1
|
Dobariya A, Mankad GP, Ramavat H, Singh SP. Efficacy of the Fruit and Vegetable Peels as Substrates for the Growth and Production of α-Amylases in Marine Actinobacteria. Appl Biochem Biotechnol 2023; 195:7603-7623. [PMID: 37067678 DOI: 10.1007/s12010-023-04422-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 04/18/2023]
Abstract
Enzymes from haloalkaliphilic microorganisms have recently focused attention on their potential and suitability in various applications. In this study, the growth and production of extracellular amylases in the marine actinomycetes, using kitchen waste as the raw starch source, have been investigated. Actinobacteria were isolated from the seawater of the Kachhighadi Coast near Dwarika, Gujarat. Seven Actinobacterial isolates of pre-monsoon, monsoon, and post-monsoon seasons belonging to different strains of Nocardiopsis genera were screened and selected for amylase production. The amylase production was initially assessed on the solid media supplemented with the extracts of different fruits and vegetable peels as a substrate by agar plate assay. The strains Kh-2(13), Kh-2(1), and Kh-3(12) produced maximum amylase with potato peel as a substrate, while no significant differences were found with the media containing other peels. Nevertheless, all strains produced amylases at a significant level with other raw substrates as well. For the optimization of the growth and enzyme production, the selected two isolates Kh-2(13) and Kh-3(12) of the monsoon and winter seasons were cultivated in a liquid medium under the submerged fermentation conditions, with potato peel as a substrate. In both organisms, the optimum amylase production was observed in the stationary phase of growth. For amylase production, the effect of different physical and chemical parameters was evaluated. The optimum growth and amylase production was achieved in 2% inoculum size, at pH 8.0, 28℃, and 5% salt concentration. On the basis of the amylase production index (API) (a ratio of the amylase units and cell growth), both isolates produced significant amylase with the only extract of potato peels, without any other supplements. The trends further indicated that while additional complex sources, such as yeast extract and peptone can enhance the cell growth of the actinobacteria, the amylase production remained unaltered. The study projects the significance of waste raw materials for the production of enzymes in extremophilic microorganisms.
Collapse
Affiliation(s)
- Ankita Dobariya
- UGC-CAS Department of Biosciences, Saurashtra University, Rajkot, 360005, India
- M.V.M. Sci and H. Sci. College Rajkot, Rajkot, 360001, India
| | - Gira P Mankad
- M.V.M. Sci and H. Sci. College Rajkot, Rajkot, 360001, India
| | - Hasti Ramavat
- UGC-CAS Department of Biosciences, Saurashtra University, Rajkot, 360005, India
| | - Satya P Singh
- UGC-CAS Department of Biosciences, Saurashtra University, Rajkot, 360005, India.
| |
Collapse
|
2
|
Rathod BG, Pandala S, Poosarla VG. A Novel Halo-Acid-Alkali-Tolerant and Surfactant Stable Amylase Secreted from Halophile Bacillus siamensis F2 and Its Application in Waste Valorization by Bioethanol Production and Food Industry. Appl Biochem Biotechnol 2023; 195:4775-4795. [PMID: 37171761 DOI: 10.1007/s12010-023-04559-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2023] [Indexed: 05/13/2023]
Abstract
The extracellular amylase production level by the moderate halophile Bacillus siamensis F2 was optimized, and the enzyme was biochemically characterized. The culture parameters for NaCl, carbon, nitrogen, pH, and temperature were optimized for high titers of amylase production. Growing B. siamensis F2 cultures in Great Salt Lake-2 medium with additions of (in g/L) NaCl (100), starch (30), yeast extract (2), KNO3 (2), and MgSO4 (1) at pH 8, 30 °C resulted in the maximum amylase production (4.2 U/ml). The amylase was active across a wide range of salinities (0 to 30% NaCl), pH (5.0-10.0), and temperatures (20-70 °C) and showed good stability with surfactants (sodium dodecyl sulfate (SDS) and Triton X-100); hence, it was identified as halo-acid-alkali-tolerant and surfactant stable. Temperature, pH, and salinity were optimal for amylase activity at 50 °C, pH 7, and 5% NaCl, respectively. It also generates amylase by utilizing agricultural wastes like sugarcane bagasse, sweet potato peel, and rice husk. Based on the performance of B. siamensis F2 using agricultural wastes and synthesizing amylase, the current study attempted to produce bioethanol by coculturing with baker's yeast using sugarcane bagasse and sweet potato peel as a substrate, which yielded 47 and 57 g/L of bioethanol, respectively. Besides bioethanol production, amylase secreted by F2 was also employed for juice clarification for better yield and clarity and for softening dough to produce better-quality buns. This novel amylase may have many potential applications in waste valorization, biorefinery sectors, and food industries.
Collapse
Affiliation(s)
- Baliram Gurunath Rathod
- Department of Microbiology and FST (Food Science & Technology), GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, 530045, India
| | - Srinija Pandala
- Department of Microbiology and FST (Food Science & Technology), GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, 530045, India
| | - Venkata Giridhar Poosarla
- Department of Microbiology and FST (Food Science & Technology), GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, 530045, India.
| |
Collapse
|
3
|
Moopantakath J, Imchen M, Anju VT, Busi S, Dyavaiah M, Martínez-Espinosa RM, Kumavath R. Bioactive molecules from haloarchaea: Scope and prospects for industrial and therapeutic applications. Front Microbiol 2023; 14:1113540. [PMID: 37065149 PMCID: PMC10102575 DOI: 10.3389/fmicb.2023.1113540] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/14/2023] [Indexed: 04/03/2023] Open
Abstract
Marine environments and salty inland ecosystems encompass various environmental conditions, such as extremes of temperature, salinity, pH, pressure, altitude, dry conditions, and nutrient scarcity. The extremely halophilic archaea (also called haloarchaea) are a group of microorganisms requiring high salt concentrations (2-6 M NaCl) for optimal growth. Haloarchaea have different metabolic adaptations to withstand these extreme conditions. Among the adaptations, several vesicles, granules, primary and secondary metabolites are produced that are highly significant in biotechnology, such as carotenoids, halocins, enzymes, and granules of polyhydroxyalkanoates (PHAs). Among halophilic enzymes, reductases play a significant role in the textile industry and the degradation of hydrocarbon compounds. Enzymes like dehydrogenases, glycosyl hydrolases, lipases, esterases, and proteases can also be used in several industrial procedures. More recently, several studies stated that carotenoids, gas vacuoles, and liposomes produced by haloarchaea have specific applications in medicine and pharmacy. Additionally, the production of biodegradable and biocompatible polymers by haloarchaea to store carbon makes them potent candidates to be used as cell factories in the industrial production of bioplastics. Furthermore, some haloarchaeal species can synthesize nanoparticles during heavy metal detoxification, thus shedding light on a new approach to producing nanoparticles on a large scale. Recent studies also highlight that exopolysaccharides from haloarchaea can bind the SARS-CoV-2 spike protein. This review explores the potential of haloarchaea in the industry and biotechnology as cellular factories to upscale the production of diverse bioactive compounds.
Collapse
Affiliation(s)
- Jamseel Moopantakath
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kerala, India
| | - Madangchanok Imchen
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - V. T. Anju
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Siddhardha Busi
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Madhu Dyavaiah
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Rosa María Martínez-Espinosa
- Biochemistry, Molecular Biology, Edaphology and Agricultural Chemistry Department, Faculty of Sciences, University of Alicante, Alicante, Spain
- Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Alicante, Spain
| | - Ranjith Kumavath
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kerala, India
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, India
| |
Collapse
|
4
|
Yan H, Wen F, Xiang H, Wen Y, Shang D, Liu A, Niu Y, Xia Q, Wang G. Biochemical characterization and overexpression of an α-amylase (BmAmy) in silkworm, Bombyx mori. INSECT MOLECULAR BIOLOGY 2022; 31:251-259. [PMID: 34923696 DOI: 10.1111/imb.12755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/30/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
Silkworm (Bombyx mori) is the only fully domesticated insect. As an economically important insect, nutrition utilization is important for its productivity. Hence, the present study investigated the expression pattern of BmAmy, an α-amylase, in B. mori. BmAmy protein purification and biochemical characterization were performed, and effects of BmAmy overexpression were assessed. Real-time quantitative reverse transcription polymerase chain reaction indicated that BmAmy transcription was positively correlated with the silkworm's food intate. Moreover, enzymatic activity assay results showed that BmAmy had significant α-amylase activity of about 1 mg/min/mg protein. Furthermore, treatment with mulberry amylase inhibitors MnAI1 and MnAI2 resulted to 89.92% and 93.67% inhibition in BmAmy activity, respectively, and the interaction between BmAmy and MnAI was also confirmed by protein docking analysis. A silkworm line that specifically overexpressed BmAmy in the midgut was generated through piggyBac-based transgenic technology, and compared to those of non-transgenic silkworms, the whole cocoon and cocoon shell weights of these transgenic silkworms increased by 10.13% and 18.32%, respectively, in the female group, and by 5.83% and 6.00%, respectively, in the male group. These results suggested that BmAmy may be a suitable target for breeding better silkworm varieties in the future.
Collapse
Affiliation(s)
- Hao Yan
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China
- Research and Development Center, China Tobacco Yunnan Industrial Co. Ltd., Kunming, China
- Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Feng Wen
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Haiying Xiang
- Research and Development Center, China Tobacco Yunnan Industrial Co. Ltd., Kunming, China
| | - Yuchan Wen
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Deli Shang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Anyang Liu
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Yicheng Niu
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Genhong Wang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| |
Collapse
|
5
|
Solat N, Shafiei M. A novel pH and thermo-tolerant halophilic alpha-amylase from moderate halophile Nesterenkonia sp. strain F: gene analysis, molecular cloning, heterologous expression and biochemical characterization. Arch Microbiol 2021; 203:3641-3655. [PMID: 33993325 DOI: 10.1007/s00203-021-02359-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/27/2021] [Accepted: 05/03/2021] [Indexed: 10/21/2022]
Abstract
A novel pH and thermo-tolerate halophilic alpha-amylase from moderately halophilic bacterium, Nesterenkonia sp.strain F was cloned and expressed in Escherichia coli. 16S rRNA sequence of the strain shared 99.46% similarities with closely related type species. Also, the genome sequence shared ANI values below 92% and dDDH values below 52% with the closely related type species. Consequently, it is proposed that strain F represents a novel species. The AmyF gene was 1390 bp long and encodes an alpha-amylase of 463 amino acid residues with pI of 4.62. The deduced AmyF shared very low sequence similarity (< 24%) with functionally characterized recombinant halophilic alpha-amylases. The recombinant alpha-amylase was successfully purified from Ni-NTA columns with a molecular mass of about 52 KDa on sodium dodecyl sulfate polyacrylamide gel electrophoresis. The enzyme was active over a wide range of temperature (25-75 °C) and pH (4-9) with optimum activity at 45 °C and 7.5, respectively. Also, although it was active over a various concentrations of NaCl and KCl (0-4 M), increasing activity of the enzyme was observed with increasing concentration of these salts. Low concentrations of Ca2+ ion had no activating effect, but high concentrations of the ion (40-200 mM) enhanced activity of AmyF. The enzyme activity was increased by increasing concentrations of Mg2+, Zn2+, Hg2+ and Fe3+. However, it was inhibited only at very high concentrations of these metal ions. Cu2+ did not decrease the amylase activity and the highest activity was observed at 100 mM of the ion. These properties indicate wide potential applications of this recombinant enzyme in starch processing industries. This is the first isolation, cloning and characterization of a gene encoding alpha-amylase from Nesternkonia genus.
Collapse
Affiliation(s)
- Nastaran Solat
- Department of Genetics, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran.,Biotechnology and Bioscience Research Center, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohammad Shafiei
- Department of Genetics, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran. .,Biotechnology and Bioscience Research Center, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| |
Collapse
|
6
|
Gómez-Villegas P, Vigara J, Romero L, Gotor C, Raposo S, Gonçalves B, Léon R. Biochemical Characterization of the Amylase Activity from the New Haloarchaeal Strain Haloarcula sp. HS Isolated in the Odiel Marshlands. BIOLOGY 2021; 10:biology10040337. [PMID: 33923574 PMCID: PMC8073556 DOI: 10.3390/biology10040337] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 12/17/2022]
Abstract
Alpha-amylases are a large family of α,1-4-endo-glycosyl hydrolases distributed in all kingdoms of life. The need for poly-extremotolerant amylases encouraged their search in extreme environments, where archaea become ideal candidates to provide new enzymes that are able to work in the harsh conditions demanded in many industrial applications. In this study, a collection of haloarchaea isolated from Odiel saltern ponds in the southwest of Spain was screened for their amylase activity. The strain that exhibited the highest activity was selected and identified as Haloarcula sp. HS. We demonstrated the existence in both, cellular and extracellular extracts of the new strain, of functional α-amylase activities, which showed to be moderately thermotolerant (optimum around 60 °C), extremely halotolerant (optimum over 25% NaCl), and calcium-dependent. The tryptic digestion followed by HPLC-MS/MS analysis of the partially purified cellular and extracellular extracts allowed to identify the sequence of three alpha-amylases, which despite sharing a low sequence identity, exhibited high three-dimensional structure homology, conserving the typical domains and most of the key consensus residues of α-amylases. Moreover, we proved the potential of the extracellular α-amylase from Haloarcula sp. HS to treat bakery wastes under high salinity conditions.
Collapse
Affiliation(s)
- Patricia Gómez-Villegas
- Laboratory of Biochemistry, Department of Chemistry, Marine International Campus of Excellence (CEIMAR), University of Huelva, Avda. de las Fuerzas Armadas s/n, 21071 Huelva, Spain; (P.G.-V.); (J.V.)
| | - Javier Vigara
- Laboratory of Biochemistry, Department of Chemistry, Marine International Campus of Excellence (CEIMAR), University of Huelva, Avda. de las Fuerzas Armadas s/n, 21071 Huelva, Spain; (P.G.-V.); (J.V.)
| | - Luis Romero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio 49, 41092 Seville, Spain; (L.R.); (C.G.)
| | - Cecilia Gotor
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio 49, 41092 Seville, Spain; (L.R.); (C.G.)
| | - Sara Raposo
- CIMA—Centre for Marine and Environmental Research, FCT, Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal; (S.R.); (B.G.)
| | - Brígida Gonçalves
- CIMA—Centre for Marine and Environmental Research, FCT, Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal; (S.R.); (B.G.)
| | - Rosa Léon
- Laboratory of Biochemistry, Department of Chemistry, Marine International Campus of Excellence (CEIMAR), University of Huelva, Avda. de las Fuerzas Armadas s/n, 21071 Huelva, Spain; (P.G.-V.); (J.V.)
- Correspondence: ; Tel.: +34-959-219-951
| |
Collapse
|
7
|
Kasirajan L, Maupin-Furlow JA. Halophilic archaea and their potential to generate renewable fuels and chemicals. Biotechnol Bioeng 2020; 118:1066-1090. [PMID: 33241850 DOI: 10.1002/bit.27639] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/27/2020] [Accepted: 11/17/2020] [Indexed: 12/16/2022]
Abstract
Lignocellulosic biofuels and chemicals have great potential to reduce our dependence on fossil fuels and mitigate air pollution by cutting down on greenhouse gas emissions. Chemical, thermal, and enzymatic processes are used to release the sugars from the lignocellulosic biomass for conversion to biofuels. These processes often operate at extreme pH conditions, high salt concentrations, and/or high temperature. These harsh treatments add to the cost of the biofuels, as most known biocatalysts do not operate under these conditions. To increase the economic feasibility of biofuel production, microorganisms that thrive in extreme conditions are considered as ideal resources to generate biofuels and value-added products. Halophilic archaea (haloarchaea) are isolated from hypersaline ecosystems with high salt concentrations approaching saturation (1.5-5 M salt concentration) including environments with extremes in pH and/or temperature. The unique traits of haloarchaea and their enzymes that enable them to sustain catalytic activity in these environments make them attractive resources for use in bioconversion processes that must occur across a wide range of industrial conditions. Biocatalysts (enzymes) derived from haloarchaea occupy a unique niche in organic solvent, salt-based, and detergent industries. This review focuses on the use of haloarchaea and their enzymes to develop and improve biofuel production. The review also highlights how haloarchaea produce value-added products, such as antibiotics, carotenoids, and bioplastic precursors, and can do so using feedstocks considered "too salty" for most microbial processes including wastes from the olive-mill, shell fish, and biodiesel industries.
Collapse
Affiliation(s)
- Lakshmi Kasirajan
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA.,Division of Crop Improvement, ICAR Sugarcane Breeding Institute, Coimbatore, India
| | - Julie A Maupin-Furlow
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA.,Genetics Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
8
|
Verma DK, Vasudeva G, Sidhu C, Pinnaka AK, Prasad SE, Thakur KG. Biochemical and Taxonomic Characterization of Novel Haloarchaeal Strains and Purification of the Recombinant Halotolerant α-Amylase Discovered in the Isolate. Front Microbiol 2020; 11:2082. [PMID: 32983058 PMCID: PMC7490331 DOI: 10.3389/fmicb.2020.02082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 08/07/2020] [Indexed: 11/13/2022] Open
Abstract
Haloarchaea are salt-loving archaea and potential source of industrially relevant halotolerant enzymes. In the present study, three reddish-pink, extremely halophilic archaeal strains, namely wsp1 (wsp-water sample Pondicherry), wsp3, and wsp4, were isolated from the Indian Solar saltern. The phylogenetic analysis based on 16S rRNA gene sequences suggests that both wsp3 and wsp4 strains belong to Halogeometricum borinquense while wsp1 is closely related to Haloferax volcanii species. The comparative genomics revealed an open pangenome for both genera investigated here. Whole-genome sequence analysis revealed that these isolates have multiple copies of industrially/biotechnologically important unique genes and enzymes. Among these unique enzymes, for recombinant expression and purification, we selected four putative α-amylases identified in these three isolates. We successfully purified functional halotolerant recombinant Amy2, from wsp1 using pelB signal sequence-based secretion strategy using Escherichia coli as an expression host. This method may prove useful to produce functional haloarchaeal secretory recombinant proteins suitable for commercial or research applications. Biochemical analysis of Amy2 suggests the halotolerant nature of the enzyme having maximum enzymatic activity observed at 1 M NaCl. We also report the isolation and characterization of carotenoids purified from these isolates. This study highlights the presence of several industrially important enzymes in the haloarchaeal strains which may potentially have improved features like stability and salt tolerance suitable for industrial applications.
Collapse
Affiliation(s)
- Dipesh Kumar Verma
- G. N. Ramachandran Protein Centre, Structural Biology Laboratory, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
| | - Gunjan Vasudeva
- MTCC-Microbial Type Culture Collection and Gene Bank, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Chandni Sidhu
- MTCC-Microbial Type Culture Collection and Gene Bank, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Anil K Pinnaka
- MTCC-Microbial Type Culture Collection and Gene Bank, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Senthil E Prasad
- Biochemical Engineering Research and Process Development Centre, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
| | - Krishan Gopal Thakur
- G. N. Ramachandran Protein Centre, Structural Biology Laboratory, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
9
|
Mantiri FR, Rumende RRH, Sudewi S. Identification of α-amylase gene by PCR and activity of thermostable α-amylase from thermophilic Anoxybacillus thermarum isolated from Remboken hot spring in Minahasa, Indonesia. ACTA ACUST UNITED AC 2019. [DOI: 10.1088/1755-1315/217/1/012045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
10
|
Salgaonkar BB, Sawant DT, Harinarayanan S, Bragança JM. Alpha-amylase Production by Extremely Halophilic ArchaeonHalococcusStrain GUVSC8. STARCH-STARKE 2019. [DOI: 10.1002/star.201800018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Bhakti B. Salgaonkar
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani; K K Birla, Goa Campus; NH-17B Zuarinagar 403 726 Goa India
- Department of Microbiology, Goa University; Taleigao Plateau; 403 206 Goa India
| | - Divya T. Sawant
- Department of Microbiology, Goa University; Taleigao Plateau; 403 206 Goa India
| | - Saranya Harinarayanan
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani; K K Birla, Goa Campus; NH-17B Zuarinagar 403 726 Goa India
| | - Judith M. Bragança
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani; K K Birla, Goa Campus; NH-17B Zuarinagar 403 726 Goa India
| |
Collapse
|
11
|
Gómez-Villegas P, Vigara J, León R. Characterization of the Microbial Population Inhabiting a Solar Saltern Pond of the Odiel Marshlands (SW Spain). Mar Drugs 2018; 16:md16090332. [PMID: 30213145 PMCID: PMC6164061 DOI: 10.3390/md16090332] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/28/2018] [Accepted: 09/08/2018] [Indexed: 12/11/2022] Open
Abstract
The solar salterns located in the Odiel marshlands, in southwest Spain, are an excellent example of a hypersaline environment inhabited by microbial populations specialized in thriving under conditions of high salinity, which remains poorly explored. Traditional culture-dependent taxonomic studies have usually under-estimated the biodiversity in saline environments due to the difficulties that many of these species have to grow at laboratory conditions. Here we compare two molecular methods to profile the microbial population present in the Odiel saltern hypersaline water ponds (33% salinity). On the one hand, the construction and characterization of two clone PCR amplified-16S rRNA libraries, and on the other, a high throughput 16S rRNA sequencing approach based on the Illumina MiSeq platform. The results reveal that both methods are comparable for the estimation of major genera, although massive sequencing provides more information about the less abundant ones. The obtained data indicate that Salinibacter ruber is the most abundant genus, followed by the archaea genera, Halorubrum and Haloquadratum. However, more than 100 additional species can be detected by Next Generation Sequencing (NGS). In addition, a preliminary study to test the biotechnological applications of this microbial population, based on its ability to produce and excrete haloenzymes, is shown.
Collapse
Affiliation(s)
- Patricia Gómez-Villegas
- Laboratory of Biochemistry and Molecular Biology, Faculty of Experimental Sciences, Marine International Campus of Excellence (CEIMAR), University of Huelva, 21071 Huelva, Spain.
| | - Javier Vigara
- Laboratory of Biochemistry and Molecular Biology, Faculty of Experimental Sciences, Marine International Campus of Excellence (CEIMAR), University of Huelva, 21071 Huelva, Spain.
| | - Rosa León
- Laboratory of Biochemistry and Molecular Biology, Faculty of Experimental Sciences, Marine International Campus of Excellence (CEIMAR), University of Huelva, 21071 Huelva, Spain.
| |
Collapse
|
12
|
Singh A, Singh AK. Haloarchaea: worth exploring for their biotechnological potential. Biotechnol Lett 2017; 39:1793-1800. [PMID: 28900776 DOI: 10.1007/s10529-017-2434-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 09/07/2017] [Indexed: 12/14/2022]
Abstract
Halophilic archaea are unique microorganisms adapted to survive under high salt conditions and biomolecules produced by them may possess unusual properties. Haloarchaeal metabolites are stable at high salt and temperature conditions that are useful for industrial applications. Proteins and enzymes of this group of archaea are functional under salt concentrations at which bacterial counterparts fail to be active. Such properties makes haloarchaeal enzymes suitable for salt-based applications and their use under dehydrating conditions. For example, bacteriorhodopsin or the purple membrane protein present in halophilic archaea has the most recognizable applications in photoelectric devices, artificial retinas, holograms etc. Haloarchaea are also useful for bioremediation of polluted hypersaline areas. Polyhydroxyalkanoates and exopolysccharides produced by these microorganisms are biodegradable and have the potential to replace commercial non-degradable plastics and polymers. Moreover, halophilic archaea have excellent potential to be used as drug delivery systems and for nanobiotechnology by virtue of their gas vesicles and S-layer glycoproteins. Despite of possible applications of halophilic archaea, laboratory-to-industrial transition of these potential candidates is yet to be established.
Collapse
Affiliation(s)
- Aparna Singh
- Department of Microbiology and Biotechnology Centre, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, Gujarat, India.
| | - Anil K Singh
- Department of Biotechnology, Shree M & N. Virani Science College, Rajkot, 360005, Gujarat, India
| |
Collapse
|
13
|
Marine microbes as a valuable resource for brand new industrial biocatalysts. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2017.06.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|