1
|
Salehi F, Tashakori M, Samary K. Comparison of four rheological models for estimating viscosity and rheological parameters of microwave treated Basil seed gum. Sci Rep 2024; 14:15493. [PMID: 38969808 PMCID: PMC11226627 DOI: 10.1038/s41598-024-66690-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/03/2024] [Indexed: 07/07/2024] Open
Abstract
Dispersion of Basil seed gum has high viscosity and exhibits shear-thinning behavior. This study aimed to analyze the influence of microwave treatment (MT) at various time intervals (0, 1, 2, and 3 min) on the viscosity and rheological behavior of Basil seed gum dispersion (0.5%, w/v). The finding of this study revealed that the apparent viscosity of Basil seed gum dispersion (non-treated dispersion) reduced from 0.330 Pa.s to 0.068 Pa.s as the shear rate (SR) increased from 12.2 s-1 to 171.2 s-1. Additionally, the apparent viscosity of the Basil seed gum dispersion reduced from 0.173 Pa.s to 0.100 Pa.s as the MT time increased from 0 to 3 min (SR = 61 s-1). The rheological properties of gum dispersion were successfully modeled using Power law (PL), Bingham, Herschel-Bulkley (HB), and Casson models, and the PL model was the best one for describing the behavior of Basil seed gum dispersion. The PL model showed an excellent performance with the maximum r-value (mean r-value = 0.942) and the minimum sum of squared error (SSE) values (mean SSE value = 5.265) and root mean square error (RMSE) values (mean RMSE value = 0.624) for all gum dispersion. MT had a considerable effect on the changes in the consistency coefficient (k-value) and flow behavior index (n-value) of Basil seed gum dispersion (p < 0.05). The k-value of Basil seed gum dispersion decreased significantly from 3.149 Pa.sn to 1.153 Pa.sn (p < 0.05) with increasing MT time from 0 to 3 min. The n-value of Basil seed gum dispersion increased significantly from 0.25 to 0.42 (p < 0.05) as the MT time increased. The Bingham plastic viscosity of Basil seed gum dispersion increased significantly from 0.029 Pa.s to 0.039 Pa.s (p < 0.05) while the duration of MT increased. The Casson yield stress of Basil seed gum dispersion notably reduced from 5.010 Pa to 2.165 Pa (p < 0.05) with increasing MT time from 0 to 3 min.
Collapse
Affiliation(s)
- Fakhreddin Salehi
- Department of Food Science and Technology, Faculty of Food Industry, Bu-Ali Sina University, Hamedan, Iran.
| | - Maryam Tashakori
- Department of Food Science and Technology, Faculty of Food Industry, Bu-Ali Sina University, Hamedan, Iran
| | - Kimia Samary
- Department of Food Science and Technology, Faculty of Food Industry, Bu-Ali Sina University, Hamedan, Iran
| |
Collapse
|
2
|
González-Mendoza ME, Martínez-Bustos F, Castaño-Tostado E, Amaya-Llano SL. Effect of Microwave Irradiation on Acid Hydrolysis of Faba Bean Starch: Physicochemical Changes of the Starch Granules. Molecules 2022; 27:molecules27113528. [PMID: 35684467 PMCID: PMC9182591 DOI: 10.3390/molecules27113528] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 11/21/2022] Open
Abstract
Starch is the most abundant carbohydrate in legumes (22–45 g/100 g), with distinctive properties such as high amylose and resistant starch content, longer branch chains of amylopectin, and a C-type pattern arrangement in the granules. The present study concentrated on the investigation of hydrolyzed faba bean starch using acid, assisted by microwave energy, to obtain a possible food-grade coating material. For evaluation, the physicochemical, morphological, pasting, and structural properties were analyzed. Hydrolyzed starches developed by microwave energy in an acid medium had low viscosity, high solubility indexes, diverse amylose contents, resistant starch, and desirable thermal and structural properties to be used as a coating material. The severe conditions (moisture, 40%; pure hydrochloric acid, 4 mL/100 mL; time, 60 s; and power level, 6) of microwave-treated starches resulted in low viscosity values, high amylose content and high solubility, as well as high absorption indexes, and reducing sugars. These hydrolyzed starches have the potential to produce matrices with thermo-protectants to formulate prebiotic/probiotic (symbiotic) combinations and amylose-based inclusion complexes for functional compound delivery. This emergent technology, a dry hydrolysis route, uses much less energy consumption in a shorter reaction time and without effluents to the environment compared to conventional hydrolysis.
Collapse
Affiliation(s)
- Mayra Esthela González-Mendoza
- Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro 76010, Mexico; (M.E.G.-M.); (E.C.-T.)
| | - Fernando Martínez-Bustos
- Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Unidad Querétaro, Libramiento Norponiente 2000, Real de Juriquilla, Querétaro 76230, Mexico;
| | - Eduardo Castaño-Tostado
- Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro 76010, Mexico; (M.E.G.-M.); (E.C.-T.)
| | - Silvia Lorena Amaya-Llano
- Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro 76010, Mexico; (M.E.G.-M.); (E.C.-T.)
- Correspondence:
| |
Collapse
|
3
|
Tian X, Wang Z, Wang X, Ma S, Sun B, Wang F. Mechanochemical effects on the structural properties of wheat starch during vibration ball milling of wheat endosperm. Int J Biol Macromol 2022; 206:306-312. [PMID: 35240210 DOI: 10.1016/j.ijbiomac.2022.02.160] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 11/16/2022]
Abstract
Pure wheat endosperm was fully ground in a vibratory ball mill and structural changes in wheat starch were measured to assess the effect of mechanochemical action during the grinding process. Vibratory ball milling changed the endosperm granule size to ~30 μm (D50). There was a significant increase in damaged starch content, and this was positively correlated with the grinding time. The relative crystallinity of starch decreased by 5% after milling 105 min, and the short-range order decreased. The damaged structure of amylopectin starch decreased with milling time, as detected macroscopically by the peak viscosity and final viscosity of milling samples. Overall, the in vitro digestion results showed that mechanical modification caused irregular defects inside wheat starch crystals, increased the sensitivity of wheat starch to enzymes, enhanced the hydrolysis rate three-fold, and increased the maximum starch hydrolysis by 50%. Mechanochemistry effects was used to analyze the quality changes in wheat milling.
Collapse
Affiliation(s)
- Xiaoling Tian
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Zhen Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xiaoxi Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Sen Ma
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Binghua Sun
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Fengcheng Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
4
|
The confrontation of consumer beliefs about the impact of microwave-processing on food and human health with existing research. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.11.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
5
|
Liu Y, Zhang S, Chen S, Zhu J, Li L. Controlling plasticizer migration based on crystal structure and micromorphology in propionylated starch-based food packaging nanocomposites. Carbohydr Polym 2021; 273:118621. [PMID: 34561016 DOI: 10.1016/j.carbpol.2021.118621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 10/20/2022]
Abstract
Migration of additives is an important issue for proper application in food packaging. In this work, propionylated waxy and normal starch-based nanocomposites (PW-N and PN-N) with two different amylopectin content were immersed in distilled water, and structural changes and migration mechanism of plasticizer (triacetin) were discussed in detail. Results showed that when immersion time was prolonged to 150 h, small crystals of PN-N disappeared, and amorphous structures formed gradually in PW-N and PN-N. Exfoliated structures still remained in PW-N with prolonged immersion time, while exfoliated structures gradually formed from intercalated ones in PN-N, and the peak representing d001 (d-spacing) at q = 1.70 nm-1 faded. The migration mechanism of triacetin obeyed the first-order kinetic model and Fick's law; furthermore, in comparison with PW-N, PN-N showed a larger diffusion coefficient (D2 = 12.13 μm2·h-1). These results contributed to expanding the application of starch-based nanocomposites in future environmentally friendly food packaging.
Collapse
Affiliation(s)
- Yujia Liu
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Shuyan Zhang
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Siqian Chen
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Jie Zhu
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China.
| | - Lin Li
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China.
| |
Collapse
|
6
|
Zhang S, Zhu J, Lv R, Wu J, Liu Y, Li L, Chen S. Mathematical modelling of plasticizer migration and accompanying structural changes within starch ester nanocomposites. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Zhou X, Wang S, Zhou Y. Study on the structure and digestibility of high amylose Tartary buckwheat (Fagopyrum tataricum Gaertn.) starch-flavonoid prepared by different methods. J Food Sci 2021; 86:1463-1474. [PMID: 33818774 DOI: 10.1111/1750-3841.15657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/19/2021] [Accepted: 01/25/2021] [Indexed: 11/29/2022]
Abstract
Tartary buckwheat (Fagopyrum tataricum Gaertn.) is the only food rich in flavonoid bioactive substances in grains. Studies have shown that flavonoids interaction with amylose has an important impact on the physical and chemical properties and structure of starch. In this study, Tartary buckwheat was used as a raw material. It was then threshed with pullulanase, and a high amylose Tartary buckwheat starch flavonoid complex (HBS/BF) was prepared by physical mixing (PM), water bath treatment (WT), acid-base precipitation (AP), microwave treatment (MT), and ultrasonic treatment (UT); the physical and chemical properties were then evaluated. The results show that HBS/BF-UT and HBS/BF-MT have a higher iodine binding rate than HBS/BF-PM; X-ray diffraction results show that HBS/BF-AP has a V-type crystal form, but the relative crystallinity was reduced. Fourier infrared spectroscopy showed that there is no new covalent bond between Tartary buckwheat starch and flavonoids. In vitro digestion showed that adding flavonoid significantly increased the digestibility of Tartary buckwheat starch. PRACTICAL APPLICATION: These results will provide a theoretical basis for further starch anti-digestion mechanisms and the preparation of resistant starch. These steps will provide insights into the application of Tartary buckwheat starch and flavonoids in the food industry.
Collapse
Affiliation(s)
- Xiaoli Zhou
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Shichou Wang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Yiming Zhou
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| |
Collapse
|
8
|
Oyeyinka SA, Akinware RO, Bankole AT, Njobeh PB, Kayitesi E. Influence of microwave heating and time on functional, pasting and thermal properties of cassava starch. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.14621] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Samson A. Oyeyinka
- Department of Biotechnology and Food Technology Faculty of Science University of Johannesburg Doornfontein Campus Johannesburg 17011 South Africa
- School of Agriculture and Food Technology University of South Pacific Apia Samoa
| | - Ruth O. Akinware
- Department of Home Economics and Food Science Faculty of Agriculture University of Ilorin P.M.B. 1515 Nigeria
| | - Aishat T. Bankole
- Department of Home Economics and Food Science Faculty of Agriculture University of Ilorin P.M.B. 1515 Nigeria
| | - Patrick B. Njobeh
- Department of Biotechnology and Food Technology Faculty of Science University of Johannesburg Doornfontein Campus Johannesburg 17011 South Africa
| | - Eugénie Kayitesi
- Department of Consumer and Food Sciences University of Pretoria Private Bag X20, Hatfield Pretoria 0028 South Africa
| |
Collapse
|
9
|
Liu F, Chang W, Chen M, Xu F, Ma J, Zhong F. Tailoring physicochemical properties of chitosan films and their protective effects on meat by varying drying temperature. Carbohydr Polym 2019; 212:150-159. [DOI: 10.1016/j.carbpol.2019.02.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/01/2019] [Accepted: 02/06/2019] [Indexed: 12/24/2022]
|
10
|
Oyeyinka SA, Umaru E, Olatunde SJ, Joseph JK. Effect of short microwave heating time on physicochemical and functional properties of Bambara groundnut starch. FOOD BIOSCI 2019. [DOI: 10.1016/j.fbio.2019.01.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Riyajan SA. Novel polymer from a cassava starch/carboxylated styrene-butadiene blend containing potassium persulfate: design and properties. Polym Bull (Berl) 2018. [DOI: 10.1007/s00289-018-2273-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Hierarchical structure and thermal behavior of hydrophobic starch-based films with different amylose contents. Carbohydr Polym 2018; 181:528-535. [DOI: 10.1016/j.carbpol.2017.12.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 11/19/2017] [Accepted: 12/05/2017] [Indexed: 11/18/2022]
|
13
|
Yang Q, Qi L, Luo Z, Kong X, Xiao Z, Wang P, Peng X. Effect of microwave irradiation on internal molecular structure and physical properties of waxy maize starch. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2017.03.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Cai H, Ji S, Zhang J, Tao G, Peng C, Hou R, Zhang L, Sun Y, Wan X. Migration kinetics of four photo-initiators from paper food packaging to solid food simulants. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2017; 34:1632-1642. [DOI: 10.1080/19440049.2017.1331470] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Huimei Cai
- School of Tea & Food Science and Technology, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Shuilin Ji
- School of Tea & Food Science and Technology, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Juzhou Zhang
- National Agricultural and sideline products processing food quality supervision and inspection center, Auhui Institute for Food and Drug Control, Hefei, China
| | - Gushuai Tao
- School of Tea & Food Science and Technology, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Chuanyi Peng
- School of Tea & Food Science and Technology, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Ruyan Hou
- School of Tea & Food Science and Technology, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Liang Zhang
- School of Tea & Food Science and Technology, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Yue Sun
- School of Tea & Food Science and Technology, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Xiaochun Wan
- School of Tea & Food Science and Technology, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| |
Collapse
|