1
|
Li Q, Yang Y, Li Y, Mi Y, Ma X, Jiang A, Guo Z. Enhanced biological activities of coumarin-functionalized polysaccharide derivatives: Chemical modification and activity assessment. Int J Biol Macromol 2023; 253:126691. [PMID: 37673148 DOI: 10.1016/j.ijbiomac.2023.126691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 08/11/2023] [Accepted: 09/02/2023] [Indexed: 09/08/2023]
Abstract
Natural polysaccharides are abundant and renewable resource, but their applications are hampered by limited biological activity. Chemical modification can overcome these drawbacks by altering their structure. Three series of polysaccharide derivatives with coumarins were synthesized to obtain polysaccharide derivatives with enhanced biological activity. The biological activities were tested, including antioxidant property, antifungal property, and antibacterial property. Based on the results, the inhibitory properties of the coumarin-polysaccharide derivatives were significantly improved over the raw polysaccharide. The IC50 of the inhibition of DPPH, ABTS•+, and superoxide (O2•-) radical-scavenging was 0.06-0.15 mg/mL, 2.3-15.9 μg/mL, and 0.03-0.25 mg/mL, respectively. Compared with the raw polysaccharides, coumarin- polysaccharide derivatives exhibited higher efficacy in inhibiting the growth of tested phytopathogens, showing inhibitory indices of 60.0-93.6 % at 1.0 mg/mL. Chitosan derivatives with methyl and chlorine (Compound 10B and 10C) exhibited significant antibacterial activity against S. aureus (MIC = 31.2 μg/mL), E. coli (MIC = 7.8 μg/mL), and V. harveyi (MIC = 15.6 μg/mL), respectively. The results of the cytotoxicity assay showed no observed cytotoxicity when the RAW 264.7 cells were incubated with the synthesized polysaccharide derivatives at the tested concentrations.
Collapse
Affiliation(s)
- Qing Li
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Yunhui Yang
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; College of Life Sciences, Yantai University, Yantai 264003, China
| | - Yijian Li
- College of Chemisry and Chemical Engineering, China University of Petroleum, Qingdao 266580, China
| | - Yingqi Mi
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Shandong Saline-Alkali Land Modern Agriculture Company, Dongying 257300, China
| | - Xuanxuan Ma
- School of Resources and Environmental Engineering, Ludong University, Yantai 264025, China
| | - Aili Jiang
- College of Life Sciences, Yantai University, Yantai 264003, China
| | - Zhanyong Guo
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| |
Collapse
|
2
|
Song J, Lv J, Jin J, Jin Z, Li T, Wu J. Research Advances on the Bioactivity of 1,2,3-Triazolium Salts. Int J Mol Sci 2023; 24:10694. [PMID: 37445872 DOI: 10.3390/ijms241310694] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/21/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
1,2,3-Triazolium salts have demonstrated significant potential in the fields of medicine and agriculture, exhibiting exceptional antibacterial, antifungal, anticancer, and antileishmanial properties. Moreover, these salts can be utilized as additives or components to produce nano- and fiber-based materials with antibacterial properties. In this review, we summarize several synthetic strategies to obtain 1,2,3-triazolium salts and the structures of 1,2,3-triazolium derivatives with biological activities in the domains of pharmaceuticals, pesticides, and functional materials. Additionally, the structure-activity relationship (SAR) of 1,2,3-triazolium salts with different biological activities has been analyzed. Finally, this review presents the potential applications and prospects of 1,2,3-triazolium salts in the fields of agriculture, medicine, and industrial synthesis.
Collapse
Affiliation(s)
- Jia Song
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Jie Lv
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Jiamiao Jin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Zhichao Jin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Tingting Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Jian Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China
| |
Collapse
|
3
|
Singh P, Shukla P, Narula AK, Deswal D. Polysaccharides and lipoproteins as reactants for the synthesis of pharmaceutically important scaffolds: A review. Int J Biol Macromol 2023; 242:124884. [PMID: 37207747 DOI: 10.1016/j.ijbiomac.2023.124884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/17/2023] [Accepted: 05/12/2023] [Indexed: 05/21/2023]
Abstract
The growing number of diseases in the past decade has once again highlighted the need for extensive research on the development of novel drugs. There has been a major expansion in the number of people suffering from malignant diseases and types of life-threatening microbial infections. The high mortality rates caused by such infections, their associated toxicity, and a growing number of microbes with acquired resistance necessitate the need to further explore and develop the synthesis of pharmaceutically important scaffolds. Chemical entities derived from biological macromolecules like carbohydrates and lipids have been explored and observed to be effective agents in the treatment of microbial infections and diseases. These biological macromolecules offer a variety of chemical properties that have been exploited for the synthesis of pharmaceutically relevant scaffolds. All biological macromolecules are long chains of similar atomic groups which are connected by covalent bonds. By altering the attached groups, the physical and chemical properties can be altered and molded as per the clinical applications and needs, this ring them potential candidates for drug synthesis. The present review establishes the role and significance of biological macromolecules by articulating various reactions and pathways reported in the literature.
Collapse
Affiliation(s)
- Parinita Singh
- Centre of Excellence in Pharmaceutical Sciences (CEPS), Guru Gobind Singh Indraprastha University (GGSIPU), New Delhi, India
| | - Pratibha Shukla
- Centre of Excellence in Pharmaceutical Sciences (CEPS), Guru Gobind Singh Indraprastha University (GGSIPU), New Delhi, India
| | - A K Narula
- Centre of Excellence in Pharmaceutical Sciences (CEPS), Guru Gobind Singh Indraprastha University (GGSIPU), New Delhi, India
| | - Deepa Deswal
- Centre of Excellence in Pharmaceutical Sciences (CEPS), Guru Gobind Singh Indraprastha University (GGSIPU), New Delhi, India.
| |
Collapse
|
4
|
Zhang J, Han Y, Ben Z, Han T, Yin P. Effect of branched polyethyleneimine and citric acid on the structural, physical and antibacterial properties of corn starch/chitosan films. Int J Biol Macromol 2023; 231:123186. [PMID: 36627034 DOI: 10.1016/j.ijbiomac.2023.123186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
To improve the antibacterial and physical properties of corn starch/chitosan films effectively, starch/chitosan/polyethyleneimine (PEI) blend films crosslinked by citric acid (labeled SCPC) with different contents (2.5 %, 5.0 %, 7.5 % and 10.0 %) were prepared by the solution casting method. The films were characterized in detail. The results showed that the addition of 3.75 % PEI improved the tensile strength and elongation at break of the starch/chitosan film simultaneously, but the thermal stability decreased. After CA was incorporated, the tensile strength and thermal stability of the films were enhanced significantly. FTIR, XRD, and 1H NMR analyses revealed strong interactions among CA, PEI and starch-chitosan. All films showed smooth and homogenous fragile cross-sections. The water vapor permeability of the film decreased overall after PEI and CA addition. Moisture uptake (MU) accelerated after PEI addition, but the balanced MU was reduced by CA cross-linking. All films showed an inhibitory effect on E. coli and S. aureus, and CA incorporation significantly improved the inhibition ability of the film. The SCPC film with 3.75 % PEI and 5.0 % CA addition has the best comprehensive properties, which endowed its application in the bioactive packaging field.
Collapse
Affiliation(s)
- Jiameng Zhang
- College of Science, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yaling Han
- College of Science, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Zhongjie Ben
- College of Science, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Tianjie Han
- College of Science, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Peng Yin
- College of Science, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| |
Collapse
|
5
|
Mukherjee S, Jana S, Khawas S, Kicuntod J, Marschall M, Ray B, Ray S. Synthesis, molecular features and biological activities of modified plant polysaccharides. Carbohydr Polym 2022; 289:119299. [DOI: 10.1016/j.carbpol.2022.119299] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 12/17/2022]
|
6
|
Xiao H, Yang F, Lin Q, Zhang L, Sun S, Zhou W, Liu GQ. Preparation of fluorescent nanoparticles based on broken-rice starch for live-cell imaging. Int J Biol Macromol 2022; 217:88-95. [PMID: 35817234 DOI: 10.1016/j.ijbiomac.2022.06.205] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 01/21/2023]
Abstract
Native broken-rice starch was used to create starch nanoparticles (StNPs) with particle sizes ranging from 100 nm to 800 nm. The fluorescent isothiocyanate poly-l-lysine StNPs (FITC-PLL-StNPs) were created in two steps. First, the StNPs were electrostatically modified by poly-l-lysine (PLL) molecules rich in amino acids. Second, fluorescein isothiocyanate reacted with some amino groups on PLL molecules (FITC). Fluorescence spectrophotometry was used to determine the degree of substitution (DS) and fluorescent properties of fluorescent starches. The study found that FITC-PLL-StNP-200 has higher fluorescence stability, more phagocytic cells, and a better and clearer fluorescence detecting effect than FITC-PLL-St, FITC-PLL-StNP-100, FITC-PLL-StNP-400, and FITC-PLL-StNP-800. The biological evaluation results showed that FITC-PLL-StNP-200 did not affect the viability of HeLa cells at the lysosome labeling concentration. These findings suggest that FITC-PLL-StNP-200 has strong and stable fluorescence, indicating that FITC-PLL-StNP-200 can be used as a fluorescent probe and lysosome marker in a variety of applications, particularly in biomedicine.
Collapse
Affiliation(s)
- Huaxi Xiao
- National Engineering Research Center of Rice and Byproduct Deep Processing, Central South University of Forestry & Technology, Changsha 410004, China; Hunan Provincial Key Laboratory of Forestry Biotechnology, International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry & Technology, Changsha 410004, China; Hunan Provincial Key Laboratory of Food Safety Monitoring and Early Warning, Changsha 410111, China
| | - Fan Yang
- National Engineering Research Center of Rice and Byproduct Deep Processing, Central South University of Forestry & Technology, Changsha 410004, China; Shanxi Technology and Business College, Taiyuan 030006, China
| | - Qinlu Lin
- National Engineering Research Center of Rice and Byproduct Deep Processing, Central South University of Forestry & Technology, Changsha 410004, China.
| | - Lin Zhang
- National Engineering Research Center of Rice and Byproduct Deep Processing, Central South University of Forestry & Technology, Changsha 410004, China
| | - Shuguo Sun
- National Engineering Research Center of Rice and Byproduct Deep Processing, Central South University of Forestry & Technology, Changsha 410004, China
| | - Wenhua Zhou
- National Engineering Research Center of Rice and Byproduct Deep Processing, Central South University of Forestry & Technology, Changsha 410004, China
| | - Gao-Qiang Liu
- National Engineering Research Center of Rice and Byproduct Deep Processing, Central South University of Forestry & Technology, Changsha 410004, China; Hunan Provincial Key Laboratory of Forestry Biotechnology, International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry & Technology, Changsha 410004, China.
| |
Collapse
|
7
|
Salama A, Saleh AK. Enhancement of antimicrobial response against human pathogens by a novel cationic starch derivative. STARCH-STARKE 2022. [DOI: 10.1002/star.202100286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ahmed Salama
- Cellulose and Paper Department National Research Centre 33 El‐Bohouth st. Dokki 12622 Egypt
| | - Ahmed K. Saleh
- Cellulose and Paper Department National Research Centre 33 El‐Bohouth st. Dokki 12622 Egypt
| |
Collapse
|
8
|
A Recent Overview of 1,2,3-Triazole-Containing Hybrids as Novel Antifungal Agents: Focusing on Synthesis, Mechanism of Action, and Structure-Activity Relationship (SAR). J CHEM-NY 2022. [DOI: 10.1155/2022/7884316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A pharmacophore system has been found as 1,2,3-triazole, a five-membered heterocycle ring with nitrogen heteroatoms. These heterocyclic compounds can be produced using azide-alkyne cycloaddition processes catalyzed by ruthenium or copper. The bioactive compounds demonstrated antitubercular, antibacterial, anti-inflammatory, anticancer, antioxidant, antiviral, and antidiabetic properties. This heterocycle molecule, in particular, with one or more 1,2,3-triazole cores has been found to have the most powerful antifungal effects. The goal of this review is to highlight recent developments in the synthesis and structure-activity relationship (SAR) investigation of this prospective fungicidal chemical. Also there have been explained drugs and mechanism of action of a triazole compound with antifungal activity. This review will be useful in a variety of fields, including medicinal chemistry, organic chemistry, mycology, and pharmacology.
Collapse
|
9
|
Wei L, Sui H, Zhang J, Guo Z. Synthesis and antioxidant activity of the inulin derivative bearing 1,2,3-triazole and diphenyl phosphate. Int J Biol Macromol 2021; 186:47-53. [PMID: 34186123 DOI: 10.1016/j.ijbiomac.2021.06.148] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/01/2021] [Accepted: 06/22/2021] [Indexed: 10/21/2022]
Abstract
In this paper, the inulin derivative (3) bearing 1,2,3-triazole and diphenyl phosphate was successfully synthesized by CuAAC Click chemistry. Detailed structural characterization was determined using FTIR spectroscopy, 1H NMR spectroscopy, 13C NMR spectroscopy, and elemental analysis. The antioxidant activities against hydroxyl radicals, superoxide radicals, and DPPH radicals were estimated in vitro respectively. The results showed that the antioxidant activity of the inulin derivative (3) was significantly enhanced compared with inulin. The inulin derivative (3) exhibited stronger radical scavenging abilities, especially against hydroxyl radicals and superoxide radicals. The scavenging values of the inulin derivative (3) were 98.2% and 95.4% at 1.6 mg/mL against hydroxyl radicals and superoxide radicals respectively. Besides, the scavenging value of the inulin derivative (3) increased by about 40% to scavenge DPPH radicals at 1.6 mg/mL than inulin. The results showed that the inulin derivative (3) bearing 1,2,3-triazole and diphenyl phosphate exhibited tremendously enhanced antioxidant activity compared with inulin. The synthetic strategy might provide an effective way to prepare novel inulin antioxidant biomaterials.
Collapse
Affiliation(s)
- Lijie Wei
- Weifang Inspection and Testing Center, Weifang Administration for Market Regulation, Weifang, Shandong 261000, China; Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haishan Sui
- Weifang Inspection and Testing Center, Weifang Administration for Market Regulation, Weifang, Shandong 261000, China
| | - Jingjing Zhang
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhanyong Guo
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
| |
Collapse
|
10
|
Agrahari AK, Bose P, Jaiswal MK, Rajkhowa S, Singh AS, Hotha S, Mishra N, Tiwari VK. Cu(I)-Catalyzed Click Chemistry in Glycoscience and Their Diverse Applications. Chem Rev 2021; 121:7638-7956. [PMID: 34165284 DOI: 10.1021/acs.chemrev.0c00920] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Copper(I)-catalyzed 1,3-dipolar cycloaddition between organic azides and terminal alkynes, commonly known as CuAAC or click chemistry, has been identified as one of the most successful, versatile, reliable, and modular strategies for the rapid and regioselective construction of 1,4-disubstituted 1,2,3-triazoles as diversely functionalized molecules. Carbohydrates, an integral part of living cells, have several fascinating features, including their structural diversity, biocompatibility, bioavailability, hydrophilicity, and superior ADME properties with minimal toxicity, which support increased demand to explore them as versatile scaffolds for easy access to diverse glycohybrids and well-defined glycoconjugates for complete chemical, biochemical, and pharmacological investigations. This review highlights the successful development of CuAAC or click chemistry in emerging areas of glycoscience, including the synthesis of triazole appended carbohydrate-containing molecular architectures (mainly glycohybrids, glycoconjugates, glycopolymers, glycopeptides, glycoproteins, glycolipids, glycoclusters, and glycodendrimers through regioselective triazole forming modular and bio-orthogonal coupling protocols). It discusses the widespread applications of these glycoproducts as enzyme inhibitors in drug discovery and development, sensing, gelation, chelation, glycosylation, and catalysis. This review also covers the impact of click chemistry and provides future perspectives on its role in various emerging disciplines of science and technology.
Collapse
Affiliation(s)
- Anand K Agrahari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Priyanka Bose
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Manoj K Jaiswal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Sanchayita Rajkhowa
- Department of Chemistry, Jorhat Institute of Science and Technology (JIST), Jorhat, Assam 785010, India
| | - Anoop S Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Srinivas Hotha
- Department of Chemistry, Indian Institute of Science and Engineering Research (IISER), Pune, Maharashtra 411021, India
| | - Nidhi Mishra
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Vinod K Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
11
|
Hoyer C, Schwerk P, Suntrup L, Beerhues J, Nössler M, Albold U, Dernedde J, Tedin K, Sarkar B. Synthesis, Characterization, and Evaluation of Antibacterial Activity of Ferrocenyl‐1,2,3‐Triazoles, Triazolium Salts, and Triazolylidene Complexes of Gold(
i
) and Silver(
i
). Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Carolin Hoyer
- Institut für Chemie und Biochemie Freie Universität Berlin Fabeckstrasse 34–36 14195 Berlin Germany
| | - Peter Schwerk
- Institut für Mikrobiologie und Tierseuchen Freie Universität Berlin Robert-von-Ostertag-Str. 7–13 14163 Berlin Germany
| | - Lisa Suntrup
- Institut für Chemie und Biochemie Freie Universität Berlin Fabeckstrasse 34–36 14195 Berlin Germany
| | - Julia Beerhues
- Lehrstuhl für Anorganische Koordinationschemie Institut für Anorganische Chemie Universität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Maite Nössler
- Institut für Chemie und Biochemie Freie Universität Berlin Fabeckstrasse 34–36 14195 Berlin Germany
| | - Uta Albold
- Institut für Chemie und Biochemie Freie Universität Berlin Fabeckstrasse 34–36 14195 Berlin Germany
| | - Jens Dernedde
- Institut für Laboratoriumsmedizin Klinische Chemie und Pathobiochemie Charité-Universitätsmedizin Berlin Corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin, and Berlin Institute of Health Augustenburger Platz 1 13353 Berlin Germany
| | - Karsten Tedin
- Institut für Mikrobiologie und Tierseuchen Freie Universität Berlin Robert-von-Ostertag-Str. 7–13 14163 Berlin Germany
| | - Biprajit Sarkar
- Institut für Chemie und Biochemie Freie Universität Berlin Fabeckstrasse 34–36 14195 Berlin Germany
- Lehrstuhl für Anorganische Koordinationschemie Institut für Anorganische Chemie Universität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| |
Collapse
|
12
|
Nemallapudi BR, Guda DR, Ummadi N, Avula B, Zyryanov GV, Reddy CS, Gundala S. New Methods for Synthesis of 1,2,3-Triazoles: A Review. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2020.1866038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
| | | | - Nagarjuna Ummadi
- Department of Chemistry, Sri Venkateswara University, Tirupati, Andhra Pradesh, India
| | - Balakrishna Avula
- Department of Chemistry, Rajeev Gandhi Memorial College of Engineering and Technology (Autonomous), Nandyal, Andhra Pradesh, India
| | - Grigory V. Zyryanov
- Department of Chemistry, Chemical Engineering Institute, Ural Federal University, Yekaterinburg, Russia
- Department of Chemistry, I. Ya. Postovsky Institute of Organic Synthesis, Ural Division of Russian Academy of Sciences, Yekaterinburg, Russian Federation
| | - Cirandur Suresh Reddy
- Department of Chemistry, Sri Venkateswara University, Tirupati, Andhra Pradesh, India
| | - Sravya Gundala
- Department of Chemistry, Chemical Engineering Institute, Ural Federal University, Yekaterinburg, Russia
| |
Collapse
|
13
|
Nural Y, Ozdemir S, Doluca O, Demir B, Yalcin MS, Atabey H, Kanat B, Erat S, Sari H, Seferoglu Z. Synthesis, biological properties, and acid dissociation constant of novel naphthoquinone–triazole hybrids. Bioorg Chem 2020; 105:104441. [DOI: 10.1016/j.bioorg.2020.104441] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/17/2020] [Accepted: 10/27/2020] [Indexed: 12/18/2022]
|
14
|
Mani Chandrika KVS, Sharma S. Promising antifungal agents: A minireview. Bioorg Med Chem 2020; 28:115398. [PMID: 32115335 DOI: 10.1016/j.bmc.2020.115398] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 02/14/2020] [Accepted: 02/19/2020] [Indexed: 11/24/2022]
Abstract
In the recent past, prevalence of life threatening fungal diseases have increased rapidly in immune-compromised cases such as acquired immunodeficiency syndrome (AIDS), cancer, organ transplant etc. Side by side, the appearance of drug resistance to the presently available antifungal therapeutics is on a rapid rise. It has become a top priority for the academia and pharmaceutical industries to develop new antifungal agents able to combat this resistance, and at the same time, possess potential broad spectrum of activity and minimum toxicity. An understanding of the pharmacological interactions between antifungal agents and their targets offers opportunities for design of new therapeutics. This review discusses the various methodology of drug design, structure activity relationships (SARs), and mode of action of variety of new antifungal agents.
Collapse
Affiliation(s)
- K V S Mani Chandrika
- Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Anantapur Campus, Anantapur 515001, A.P., India
| | - Sahida Sharma
- Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Anantapur Campus, Anantapur 515001, A.P., India.
| |
Collapse
|
15
|
Chen Y, Liu X, Sun X, Zhang J, Mi Y, Li Q, Guo Z. Synthesis and Antioxidant Activity of Cationic 1,2,3-Triazole Functionalized Starch Derivatives. Polymers (Basel) 2020; 12:E112. [PMID: 31948022 PMCID: PMC7023368 DOI: 10.3390/polym12010112] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/14/2019] [Accepted: 12/17/2019] [Indexed: 12/15/2022] Open
Abstract
In this study, starch was chemically modified to improve its antioxidant activity. Five novel cationic 1,2,3-triazole functionalized starch derivatives were synthesized by using "click" reaction and N-alkylation. A convenient method for pre-azidation of starch was developed. The structures of the derivatives were analyzed using FTIR and 1H NMR. The radicals scavenging abilities of the derivatives against hydroxyl radicals, DPPH radicals, and superoxide radicals were tested in vitro in order to evaluate their antioxidant activity. Results revealed that all the cationic starch derivatives (2a-2e), as well as the precursor starch derivatives (1a-1e), had significantly improved antioxidant activity compared to native starch. In particular, the scavenging ability of the derivatives against superoxide radicals was extremely strong. The improved antioxidant activity benefited from the enhanced solubility and the added positive charges. The biocompatibility of the cationic derivatives was confirmed by the low hemolytic rate (<2%). The obtained derivatives in this study have great potential as antioxidant materials that can be applied in the fields of food and biomedicine.
Collapse
Affiliation(s)
- Yuan Chen
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China (X.L.)
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiguang Liu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China (X.L.)
| | - Xueqi Sun
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingjing Zhang
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingqi Mi
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Li
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Zhanyong Guo
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Sun X, Zhang J, Chen Y, Mi Y, Tan W, Li Q, Dong F, Guo Z. Synthesis, Characterization, and the Antioxidant Activity of Carboxymethyl Chitosan Derivatives Containing Thiourea Salts. Polymers (Basel) 2019; 11:polym11111810. [PMID: 31689968 PMCID: PMC6918197 DOI: 10.3390/polym11111810] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 12/24/2022] Open
Abstract
A new class of chitosan derivatives possessing thiourea salts were synthesized to improve the solubility and the antioxidant activity of chitosan. Firstly, chitosan was modified to carboxymethyl chitosan, combining carboxymethyl chitosan with thiourea salts that have different structures to form new chitosan derivatives. The chitosan and chitosan derivatives were characterized by FT-IR, 13C NMR, TGA, and elemental analyses. The new peaks of thiourea salts could be clearly observed at about 1240 cm-1 in the IR spectra, and the peak of C=S was clearly observed at around 180 ppm in the 13C NMR. IR spectra and 13C NMR of the structural units of these polymers validated the chitosan derivatives possessing thiourea salts were successfully synthesized. Their antioxidant properties were tested, including DPPH-radical scavenging ability, superoxide-radical scavenging ability, and hydroxyl-radical scavenging ability. Our results suggested the increase of thiourea salt groups in chitosan derivatives promotes the scavenging effect. The scavenging activity of 4TMCMCS, TMCMCS. 4,4DCMCS, and 4ACMCS against DPPH-radical and superoxide-radical were more than 90% at 1.6 mg/mL, respectively. In the cytotoxicity assay, no cytotoxicity was observed for the L929 cells with chitosan and its derivatives at all testing concentrations. These results demonstrated that the combination of chitosan and thiourea salt groups improved the antioxidant activity of chitosan, and the antioxidants or free radical scavengers based on natural polymers and thiourea salts showed potential applications.
Collapse
Affiliation(s)
- Xueqi Sun
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jingjing Zhang
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yuan Chen
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yingqi Mi
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Wenqiang Tan
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
| | - Qing Li
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
| | - Fang Dong
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
| | - Zhanyong Guo
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
17
|
Li H, Zhang B, Lü S, Ma H, Liu M. Synthesis and characterization of a nano fluorescent starch. Int J Biol Macromol 2018; 120:1225-1231. [DOI: 10.1016/j.ijbiomac.2018.08.167] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 08/19/2018] [Accepted: 08/27/2018] [Indexed: 12/19/2022]
|
18
|
Fletcher JT, Sobczyk JM, Gwazdacz SC, Blanck AJ. Antimicrobial 1,3,4-trisubstituted-1,2,3-triazolium salts. Bioorg Med Chem Lett 2018; 28:3320-3323. [PMID: 30219525 DOI: 10.1016/j.bmcl.2018.09.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/06/2018] [Accepted: 09/09/2018] [Indexed: 11/18/2022]
Abstract
A series of 1,3,4-trisubstituted-1,2,3-triazolium bromide salts were prepared by efficient two-step sequences of azide-alkyne cycloaddition and benzylic substitution. The antimicrobial activity of each triazolium salt and correlating triazole precursor was evaluated using a minimum inhibitory concentration (MIC) assay. MIC activities as low as 1 µM against Gram-positive bacteria, 8 µM against Gram-negative bacteria and 4 µM against fungi were observed for salt analogs, while neutral triazoles were inactive. Analogs representing selective and broad-spectrum antimicrobial activity were each identified. MIC structure-activity relationships observed within this motif indicate that the presence of cationic charge and balance of overall hydrophobicity are strongly impactful, while benzyl vs. aryl substituent identity and variation of substituent regiochemistry are not.
Collapse
Affiliation(s)
- James T Fletcher
- Department of Chemistry, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA.
| | - Jill M Sobczyk
- Department of Chemistry, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Sarah C Gwazdacz
- Department of Chemistry, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Aaron J Blanck
- Department of Chemistry, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| |
Collapse
|
19
|
Zhang J, Tan W, Luan F, Yin X, Dong F, Li Q, Guo Z. Synthesis of Quaternary Ammonium Salts of Chitosan Bearing Halogenated Acetate for Antifungal and Antibacterial Activities. Polymers (Basel) 2018; 10:E530. [PMID: 30966564 PMCID: PMC6415387 DOI: 10.3390/polym10050530] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/10/2018] [Accepted: 05/10/2018] [Indexed: 11/30/2022] Open
Abstract
In this paper, quaternary ammonium salts of chitosan bearing halogenated acetate, including N,N,N-trimethyl chitosan chloroacetate (TMCSC), N,N,N-trimethyl chitosan dichloroacetate (TMCSDC), N,N,N-trimethyl chitosan trichloroacetate (TMCSTC), and N,N,N-trimethyl chitosan trifluoroacetate (TMCSTF), were prepared via N,N,N-trimethyl chitosan iodide (TMCSI). The obtained chitosan derivatives were characterized by FT-IR, ¹H NMR spectra, 13C NMR spectra, and elemental analysis. Their antifungal property against Fusarium oxysporum f. sp. cucumebrium Owen (F. oxysporum f. sp. cucumebrium Owen), Botrytis cinerea (B. cinerea), and Phomopsis asparagi (P. asparagi) were evaluated by hyphal measurement method at concentrations ranging from 0.08 mg/mL to 0.8 mg/mL. Meanwhile, two common bacteria, Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), were selected as the model Gram-negative and Gram-positive bacteria to evaluate the antibacterial property of the chitosan derivatives by agar well diffusion method. The results showed that TMCSC, TMCSDC, TMCSTC, and TMCSTF had better antifungal and antibacterial activities than chitosan and TMCSI. In particular, a rule showed that the inhibitory activity decreased in the order: TMCSTF > TMCSTC > TMCSDC > TMCSC > TMCSI > chitosan, which was consistent with the electron-withdrawing property of different halogenated acetate. Apparently, the quaternary ammonium salts of chitosan with stronger electron withdrawing ability possessed relatively greater antifungal and antibacterial activities. This experiment provides a potentially feasible method for the further utilization of chitosan in fields of antifungal and antibacterial biomaterials.
Collapse
Affiliation(s)
- Jingjing Zhang
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Wenqiang Tan
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Fang Luan
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiuli Yin
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Fang Dong
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Qing Li
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Zhanyong Guo
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
20
|
Cescon LDS, Quartarone P, Ribeiro SPDS, Nascimento RSV. Cationic starch derivatives as reactive shale inhibitors for water-based drilling fluids. J Appl Polym Sci 2018. [DOI: 10.1002/app.46621] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Leonardo dos Santos Cescon
- Universidade Federal do Rio de Janeiro (UFRJ); Rio de Janeiro Brazil
- Instituto de Química, Universidade Federal do Rio de Janeiro, Pólo de Xistoquímica, Rua Hélio de Almeida, 40-Cidade Universitária; Rio de Janeiro RJ, CEP: 21941-614 Brazil
| | - Priscila Quartarone
- Universidade Federal do Rio de Janeiro (UFRJ); Rio de Janeiro Brazil
- Instituto de Química, Universidade Federal do Rio de Janeiro, Pólo de Xistoquímica, Rua Hélio de Almeida, 40-Cidade Universitária; Rio de Janeiro RJ, CEP: 21941-614 Brazil
| | - Simone Pereira da Silva Ribeiro
- Universidade Federal do Rio de Janeiro (UFRJ); Rio de Janeiro Brazil
- Instituto de Química, Universidade Federal do Rio de Janeiro, Pólo de Xistoquímica, Rua Hélio de Almeida, 40-Cidade Universitária; Rio de Janeiro RJ, CEP: 21941-614 Brazil
| | - Regina Sandra Veiga Nascimento
- Universidade Federal do Rio de Janeiro (UFRJ); Rio de Janeiro Brazil
- Instituto de Química, Universidade Federal do Rio de Janeiro, Pólo de Xistoquímica, Rua Hélio de Almeida, 40-Cidade Universitária; Rio de Janeiro RJ, CEP: 21941-614 Brazil
| |
Collapse
|
21
|
Synthesis, characterization, and the antifungal activity of chitosan derivatives containing urea groups. Int J Biol Macromol 2018; 109:1061-1067. [DOI: 10.1016/j.ijbiomac.2017.11.092] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/06/2017] [Accepted: 11/14/2017] [Indexed: 01/28/2023]
|
22
|
Li Q, Sun X, Gu G, Guo Z. Novel Water Soluble Chitosan Derivatives with 1,2,3-Triazolium and Their Free Radical-Scavenging Activity. Mar Drugs 2018; 16:md16040107. [PMID: 29597269 PMCID: PMC5923394 DOI: 10.3390/md16040107] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/14/2018] [Accepted: 03/24/2018] [Indexed: 12/12/2022] Open
Abstract
Chitosan is an abundant and renewable polysaccharide, which exhibits attractive bioactivities and natural properties. Improvement such as chemical modification of chitosan is often performed for its potential of providing high bioactivity and good water solubility. A new class of chitosan derivatives possessing 1,2,3-triazolium charged units by associating “click reaction” with efficient 1,2,3-triazole quaternization were designed and synthesized. Their free radical-scavenging activity against three free radicals was tested. The inhibitory property and water solubility of the synthesized chitosan derivatives exhibited a remarkable improvement over chitosan. It is hypothesized that triazole or triazolium groups enable the synthesized chitosan to possess obviously better radical-scavenging activity. Moreover, the scavenging activity against superoxide radical of chitosan derivatives with triazolium (IC50 < 0.01 mg mL−1) was more efficient than that of derivatives with triazole and Vitamin C. In the 1,1-diphenyl-2-picrylhydrazyl (DPPH) and hydroxyl radical-scavenging assay, the same pattern were observed, which should be related to the triazolium grafted at the periphery of molecular chains.
Collapse
Affiliation(s)
- Qing Li
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shangdong, China.
| | - Xueqi Sun
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shangdong, China.
- Graduate School of Chinese Academy of Sciences, Beijing 100039, China.
| | - Guodong Gu
- Alliance Pharma, Inc., 17 Lee Boulevard Malvern, PA 19355, USA.
| | - Zhanyong Guo
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shangdong, China.
| |
Collapse
|
23
|
Li Q, Qiu L, Tan W, Gu G, Guo Z. Novel 1,2,3-triazolium-functionalized inulin derivatives: synthesis, free radical-scavenging activity, and antifungal activity. RSC Adv 2017. [DOI: 10.1039/c7ra08244d] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A new class of inulin derivatives possessing 1,2,3-triazolium charged units by associating “click reaction” with efficient 1,2,3-triazole quaternization were designed and synthesized. The synthesized inulin derivatives possess excellent free radical-scavenging ability.
Collapse
Affiliation(s)
- Qing Li
- Key Laboratory of Coastal Biology and Bioresource Utilization
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai
- China
| | - Lishushi Qiu
- School of Chemistry and Chemical Engineering
- Yantai University
- Yantai 264005
- China
| | - Wenqiang Tan
- Key Laboratory of Coastal Biology and Bioresource Utilization
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai
- China
| | | | - Zhanyong Guo
- Key Laboratory of Coastal Biology and Bioresource Utilization
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai
- China
| |
Collapse
|