1
|
Ma Y, Kong Y, Ding H, Guo T, Chen W, Xue J, Dong E, Ma S. Design, Synthesis, and Bioactivity Evaluation of Novel 1-Methyl-2-phenylpyridin-1-ium Derivatives as Broad-Spectrum FtsZ Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:4958-4975. [PMID: 39939152 DOI: 10.1021/acs.jafc.4c07984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2025]
Abstract
To address the threat of bacterial infections in animal husbandry, a novel class of 1-methyl-2-phenylpyridin-1-ium derivatives has been designed and synthesized as broad-spectrum antibacterial agents to counteract increasing multidrug resistance. Biological assays revealed that compounds 4n, 16b, 16c, and 16e exhibited superior inhibition of S. aureus ATCC25923 (MICs = 0.0625-0.5 μg/mL) and A. baumannii ATCC19606 (MICs = 1-4 μg/mL) compared to linezolid and vancomycin. Mechanistic studies revealed that 16e promoted FtsZ polymerization, disrupted proton gradients, and increased the bacterial membrane permeability. Hemolytic toxicity assessments confirmed the favorable biological safety profile of 16e. In vivo studies using a mouse model of bacteremia demonstrated the superior antibacterial efficacy of 16e to linezolid. Molecular dynamics simulations showed that 16e could maintain the FtsZ protein in the T state, which was conducive to FtsZ polymerization. These results provide new therapeutic strategies to deal with the emerging bacterial resistance in animal husbandry.
Collapse
Affiliation(s)
- Yangchun Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine Shandong University, Jinan, Shandong 250012, China
| | - Yue Kong
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine Shandong University, Jinan, Shandong 250012, China
| | - Hang Ding
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine Shandong University, Jinan, Shandong 250012, China
| | - Ting Guo
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine Shandong University, Jinan, Shandong 250012, China
| | - Weijin Chen
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine Shandong University, Jinan, Shandong 250012, China
| | - Jie Xue
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine Shandong University, Jinan, Shandong 250012, China
| | - Enhui Dong
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine Shandong University, Jinan, Shandong 250012, China
| | - Shutao Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
2
|
Kopacz MM, Lorenzoni ASG, Polaquini CR, Regasini LO, Scheffers D. Purification and characterization of FtsZ from the citrus canker pathogen Xanthomonas citri subsp. citri. Microbiologyopen 2019; 8:e00706. [PMID: 30085414 PMCID: PMC6528577 DOI: 10.1002/mbo3.706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/06/2018] [Accepted: 07/06/2018] [Indexed: 12/04/2022] Open
Abstract
Xanthomonas citri subsp. citri (Xac) is the causative agent of citrus canker, a plant disease that significantly impacts citriculture. In earlier work, we showed that alkylated derivatives of gallic acid have antibacterial action against Xac and target both the cell division protein FtsZ and membrane integrity in Bacillus subtilis. Here, we have purified native XacFtsZ and characterized its GTP hydrolysis and polymerization properties. In a surprising manner, inhibition of XacFtsZ activity by alkyl gallates is not as strong as observed earlier with B. subtilis FtsZ. As the alkyl gallates efficiently permeabilize Xac membranes, we propose that this is the primary mode of antibacterial action of these compounds.
Collapse
Affiliation(s)
- Malgorzata M. Kopacz
- Department of Molecular MicrobiologyGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
- Present address:
Department of Chemical EngineeringBiotechnology and Environmental TechnologyUniversity of Southern DenmarkOdense MDenmark
| | - André S. G. Lorenzoni
- Department of Molecular MicrobiologyGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
| | - Carlos R. Polaquini
- Laboratory of Antibiotics and ChemotherapeuticsDepartment of Chemistry and Environmental SciencesInstitute of Biosciences, Humanities and Exact SciencesSão Paulo State University (UNESP)São José do Rio PretoSPBrazil
| | - Luis O. Regasini
- Laboratory of Antibiotics and ChemotherapeuticsDepartment of Chemistry and Environmental SciencesInstitute of Biosciences, Humanities and Exact SciencesSão Paulo State University (UNESP)São José do Rio PretoSPBrazil
| | - Dirk‐Jan Scheffers
- Department of Molecular MicrobiologyGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
| |
Collapse
|
3
|
Hürtgen D, Härtel T, Murray SM, Sourjik V, Schwille P. Functional Modules of Minimal Cell Division for Synthetic Biology. ACTA ACUST UNITED AC 2019; 3:e1800315. [PMID: 32648714 DOI: 10.1002/adbi.201800315] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 03/11/2019] [Indexed: 12/22/2022]
Abstract
Cellular reproduction is one of the fundamental hallmarks of life. Therefore, the development of a minimal division machinery capable of proper genome condensation and organization, mid-cell positioning and segregation in space and time, and the final septation process constitute a fundamental challenge for synthetic biology. It is therefore important to be able to engineer such modules for the production of artificial minimal cells. A bottom-up assembly of molecular machines from bulk biochemicals complemented by in vivo experiments as well as computational modelling helps to approach such key cellular processes. Here, minimal functional modules involved in genome segregation and the division machinery and their spatial organization and positioning are reviewed, setting into perspective the design of a minimal cell. Furthermore, the milestones of recent in vitro reconstitution experiments in the context of cell division are discussed and their role in shedding light on fundamental cellular mechanisms that constitute spatiotemporal order is described. Lastly, current challenges in the field of bottom-up synthetic biology as well as possible future developments toward the development of minimal biomimetic systems are discussed.
Collapse
Affiliation(s)
- Daniel Hürtgen
- Max Planck Institute for Terrestrial Microbiology and LOEWE Center for Synthetic Microbiology (Synmikro), Karl-von-Frisch Straße 16, 35043, Marburg, Germany
| | - Tobias Härtel
- Max Planck Institute for Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Seán M Murray
- Max Planck Institute for Terrestrial Microbiology and LOEWE Center for Synthetic Microbiology (Synmikro), Karl-von-Frisch Straße 16, 35043, Marburg, Germany
| | - Victor Sourjik
- Max Planck Institute for Terrestrial Microbiology and LOEWE Center for Synthetic Microbiology (Synmikro), Karl-von-Frisch Straße 16, 35043, Marburg, Germany
| | - Petra Schwille
- Max Planck Institute for Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| |
Collapse
|