(+) cells. CR-LAAO is a potential tool to instigate apoptomiRs regulation that contributes to drive CML therapy.
Collapse
Affiliation(s)
- Sandra Mara Burin
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, SP, Brazil.
| | - Maria Gabriela Berzoti-Coelho
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, SP, Brazil.
| | - Juçara Gastaldi Cominal
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, SP, Brazil.
| | - Luciana Ambrosio
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, SP, Brazil.
| | - Maria Regina Torqueti
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, SP, Brazil.
| | - Suely Vilela Sampaio
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, SP, Brazil.
| | - Fabíola Attié de Castro
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, SP, Brazil.
| |
Collapse
|