1
|
Meher MK, Naidu G, Mishra A, Poluri KM. A review on multifaceted biomedical applications of heparin nanocomposites: Progress and prospects. Int J Biol Macromol 2024; 260:129379. [PMID: 38242410 DOI: 10.1016/j.ijbiomac.2024.129379] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/21/2024]
Abstract
Advances in polymer-based nanocomposites have revolutionized biomedical applications over the last two decades. Heparin (HP), being a highly bioactive polymer of biological origin, provides strong biotic competence to the nanocomposites, broadening the horizon of their applicability. The efficiency, biocompatibility, and biodegradability properties of nanomaterials significantly improve upon the incorporation of heparin. Further, inclusion of structural/chemical derivatives, fractionates, and mimetics of heparin enable fabrication of versatile nanocomposites. Modern nanotechnological interventions have exploited the inherent biofunctionalities of heparin by formulating various nanomaterials, including inorganic/polymeric nanoparticles, nanofibers, quantum dots, micelles, liposomes, and nanogels ensuing novel functionalities targeting diverse clinical applications involving drug delivery, wound healing, tissue engineering, biocompatible coatings, nanosensors and so on. On this note, the present review explicitly summarises the recent HP-oriented nanotechnological developments, with a special emphasis on the reported successful engagement of HP and its derivatives/mimetics in nanocomposites for extensive applications in the laboratory and health-care facility. Further, the advantages and limitations/challenges specifically associated with HP in nanocomposites, undertaken in this current review are quintessential for future innovations/discoveries pertaining to HP-based nanocomposites.
Collapse
Affiliation(s)
- Mukesh Kumar Meher
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Goutami Naidu
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur 342011, Rajasthan, India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India; Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| |
Collapse
|
2
|
Development of a novel sensor with high sensitivity for electroanalytical determination of bisphenol A based on chitosan-3-mercaptopropyl trimethoxysilane modified glassy carbon electrode. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
3
|
Analytical Performance of Clay Paste Electrode and Graphene Paste Electrode-Comparative Study. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072037. [PMID: 35408436 PMCID: PMC9000814 DOI: 10.3390/molecules27072037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/17/2022] [Accepted: 03/17/2022] [Indexed: 11/16/2022]
Abstract
The analytical performance of the clay paste electrode and graphene paste electrode was compared using square wave voltammetry (SWV) and cyclic voltammetry (CV). The comparison was made on the basis of a paracetamol (PA) determination on both working electrodes. The influence of pH and SWV parameters was investigated. The linear concentration ranges were found to be 6.0 × 10-7-3.0 × 10-5 and 2.0 × 10-6-8.0 × 10-5 mol L-1 for clay paste electrode (ClPE) and graphene paste electrode (GrPE), respectively. The detection and quantification limits were calculated as 1.4 × 10-7 and 4.7 ×10-7 mol L-1 for ClPE and 3.7 × 10-7 and 1.2 × 10-6 mol L-1 for GrPE, respectively. Developed methods were successfully applied to pharmaceutical formulations analyses. Scanning electron microscopy and energy-dispersive X-ray spectroscopy were used to characterize ClPE and GrPE surfaces. Clay composition was examined with wavelength dispersive X-ray (WDXRF).
Collapse
|
4
|
The hybrids of perylene tetracarboxylic acid functionalized multi-walled carbon nanotubes and chitosan for electrochemical chiral sensing of tryptophan enantiomers. Bioelectrochemistry 2022; 146:108110. [DOI: 10.1016/j.bioelechem.2022.108110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/19/2022] [Accepted: 03/25/2022] [Indexed: 12/29/2022]
|
5
|
Wang L, Peng X, Fu H. An electrochemical aptasensor for the sensitive detection of Pb2+ based on a chitosan/reduced graphene oxide/titanium dioxide. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106977] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
6
|
Guo C, Wang C, Sun H, Dai D, Gao H. A simple electrochemical sensor based on rGO/MoS 2/CS modified GCE for highly sensitive detection of Pb(ii) in tobacco leaves. RSC Adv 2021; 11:29590-29597. [PMID: 35479524 PMCID: PMC9040863 DOI: 10.1039/d1ra05350g] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/16/2021] [Indexed: 11/21/2022] Open
Abstract
High-performance electrode modification materials play a crucial role in improving the sensitivity of sensor detection in electrochemical determination of heavy metals. In this study, a rGO/MoS2/CS nanocomposite modified glassy carbon electrode (GCE) was used to construct a sensitive sensor for detecting lead ions in tobacco leaves. The reduced graphene oxide (rGO) was used to increase the conductivity of the sensor, and the nano-flowered MoS2 could provide a large reaction specific surface area and a certain active site for heavy metal reaction. Chitosan (CS) was used to improve the enrichment ability of heavy metals and increase the electrocatalytic activity of electrode. Thus, an electrochemical sensor with excellent performance in reproducibility, stability and anti-interference ability was established. The stripping behavior of Pb(ii) and the application conditions of the sensor were studied by square wave anodic stripping voltammetry (SWASV). The investigation indicated that the sensor exhibited high detection sensitivity in the range of 0.005-0.05-2.0 μM, and the limit of detection (LOD) was 0.0016 μM. This work can provide a fast and effective method for determination of Pb(ii) in samples with low content, such as tobacco leaves.
Collapse
Affiliation(s)
- Chuanen Guo
- Judicial Expertise Center, Shandong University of Political Science and Law Jinan 250014 P. R. China
| | - Chengxiang Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Qingdao University of Science & Technology Qingdao 266042 P. R. China +86-0532-84022990 +86-0532-84022990
| | - Hongyan Sun
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Qingdao University of Science & Technology Qingdao 266042 P. R. China +86-0532-84022990 +86-0532-84022990
| | - Dongmei Dai
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Qingdao University of Science & Technology Qingdao 266042 P. R. China +86-0532-84022990 +86-0532-84022990
| | - Hongtao Gao
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Qingdao University of Science & Technology Qingdao 266042 P. R. China +86-0532-84022990 +86-0532-84022990
| |
Collapse
|
7
|
Manjula N, Chen SM. Simple strategy synthesis of manganese cobalt oxide anchored on graphene oxide composite as an efficient electrocatalyst for hazardous 4-nitrophenol detection in toxic tannery waste. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106514] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Li P, Wang J, Li X, Zhu W, He S, Han C, Luo Y, Ma W, Liu N, Dionysiou DD. Facile synthesis of amino-functional large-size mesoporous silica sphere and its application for Pb 2+ removal. JOURNAL OF HAZARDOUS MATERIALS 2019; 378:120664. [PMID: 31203120 DOI: 10.1016/j.jhazmat.2019.05.057] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 06/09/2023]
Abstract
Amino-functional large-size mesoporous silica spheres (LMS-AP) were successfully synthesized through a one-step method with (3-aminopropyl) triethoxysilane (APTES) addition during the pseudomorphic transformation process. LMS-AP were characterized using thermogravimetry-differential thermal analysis, Nitrogen adsorption-desorption measurement, infrared spectroscopy, and X-ray photoelectron spectroscopy. The study found that -NH2 was grafted into LMS, and the LMS-AP had a better thermal stability than other samples. The Pb2+ removal properties of LMS-AP were investigated using the static and dynamic experiments in simulated and real wastewater solutions. The kinetic and equilibrium experiments indicated that the adsorption process of LMS-AP fitted the Langmuir adsorption model and the pseudo-second-order kinetics model (R2 > 0.98), respectively. The maximum Qe (mg/g) was about 100 mg/g in the static adsorption condition. The adsorption mechanism of removal of Pb2+ was also investigated. In fix bed column experiments, LMS-AP exhibited excellent Pb2+ adsorption ability for simulated wastewater, with the maximum qe (mg/g) of 48.7 mg/g for particle size under 1-3 mm. Meanwhile in actual industrial wastewater treatment process, LMS-AP had a better Pb2+, Zn2+ and Cr (VI) removal efficiency of 80% and As (V) of 30-40% removal efficiency at initial pH 4, suggesting selective adsorption property for different heavy metal ions.
Collapse
Affiliation(s)
- Penggang Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, PR China
| | - Jingxuan Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, PR China
| | - Xitong Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, PR China
| | - Wenjie Zhu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, PR China.
| | - Sufang He
- Research Center for Analysis and Measurement, Kunming University of Science and Technology, Kunming, 650093, PR China
| | - Caiyun Han
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, PR China
| | - Yongming Luo
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, PR China
| | - Wenhui Ma
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, PR China
| | - Nengsheng Liu
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, PR China
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering (ChEE), University of Cincinnati, Cincinnati, OH, 45221-0012, USA.
| |
Collapse
|
9
|
Krishnan SK, Singh E, Singh P, Meyyappan M, Nalwa HS. A review on graphene-based nanocomposites for electrochemical and fluorescent biosensors. RSC Adv 2019; 9:8778-8881. [PMID: 35517682 PMCID: PMC9062009 DOI: 10.1039/c8ra09577a] [Citation(s) in RCA: 286] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/15/2019] [Indexed: 12/16/2022] Open
Abstract
Biosensors with high sensitivity, selectivity and a low limit of detection, reaching nano/picomolar concentrations of biomolecules, are important to the medical sciences and healthcare industry for evaluating physiological and metabolic parameters.
Collapse
Affiliation(s)
- Siva Kumar Krishnan
- CONACYT-Instituto de Física
- Benemérita Universidad Autónoma de Puebla
- Puebla 72570
- Mexico
| | - Eric Singh
- Department of Computer Science
- Stanford University
- Stanford
- USA
| | - Pragya Singh
- Department of Electrical Engineering and Computer Science
- National Chiao Tung University
- Hsinchu 30010
- Taiwan
| | - Meyya Meyyappan
- Center for Nanotechnology
- NASA Ames Research Center
- Moffett Field
- Mountain View
- USA
| | | |
Collapse
|
10
|
Rahimi-Mohseni M, Raoof JB, Ojani R, Aghajanzadeh TA, Bagheri Hashkavayi A. Development of a new paper based nano-biosensor using the co-catalytic effect of tyrosinase from banana peel tissue (Musa Cavendish) and functionalized silica nanoparticles for voltammetric determination of l-tyrosine. Int J Biol Macromol 2018; 113:648-654. [PMID: 29447970 DOI: 10.1016/j.ijbiomac.2018.02.060] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/23/2018] [Accepted: 02/11/2018] [Indexed: 10/18/2022]
Abstract
In this paper, a new and facile method for the electrochemical determination of l-tyrosine was designed. First, 3-mercaptopropyl trimethoxysilane-functionalized silica nanoparticles were added to a paper disc. Then, the banana peel tissue and the mediator potassium hexacyanoferrate were dropped onto the paper, respectively. The modified paper disc was placed on the top of the graphite screen printed electrode and electrochemical characterization of this biosensor was studied by cyclic voltammetry and electrochemical impedance spectroscopy methods. The effective parameters like pH, banana peel tissue percentage, and the amount of mediator loading were optimized. l-tyrosine measurements were done by differential pulse voltammetry with a little sample (3 μL) for analysis. The biosensor showed a linear response for l-tyrosine in the wide concentration range of 0.05-600 μM and a low detection limit about 0.02 μM because of the co-catalytic effect of enzyme and nanoparticles. The stability of the biosensor and its selectivity were evaluated. This biosensor was applied for the voltammetric determination of l-tyrosine in the blood plasma sample. The results of the practical application study were comparable with the standard method (HPLC). In conclusion, a simple, inexpensive, rapid, sensitive and selective technique was successfully applied to the l-tyrosine analysis of the little samples.
Collapse
Affiliation(s)
- Mohadeseh Rahimi-Mohseni
- Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Jahan Bakhsh Raoof
- Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran.
| | - Reza Ojani
- Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Tahereh A Aghajanzadeh
- Department of Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | - Ayemeh Bagheri Hashkavayi
- Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
11
|
Ce doped ZnO/f-MWCNT moss ball like nanocomposite: a strategy for high responsive current detection of L-tryptophan. Mikrochim Acta 2018; 185:96. [DOI: 10.1007/s00604-017-2641-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 12/28/2017] [Indexed: 11/25/2022]
|